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Abstract

Background: A number of strategies have been proposed to handle missing binary outcome data (MOD) in systematic
reviews. However, none of these have been evaluated empirically in a series of published systematic reviews.

Methods: Using published systematic reviews with network meta-analysis (NMA) from a wide range of health-related
fields, we evaluated comparatively the most frequently described Bayesian modelling strategies for MOD in terms of log
odds ratio (log OR), between-trial variance, inconsistency factor (i.e. difference between direct and indirect estimates for a
comparison), surface under the cumulative ranking (SUCRA) and rankings. We extended the Bayesian random-effects
NMA model to incorporate the informative missingness odds ratio (IMOR) parameter, and applied the node-splitting
approach to investigate inconsistency locally. We considered both pattern-mixture and selection models, different
structures for prior distribution of log IMOR, and different scenarios for MOD. To illustrate level of agreement between
different strategies and scenarios, we used Bland-Altman plots.

Results: Addressing MOD using extreme scenarios and ignoring the uncertainty about the scenarios led to
systematically different and more precise log ORs compared to modelling MOD under the missing at random (MAR)
assumption. Hierarchical structure of log IMORs led to lower between-trial variance, especially in the case of substantial
MOD. Assuming common-within-network or trial-specific log IMORs yielded similar posterior results for all NMA
estimates, whereas intervention-specific structure systematically inflated uncertainty around log ORs and SUCRAs.
Pattern-mixture model agreed with selection model, particularly under the trial-specific structure; however, selection
model systematically reduced precision around log IMORs. Overall, different strategies and scenarios mostly had good
agreement in the case of low MOD.

Conclusions: Addressing MOD using extreme scenarios and/or ignoring the uncertainty about the scenarios may
negatively affect NMA estimates. Modelling MOD via the IMOR parameter can ensure bias-adjusted estimates and offer
valuable insights into missingness mechanisms. The researcher should seek an expert opinion in order to decide on
the structure of log IMOR that best aligns to the condition and interventions studied and to define a proper prior
distribution for log IMOR. Our findings also apply to pairwise meta-analyses.
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Background
Missing (participant) outcome data (MOD) in a series of
trials have preoccupied a number of researchers who have
contributed to the development of several methods of dif-
ferent complexity (for example, [1–10]) to address primarily
binary MOD in a pairwise meta-analysis. Only a handful of
these methodologies have been extended further to operate
in a network of several interventions [8, 11]. These meth-
odological articles provide only limited empirical evidence
to demonstrate the merits and demerits of proposed
methods as they usually consider one published systematic
review with pairwise or network meta-analyses (NMA).
Furthermore, the modelling strategies and missingness sce-
narios considