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Abstract

Background: Childhood acute lymphoblastic leukemia (cALL) is the most frequent pediatric cancer. Over the past
decades, treatment of cALL has significantly improved, with cure rates close to 90%. However intensive chemotherapy
and cranial radiotherapy (CRT) during a critical period of a child’s development have been shown to lead to significant
long-term side effects including cardiometabolic complications. Using the PETALE (Prévenir les effets tardifs des
traitements de la leucémie aigué lymphoblastique chez I'enfant) cALL survivor cohort, we investigated the association
between combined cumulative corticosteroids (CS) doses and CRT exposures and obesity, insulin resistance, (pre-)
hypertension, and dyslipidemia jointly.

Methods: A Bayesian multivariate latent-t model which accounted for our correlated binary outcomes was used for the
analyses (n =241 survivors). CS doses were categorized as low (LD) or high (HD). Combined exposure levels investigated
were: 1) LD/no CRT; 2) LD/CRT, and; 3) HD/CRT. We also performed complementary sensitivity analyses for covariate
adjustment.

Results: Prevalence of cardiometabolic complications ranged from 12.0% for (pre-)hypertension to 40.2% for dyslipidemia.
The fully adjusted odds ratio (OR) for dyslipidemia associated with LD/CRT (vs. LD/No CRT) was OR = 1.98 (95% credible
interval (Crl): 1.02 to 3.88). LD/CRT level also led to a 0.15 (95% Crl: 0.00 to 0.29) excess risk to develop at least one
cardiometabolic complication. Except for obesity, adjusted results for the highest exposure category HD/CRT were
generally similar to those for LD/CRT albeit not statistically significant. White blood cell count at diagnosis, a proxy for
CALL burden at diagnosis, was found associated with insulin resistance (OR = 1.08 for a 10-unit increase (x 107/L), 95% Crl:
1.02 to 1.14).
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Conclusions: Our results indicated that combined LD/CRT exposure is a likely determinant of dyslipidemia among cALL
survivors. No evidence was found to suggest that high doses of CS lead to additional risk for obesity, insulin resistance,
(pre-)hypertension, and dyslipidemia beyond that induced by CRT. The multivariate model selected for analyses was
judged globally useful to assess potential exposure-related concomitance of binary outcomes.

Keywords: Childhood acute lymphoblastic leukemia, Corticosteroids, Cranial radiotherapy, Obesity, Insulin resistance,
Hypertension, Dyslipidemia, Multivariate binary outcome model

Background

Childhood acute lymphoblastic leukemia (cALL) is the
most frequent pediatric cancer. Over the years, treatment
of cALL has significantly improved such that nearly 90%
of patients are cured with current therapy regimens. This
success is largely due to the progressive intensification of
cALL treatment and the implementation of risk-adapted
protocols [1, 2]. Despite this remarkable improvement, in-
tensive chemotherapy and cranial radiotherapy (CRT)
during a vulnerable period of a child’s development can
lead to significant long-term side effects. Childhood ALL
survivors are known to be at higher risk of developing late
treatment-associated morbidities (late adverse effects;
LAESs), with a cumulative incidence of chronic health con-
ditions exceeding 60% [3, 4]. The PETALE (Prévenir les
effets tardifs des traitements de la leucémie aigué lympho-
blastique chez [lenfant) study, recently conducted at
Sainte-Justine University Health Center (SJUHC), was
designed to identify and characterize the most common
LAEs observed in cALL survivors [5].

Levy et al. [6] investigated the prevalence of cardio-
metabolic complications in the PETALE cohort. A total
of 88 patients (35.6%) presented a single cardiometabolic
outcome among obesity, (pre)-hypertension, prediabetes
(insulin resistance), and dyslipidemia, while 61 patients
(24.7%) cumulated two or more. A large proportion of
PETALE cALL survivors received CRT, specifically those
at high risk of relapse. In multiple regression analyses,
CRT was found to increase the prevalence of dyslipidemia
(relative risk (RR): 1.60; 95% confidence interval (CI):
1.07 to 241) and high low-density lipoprotein
(LDL)-cholesterol (RR: 4.78; 95% CI: 1.72 to 13.28).
Moreover, male gender was found positively associated
with (pre)-hypertension (RR: 5.12; 95% CI: 1.81 to 14.5).
When compared to the general Canadian population,
Levy et al. [6] found that cALL survivors were at higher
risk of having the metabolic syndrome, dyslipidemia,
(pre-)hypertension and high LDL-cholesterol. However,
after stratification, only CRT recipients were found
more likely than healthy controls to have cardiometabolic
complications.

Building upon Levy et al. [6], we performed additional
analyses to shed further light on the impact of cALL
treatment (exposure) received on cardiometabolic health

in the PETALE cohort of survivors. Chemotherapy dos-
age was not evaluated in Levy et al. [6], however both
radiotherapy and chemotherapy treatments may contribute
to the development of cardiometabolic complications
through several mechanisms, for example by damaging
endocrine organs, inducing endothelial dysfunction and
perturbing adipose tissue metabolism [6—8]. cALL chemo-
therapy includes multiple agents that are believed to be
highly deleterious for cardiometabolic health, such as cor-
ticosteroids (CS). We thus investigated the association
between doses of CRT and CS received and cardiometabolic
complications (obesity, insulin resistance, (pre-)hyperten-
sion, and dyslipidemia). Rather than performing analyses
for each cardiometabolic outcome separately, our analyses
considered all outcomes simultaneously to account for
likely co-occurrence between them.

Multivariate statistical models are indicated when ana-
lyzing interrelated outcome variables. Grounded in the
Bayesian framework, the multivariate logistic regression
model of O’Brien and Dunson [9] is an appealing model
to study the association between a set of covariates and
several correlated binary outcomes. A distinctive feature
of this model is its ability to output results with high inter-
pretability, by allowing for the familiar log odds ratio in-
terpretation of regression coefficients as in a standard
univariate logistic model, while accounting for outcome
dependencies in an unrestricted fashion [9]. Inference
based on O’Brien and Dunson’s model was recently fur-
ther pushed forward by Hund et al. [10] who estimated
average treatment effects for types of uranium exposure
on kidney disease, hypertension, and diabetes, jointly, in
the Navajo Nation. Despite its attractiveness, this Bayesian
multivariate model, combined with the post-hoc analysis
approach of Hund et al. [10], has not received broad at-
tention in clinical epidemiology, perhaps due to a greater
complexity. In addition to the substantive objective
described above, a methodological objective was therefore
to detail and emphasize the application of this well thought
multivariate model on our cALL survivorship data.

In this study, we used the O’Brien and Dunson / Hund
et al. global modeling approach to identify combined CS
and CRT treatment levels associated with cardiometabolic
LAEs in cALL survivors. The insight gained on
treatment-LAE associations will further guide risk-adapted
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follow-up of cALL survivors. From a methodological
perspective, our modeling proposal (with associated
computer code) will expand health practitioners’ toolkit for
the analysis of correlated binary outcome variables from a
Bayesian perspective.

Methods

PETALE cohort

Subjects enrolled in the PETALE study were treated for
cALL at SJUHC with the Dana Farber Cancer Institute
(DECI) protocols 1987-01 to 2005-01 [11, 12]. cALL
survivors less than 19 years old at diagnosis, more than
5 years post diagnosis and who had never experienced a
relapse were invited to participate. Between 2012 and
2016, a total of 247 participants underwent thorough
clinical, biological, and psychosocial evaluations (mean
age at interview: 21.6years; standard deviation (SD):
6.3). A detailed presentation of the PETALE study and
cohort is provided in Marcoux et al. [5]

Outcome, treatment and adjustment variables

Obesity was determined by presenting at least one of two
factors at interview: obese according to body mass index
(BMI) or high waist circumference [13, 14]. Insulin resist-
ance was defined by high blood fasting glucose, high gly-
cated hemoglobin, high homeostasis model assessment
(HOMA-IR) [insulin (mIU/L) x glucose (mmol/L)/22.5]
values or taking medication for diabetes [15, 16]. (Pre-)hy-
pertension was assessed according to current guidelines
for arterial pressures or by being on antihypertensive
medication [17, 18]. Dyslipidemia was determined by high
LDL-cholesterol, high triglycerides, low high-density lipo-
protein (HDL)-cholesterol, or lipid-lowering medication
[19, 20]. Age- and gender-dependent cut-off values
defining cardiometabolic outcomes are presented in
Additional file 1: Table S1.

Cumulative doses of CS were calculated as the sum of
prednisone-equivalent, body-surface area-normalized
(mg/m?) dexamethasone, methylprednisolone, prednisolone,
and prednisone doses received during the three
phases of the chemotherapy treatment (induction, in-
tensification, and consolidation). A third quartile split
(using a 13,414 mg/m? threshold) was used to categorize
cALL survivors as having received lower (LD) or higher
(HD) doses of CS. CRT exposure was defined as a binary
variable (yes/no) as most survivors who received CRT had
an 18 Gray (Gy) cumulative dose, with none receiving
over 20 Gy. Unlike Hund et al. [10] who focused on
the effect of a single binary exposure variable entered
in the multivariate model each time, a joint CS/CRT
exposure variable was defined using three categories:
1) LD/No CRT; 2) LD/CRT, and; 3) HD/CRT. No cALL
survivors received higher doses of CS but no CRT; as such
we did not consider the “HD/No CRT” category.
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Information concerning the three exposure categories
examined was available for 241 cALL survivors (five sur-
vivors were excluded because of no information on CS
and one was excluded because they were not exclusively
treated by DFCI cALL protocols 1987-01 to 2005-01).

The adjustment variables considered in our analyses
were seX, age at diagnosis, white blood cell (WBC) count
at diagnosis, and time since diagnosis. These adjustment
variables are known to be associated with cALL treat-
ment received, the studied cardiometabolic complica-
tions, or both. Notably, age and WBC count were used
as criteria to stratify patients as having standard or high
risk of relapse in DFCI cALL treatment protocols 1987—
01 to 2005-01 [11, 12]. WBC count was entered as a
main effect term after preliminary investigations asses-
sing other possible functional forms with one degree of
freedom (e.g., log, square root). Indeed, for the sake of
simplicity, and because the proposed multivariate model
has a marginal logistic interpretation, we initially considered
a number of multiple logistic regressions for modeling
insulin resistance versus different functions of WBC.
We then selected the functional form for WBC that
yielded the smallest Akaike information criterion (AIC)
value for the corresponding fully adjusted model.

Multivariate model

Let Y, = (Y9, YL Y" YP) be the vector of binary (1/0)
outcomes for the i th survivor, where O, I, H, D indexes
obesity, insulin resistance, (pre-)hypertension, and dys-
lipidemia, respectively. Let T be a p-dimensional vector
following a multivariate Student-¢ distribution with v de-
grees of freedom, location vector g and scale matrix X

with density

__ Iv+p)/2)
Stp(ﬂﬂ, %, V) - r(v/2)(Vﬂ)p/2|Z|1/2

x (1 +%(t—ﬂ)'zl(t—;¢))

_ptv
2

We defined Z; = (29,7}, 7% ZP) as a multivariate
Student-t vector of latent (unobserved) variables with
mean p; = (uf 4, i 17):

ﬂ{ = /:’)(]) +:B{T1,i +ﬁéT2~,i +Bécli7 jE{O, 1, H7D}>

(1)

where f is the vector of unknown regression coefficients
associated to outcome j, T} and T, are dummies index-
ing the 2nd and 3rd categories of treatment, respectively,
as opposed to the baseline (7Ty: LD/no CRT), and C is
the vector of adjustment covariates. The scale matrix
was defined as X =8°R, where R is an unstructured
correlation matrix, 6% =7%(v - 2)/(3v), and v = 7.3. The
latent variables can be viewed as underlying propensities
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to experience the binary cardiometabolic complications;

they were linked to the outcomes by Y/ =1(Z] > 0),
where 1(-) is the indicator function. Let X;= (T}, To;
C)), then the likelihood function was written as

P(Y; =y|Xi,B.R) = [m [m (H/ﬂ (zl’ > O)y/‘l] (zl;'go)lfyfj)

x St4(zi|m;, 6°R, v)dz;.

As detailed in O’Brien and Dunson [9] and further dis-
cussed in Hund et al. [10], this latent multivariate Stu-
dent-¢# model with 6*=7*(v-2)/(3v) and v = 7.3 has a
very close resemblance with a latent multivariate logistic
model with the same location vector g; [9]. As such, each
non-intercept A/ in (1) can be interpreted as a conditional
log odds ratio. There is a specific computational advantage
of working with the Student-t model rather than the logis-
tic model representation. Indeed, after assigning priors to
the parameters 8 = (8°, 8, B, ) and R, a relatively sim-
ple data-augmented Markov chain Monte Carlo (MCMC)
algorithm for sampling from these parameters’ posterior
distribution can be devised. This algorithm samples from
the full conditional distributions of B and Z;, and updates
R using a Metropolis step.

Analyses

The prior distribution was specified by (8, R) = n(B)(R),
where 77(R) is uniform on the space of correlation matrices
and 7(f) is multivariate normal. More precisely, ()
=[I;N(B/|B,,%]) , where B/ = 0 and £/ = diag(1000, 4,
...,4) for j€{O, I, H, D}. Our choice of prior is very similar
to a multivariate normal prior distribution proposed by
O’Brien and Dunson [9]. For the non-intercept coefficients,
a standard deviation of 2 (variance 4) implies that the bulk
of the prior is between +/—1.96*2 for the log odds ratio.
We used a larger prior variance (1000 instead of 4) for the
intercept coefficient /)’é, j€1{0, 1, H, D}, so to only weakly in-
form on the log odds for outcome j at the baseline level.
Crude and adjusted analyses were performed. Because
WBC count at diagnosis was not taken into account in
Levy et al. [6], the sensitivity of the results to the inclusion
of this covariable in the model was assessed.

We used a multivariate normal as the proposal distri-
bution in the Metropolis step for R. The parameters of
this distribution were selected towards the goal to have
adequate acceptance rates (near 25%). For each of the
three models, we obtained 1,050,000 draws from the
posterior distribution of (8, R) and discarded the first
50,000 as burn-in. The running time was about 30 min
for fitting the most complex model on an Intel core i7
3930k 3.2GHz with 32.0 GB RAM. For each model, we
reduced the autocorrelation between the successive
draws for the elements of R by applying a thinning with
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a factor of 100, leaving a total of 10,000 draws available
for inference. Chain convergence was assessed visually
for every parameter using ten sequential boxplots of
1000 draws each. No convergence problems were further
detected according to the Geweke diagnostic test [21].
For the full model, the effective sample size for each of
the 28 regression coefficients (f) was 10,000 according
to the R package coda function effectiveSize [22]. The ef-
fective sample sizes for the 6 unique elements of the cor-
relation matrix R ranged between 4317 and 5325.

Standard exposure association measures were first ob-
tained for each outcome separately for each model con-
sidered and every retained posterior draw for (B, R).
Specifically, in addition to conditional odds ratios (ORs),
conditional risk differences were computed for each sur-
vivor under both levels of treatment compared (7] vs.
To, I = 1, 2) and subsequently averaged to produce popu-
lation risk differences (PRDs). The multivariate model
also enabled the calculation of the difference in probability
of a given configuration of the outcome vector under both
levels of treatment (7} vs. Ty):

PTI(YLO:yz’OszI':sz‘:Y{{:yflﬂYiD:yz’D|Ci)
_PTO(YzQ:yzQY{:3’1{7Yf{:yiH>Y?:yiD|Ci)a
(2)

for y{ €{0, 1}, where, for example,

P (Y? =1,YI=0,Y" =0,Y? =1|C)

o 0 0 poo
:/ / / / Sta(zilp!, 0°R, v )dzPdzidz! d?,
0 JowoJwJo

with ] = (0" " ™) and @1 = L+ B 1
+,8é . O+BéC;. For each of the 2*=16 outcome con-
figurations, (2) was obtained using the R function pmvt
which evaluated the latent variables’ multivariate Stu-
dent-¢ cumulative distribution function for limits of inte-
gration compatible with the configuration. Each
difference (2) was then averaged across individuals to
obtain a population value, for example,

P (Y?=1,Y=0,Y"=0Y/=1)
-Po(Y? =1,YI=0,Y"=0,Y=1) =

n
%Z {PI(Y?=1YI=0,Y=0,Y?=1|C)
=1 -Plo(Y? =1,YI =0,Yi=0,Y? =1|C))}.

As in Hund et al. [10], contrasts in probabilities for
the presence of multiple cardiometabolic outcomes
(P(N = ZjV >1,2,3,4)) given treatment levels compared
were also obtained. For example, the population risk dif-
ference for at least three cumulative cardiometabolic
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outcomes for LD/CRT versus LD/no CRT (PT'(N=>3)-
PTo(N'>3)) was calculated as

PrrP =1y =1yl =1YP =)
Ph(Y?=1,YI=1,YF =1,YP? =1)}+

(P (Y?=1Y =1,Y=1,Y? =0)
SP(Y? = 1,Y = LY[ = 1,YP = 0)}+

l
(PP (Y? =1Y=1,Y"=0,Y? =1)
-Po(YP =1,Y =1,Y =0,Y? =1)}+

[P (Y0 —1.¥!
(

[P (v? =0,y =
PP (Y?=0,Y =1Y!=1,Y?=1)}.

We obtained draws from the posterior distributions of
target association measures and calculated corresponding
posterior means and equal-tailed 95% credible intervals
(CrI). Because the posterior distributions of ORs were
skewed, posterior medians were presented and favored for
this association measure. Due to higher computational
complexity, cumulative PRDs were computed on the super-
computer Briarée maintained by Calcul Québec.

Results

Descriptive statistics on the 241 PETALE cALL survivors
included in our analyses are presented in Table 1. Males
were approximately as represented as females (118/241 or
49.0%), the mean age at cALL diagnosis was 6.6 years (SD
=4.6), and the mean time elapsed between diagnosis and
interview was 154 years (SD =5.1). A total of 99 (41.1%)
cALL survivors received treatment level LD/No CRT, 82
(34.0%) received LD/CRT, and 60 (24.9%) HD/CRT. The
prevalence of the four cardiometabolic complications at
interview was relatively high, ranging from 12.0% for (pre-)
hypertension to 40.2% for dyslipidemia. On average, cALL

Table 1 Characteristics of the cALL survivor cohort
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survivors who received the baseline level of treatment
(LD/No CRT) were the youngest at diagnosis, had the
lowest WBC count at diagnosis, and included slightly
more females compared to the other two groups of expo-
sure (LD/CRT and HD/CRT). Imbalance in the distribution
of time since diagnosis was also observed across levels of
treatment, with longer times associated with the highest
exposure category (HD/CRT).

Crude and adjusted results pertaining to treatment are
presented individually for each outcome in Tables 2 and 3.
The median-based fully adjusted OR for dyslipidemia asso-
ciated with treatment LD/CRT (as opposed to LD/No
CRT) was OR =1.98 (95% CrI: 1.02 to 3.88) and the corres-
ponding risk difference was PRD =0.15 (95% Crl: 0.00 to
0.29). The dyslipidemia OR and PDR for HD/CRT (as op-
posed to LD/No CRT) were similar to those obtained for
LD/CRT but they were not statistically significant, likely
due to a smaller sample size in that combined exposure cat-
egory (n =82 versus n=60). All other fully adjusted ORs
and PRDs were not significantly different from their refer-
ence values (one and zero, respectively). Association mea-
sures were globally sensitive to the inclusion or exclusion of
WBC count at diagnosis in the model, suggesting that it
could be a confounder for studied treatment and outcomes.
In particular, association measures related to obesity and in-
sulin resistance were attracted towards the null when
adjusting for this covariable.

Examining the elements of R in the fully adjusted
model, we observed a positive residual correlation (i.e., a
correlation not induced by treatment and covariates) bet-
ween obesity and dyslipidemia (p = 0.36, 95% Crl: 0.16 to
0.54) and an even stronger one between obesity and insu-
lin resistance (p = 0.69, 95% Crl: 0.51 to 0.83). Table 4
presents PRDs for accumulation of cardiometabolic com-
plications. In the fully adjusted model, the treatment level
LD/CRT led to a 0.15 increased probability (95% CrI: 0.02
to 0.27) to develop at least one cardiometabolic complica-
tion (N > 1), as compared to the baseline treatment level

Full cohort LD/No CRT LD/CRT HD/CRT

(n =241) (n =99) (n=82) (n = 60)
Obesity 76 (31.5%) 27 (27.3%) 30 (36.6%) 19 (31.7%)
Insulin resistance 41 (17.0%) 13 (13.1%) 15 (18.3%) 13 (21.7%)
(Pre-)hypertension 29 (12.0%) 8 (8.08%) 12 (14.6%) 9 (15.0%)
Dyslipidemia 97 (40.2%) 30 (30.3%) 37 (45.1%) 30 (50.0%)
Gender (male) 118 (49.0%) 41 (41.4%) 45 (54.9%) 32 (53.3%)
Corticosteroid dose (mg/mz) 11,192 (5169) 7603 (1322) 9747 (2480) 19,087 (3071)
Age at diagnosis (years) 6.59 (4.59) 530 (343) 791 (5.18) 6.91 (4.89)
Time since diagnosis (years) 154 (5.10) 14.0 (4.74) 144 (542) 189 (3.33)
WBC count at diagnosis (10°/L) 30.2 (534) 8.28 (7.84) 40.5 (58.8) 522 (72.7)

Results are presented as frequency and % (in parenthesis) for the binary variables and as mean and standard deviation (in parenthesis) for the continuous
variables. LD low dose corticosteroids, HD high dose corticosteroids, CRT cranial radiotherapy, WBC white blood cell
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Table 2 Crude and adjusted odds ratios (ORs) associated with
treatment for individual cardiometabolic risk factors

OR? (95% credible interval)®

Crude Adjusted Adjusted
(including (without
WBC count) WBC count)
Obesity
LD/CRT 164/ (0.84, 1.64/ (0.77, 1.79/ (0.88,
1.56 2.93) 1.53 3.07) 1.69 332)
HD/CRT 1.29/ (0.60, 1.03/ (040, 1.19/ (0.51,
1.21 2.40) 094 2.19) 1.10 2.37)
Insulin resistance
LD/CRT 143/ (061, 1.28/ (047, 1.69/ (0.68,
132 2.94) 1.16 2.84) 1.55 3.55)
HD/CRT 1.97/ (0.81, 1.22/ (041, 1.85/ (0.69,
1.82 4.02) 1.08 2.78) 1.67 4.01)
(Pre-)hypertension
LD/CRT 2.02/ (0.75, 1.90/ (0.63, 1.77/ (061,
1.82 4.49) 167 4.51) 1.56 4.16)
HD/CRT 2.00/ (0.69, 225/ (0.56, 2.00/ (0.54,
1.79 4.54) 1.84 6.22) 1.70 5.25)
Dyslipidemia
LD/CRT 194/ (1.02, 211/ (1.02, 1.82/ (091,
1.86 333) 1.98 3.898) 1.72 331)
HD/CRT 2.36/ (1.16, 1.95/ (0.81, 1.55/ (0.69,
223 4.26) 1.80 3.99) 144 3.04)

Point estimates are posterior means/medians based on 10,000 draws. LD low-
dose corticosteroids, HD high-dose corticosteroids, CRT cranial radiotherapy,
WBC white blood cell. % The baseline treatment level is LD/No CRT.

b. Endpoints are 2.5 and 97.5 empirical percentiles
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(LD/No CRT). The magnitude of this excess risk was mainly
driven by configurations (Y°=0,Y'=0,Y7=0,Y"=1) and
(Y°=1,Y'=0,Y7=0,Y’ =1) for which the posterior means
for averaged differences (2) were 0.04 and 0.05, respectively.
The PRDs for N > 1, 2 were significantly different from zero
in the adjusted model without WBC count, but these results
should be interpreted with caution in light of the potentially
confounding effect of WBC. Nonetheless, these results
highlight an intrinsic advantage of multivariate modeling
as opposed to standard univariate modeling. Indeed, while
in that partially adjusted model exposure level LD/CRT was
not found associated with any of the outcome marginally
(see rightmost column of Tables 2 and 3), it was found
associated with the occurrence of at least one or two
metabolic complications when globally accounting for
these outcomes (see rightmost column of Table 4).

The ORs associated with the adjustment variables for the
four metabolic outcomes across the two adjusted models
considered (full, full without WBC count) are presented in
Additional file 2: Table S2. We found that being male de-
creased the chance of being obese but increased the chance
of being hypertensive. Moreover, time since diagnosis was
positively associated with dyslipidemia in the models. These
associations were also reported in Levy et al. [6], although
therein male gender was found protective for obesity in un-
adjusted analysis only. Finally, WBC count at diagnosis was
the only covariable associated with insulin resistance in the
fully adjusted marginal model (1) (OR =1.08 for a 10-unit
increase (x 10°/L), 95% Crl: 1.02 to 1.14).

Discussion
Our study aimed at providing additional insights on the
treatment-associated risk of developing cardiometabolic

Table 3 Crude and adjusted population risk differences (PRDs) associated with treatment for individual cardiometabolic risk factors

PRD? (95% credible interval)®

Crude Adjusted Adjusted
(including WBC count) (without WBC count)

Obesity

LD/CRT 0.10 (—0.04, 0.23) 0.09 (-0.05, 0.22) 0.11 (—0.03, 0.24)

HD/CRT 0.04 (=0.10, 0.18) -0.01 (=0.16, 0.15) 0.02 (=0.12,0.17)
Insulin resistance

LD/CRT 0.04 (—0.06, 0.14) 0.02 (-0.09, 0.13) 0.06 (—0.05, 0.16)

HD/CRT 0.09 (-0.03, 0.20) 0.01 (=0.10, 0.14) 0.07 (-=0.05, 0.19)
(Pre-)hypertension

LD/CRT 0.06 (-0.03, 0.15) 0.05 (-0.04, 0.14) 0.04 (-0.05, 0.13)

HD/CRT 0.06 (-0.03,0.16) 0.06 (=0.05, 0.19) 0.05 (-0.05, 0.17)
Dyslipidemia

LD/CRT 0.14 (0.00, 0.27) 0.15 (0.00, 0.29) 0.12 (—0.02, 0.26)

HD/CRT 0.19 (0.03, 0.34) 0.13 (=0.05, 0.31) 0.08 (-0.08, 0.25)

Point estimates are posterior means based on 10,000 draws. LD low-dose corticosteroids, HD high-dose corticosteroids, CRT cranial radiotherapy, WBC white blood
cell. % The baseline treatment level is LD/No CRT. : Endpoints are 2.5 and 97.5 empirical percentiles
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Table 4 Population risk differences (PRDs) for cumulative

metabolic outcomes (N =3,Y)
PRD? (95% credible interval)®

Adjusted Adjusted
(including (without
WBC count) WBC count)
N 21
LD/CRT 0.15 (0.02,027) 0.14 (0.02, 0.26)
HD/CRT 0.1 (=0.05, 0.26) 0.10 (-=0.05, 0.24)
Nz22
LD/CRT 0.1 (-0.01,022) 0.12 (0.01,0.23)
HD/CRT 0.05 (-0.08, 0.19) 0.07 (-=0.05, 0.20)
N=3
LD/CRT 0.04 (-=0.01, 0.10) 0.05 (-0.00, 0.11)
HD/CRT 0.03 (=0.03, 0.09) 0.04 (-0.01,0.11)
N=4
LD/CRT 0.01 (—0.00, 0.02) 0.01 (—0.00, 0.02)
HD/CRT 0.01 (=0.00, 0.02) 0.01 (-=0.00, 0.02)

Point estimates are posterior means based on 10,000 draws. LD low-dose
corticosteroids, HD high-dose corticosteroids, CRT cranial radiotherapy, WBC
white blood cell. % The baseline treatment level is LD/No CRT. ®: Endpoints are
2.5 and 97.5 empirical percentiles

complications among survivors of cALL. More precisely,
the present analysis of 241 children, adolescents, and
young adult cALL survivors of the PETALE cohort [5]
was designed to inform on the association between com-
bined exposures to CRT and CS doses and cardiometa-
bolic LAEs. Moreover, since obesity, insulin resistance,
hypertension, and dyslipidemia form a cohesive group of
outcomes as part of the metabolic syndrome, the
analysis was done using a multivariate modeling strategy
enabling both marginal and joint risk assessments. In-
deed, for each set of adjustment covariates, we assessed
the impact of exposure on the outcomes marginally,
jointly and cumulatively using a single model along with
corresponding estimated regression parameters. A multi-
variate approach such as ours provides a more thorough
description of which outcomes are affected by a change
in the level of exposure, better controls for Type I error
rate, and generally increases statistical power as com-
pared to a series of univariate analyses [23, 24].

Although modern cALL treatment protocols are phasing
out CRT due to severe toxicities [25], a large fraction
of cALL survivors have been exposed to CRT. In our
study, we found that cALL survivors who had received a
lower cumulative dose of CS with CRT were at increased
risk of presenting dyslipidemia: there were 15 excess cases
of dyslipidemia per 100 survivors in the LD/CRT group, as
compared to the LD/No CRT group. For survivors who
had received LD/CRT, we similarly found 15 additional
cases presenting one or more cardiometabolic complica-
tions per 100 compared to the baseline treatment group.

(2019) 19:100

Page 7 of 11

Levy et al. [6] found, using the same cohort of cALL survi-
vors, that CRT recipients had a 60% increased risk to de-
velop dyslipidemia. Our results are thus consistent with
those, although our risk difference assessment arguably
provides a more clinically useful measure of treatment-
related burden.

CRT has been proposed as a contributing factor to the
development of cardiometabolic complications and a
higher prevalence has been reported when chemotherapy
was combined with radiotherapy [26]. As a single
treatment exposure, CRT has previously been found as-
sociated with dyslipidemia in different cohorts of cALL
survivors [8, 27, 28]. van Waas et al. observed that cALL
survivors who received CRT had higher total cholesterol
levels compared with those who did not, whereas their
HDL-cholesterol levels did not differ [28]. Nottage et al.
revealed that CRT exposure was associated with an in-
creased risk for abnormal values of LDL-cholesterol, tri-
glycerides, and HDL-cholesterol using St. Jude Lifetime
(SJLIFE) cALL survivors treated between 1962 and 2002
and at least 10 years from diagnosis as basis [8]. The im-
pact of CS doses on dyslipidemia development has been
less studied. Nottage et al. [8] found no clinically mean-
ingful associations between chemotherapeutic agents,
including cumulative prescribed prednisone-equivalent
doses, and abnormal lipid levels or other cardiometa-
bolic complications. In our study, the OR and PRD for
dyslipidemia associated with HD/CRT treatment (versus
LD/No CRT) were of similar magnitude, although not
significant, as those found for LD/CRT. Taken together,
reported results suggest that CRT, but not CS dose, may
be the key contributing factor in the development of dys-
lipidemia. Notwithstanding this insight, the negative im-
pact of high doses of CS on lipid profile has been
described. Co-administration of asparaginase and steroids
was shown to cause significant changes in serum lipid
levels during cALL treatment [29]. A similar effect due to
high-dose CS was observed after organ transplantation
[30]. However, these adverse events are known to be tran-
sient and, in light of both PETALE and SJLIFE studies, re-
sults so far do not support that these acute effects
translate into increased dyslipidemia risk in the long-term.

While treatment exposure was not found associated
with obesity in our study, CS have been implicated in
modifications of the physiology of adiposity. Significant
weight gain was shown during the 2 year period of main-
tenance chemotherapy, when patients are exposed
monthly to pulses of high-dose CS [31, 32]. Decreased
total lean body mass and increased percentage of fat mass
have also been strongly associated with treatment combi-
nations that included platinum, CRT, and/or steroids [7].
Some groups of authors demonstrated that glucocorti-
coids, including dexamethasone, increase BMI and
serum leptin levels [33, 34]. However, among
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survivors of cALL, dexamethasone was associated
with greater BMI during therapy, but was not a con-
tributor at follow-up [35].

Chronic low-grade inflammation is believed to be a
major contributing factor for insulin resistance develop-
ment [36]. ALL and its intensive treatments constitute a
fertile ground for the generation of oxidative stress and
inflammation. Most chemotherapy agents, particularly
doxorubicin, induce pro-inflammatory reactions [37]
and have pro-inflammatory effects on the adipose tissue
[38]. Furthermore, literature on the impact of oxidative
stress on leukemogenesis and anticancer therapies is
emerging [39-42]. Interestingly, our analyses suggested
that CS and CRT may not be the primary determinant
in the high prevalence of insulin resistance among cALL
survivors. Rather, disease burden at diagnosis, as repre-
sented by WBC count at diagnosis, might be implicated
in the physiopathology of the insulin resistance develop-
ment. Activation of the immune system and inflamma-
tion processes may be detected by an increase in a
number of markers, including WBC. Accordingly, a link
between elevated WBC count and type 2 diabetes has
been found in different populations [43, 44] and in a
meta-analysis based on 20 studies [45]. This
meta-analysis performed in 2010 also showed that higher
levels of granulocytes and lymphocytes, but not mono-
cytes, were associated with incident type 2 diabetes. On
their part, Chee-Tin et al. found that all WBC subtypes
were independently associated with insulin resistance
[46]. Using data from the National Health and Nutrition
Examination Survey Epidemiologic Follow-up Study
(NHEES), Ford reported an increasing dose-response re-
lationship between leukocyte concentrations and dia-
betes incidence (hazard ratio for concentration stratum
9.1-56 x 10°/L versus stratum 2.1-5.7 x 10°/L: 1.50; 95%
CIL: 1.12, 1.99) [47].

In our cohort, which features a large window of WBC
count outside the normal (4-11 x10°/L) range (min:
042 x 10°/L; max: 361 x 10°/L; median: 9.60 x 10°/L;
interquartile range: 25.6 x 10°/L), an increasing dose-
response relationship between WBC count at diagnosis
and insulin resistance was also observed. A hypothesis
for that finding could be that high titers of WBC cause
widespread and severe tissue infiltration, thus triggering
a chronic inflammation feedback loop. This mechanism
could be similar to that of type 2 diabetes, with a
self-sustaining low-grade visceral inflammation loop
(reviewed in Zand et al.) [48]. To our knowledge, our
study is the first to have investigated and outlined a pos-
sible association between cALL burden at diagnosis
through WBC count at diagnosis and cardiometabolic
LAEs in cALL survivors including insulin resistance. Al-
though further studies are needed to replicate this finding
in other cALL survivor cohorts and investigate the
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physiological mechanisms underlying this phenomenon,
WBC count at diagnosis appears to be a predictive factor
of insulin resistance in cALL survivors.

Conclusions
In this work, we took an innovative methodological ap-
proach based on a Bayesian multivariate latent-£ model for
evaluating the impact of cALL treatment on the cardio-
metabolic health of cALL survivors. Our sophisticated
analysis of the PETALE cohort data indicated that com-
bined cranial radiotherapy and low doses of corticoste-
roids were a determinant of dyslipidemia among cALL
survivors and were associated with presenting one or
more cardiometabolic LAEs. However, we could not simi-
larly conclude that combined exposure to cranial radio-
therapy and high doses of corticosteroids were associated
with the accumulation of metabolic complications. These
inconclusive results should not be interpreted as a lack of
global impact of treatment as many aspects of the data
may have obscured findings, such as statistical power and
confounding effects due to other chemotherapy agents.
Notwithstanding this, our multivariate model and its
post-hoc analysis were found valuable, although computa-
tionally more intensive than standard statistical ap-
proaches based on univariate logistic or log-binomial
models. In particular, the use of the R function pmvt
which evaluated the latent variables’ multivariate Student-¢
cumulative distribution function was found to be a bottle-
neck for the computation of the cumulative population
risk differences. How to decrease the running time for
these calculations would need to be investigated. One pos-
sible mitigation could be to evaluate a cumulative risk dif-
ference for a typical individual of the population (based on
mean or median covariate values, for example) instead of
averaging cumulative risk differences over all individuals.
Two frequentist approaches often used for modeling
correlated binary data are the logistic generalized esti-
mation equation (GEE) approach [49] and the mixed ef-
fects logistic approach, the latter often referred to as a
generalized linear mixed model (GLMM) [50, 51]. Be-
cause the GEE approach does not completely specify the
joint distribution of the outcomes, it would not be pos-
sible to calculate multivariate outcome probabilities for
obtaining cumulative population risk differences such as
was done with proposed multivariate model. While a
likelihood is specified in a logistic mixed effects model,
the interpretation of the regression coefficients in this
model is more difficult than in ours since it is condi-
tional on the random effect(s), and integrating out these
effects would imply a loss in the logistic structure. The
multivariate logistic regression approach that we considered
combines a full likelihood approach with ease of in-
terpretation of the regression coefficients by directly
enabling a marginal log odds ratio interpretation. The
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GEE approach relies on large sample arguments which
are not necessary satisfied when dealing with samples of
small or moderate sizes (such as the PETALE cohort). In
comparison, the proposed multivariate logistic regres-
sion approach is exact, notwithstanding the number of
MCMC iterations which can be increased with relative
ease. In contrast to GLMM, this Bayesian model also
yields, under mild conditions that can be easily verified,
a proper posterior distribution when a noninformative
prior is used [9].

Exemplified by the use of an unstructured correlation
matrix R in our analysis, Agresti [52] highlighted the flexi-
bility of the multivariate logistic distribution underlying
the proposed model. Copula approaches are other alterna-
tives to flexibly model correlated binary outcomes. e.g.
[53-55]. For example, Genest et al. [53] introduced a
multivariate approach with logistic regression margins
combined to a meta-elliptical copula (e.g., normal or Stu-
dent-#) to model residual dependency. Similarly to our
studied model, copula approaches on discrete data are
prone to estimation challenges. For their model, Genest
et al. [53] proposed a composite likelihood method to alle-
viate numerical problems for the estimation of the copula
(correlation) parameters; an explicit estimator for the
asymptotic variance of the correlation parameter’s estima-
tor via linearization was further provided. Overall, we
consider the Bayesian multivariate latent-£ model investi-
gated as a principled and convenient tool for obtaining a
thorough assessment of the possible relationship between
an exposure (possibly multicategorical) and a set of corre-
lated binary outcomes.
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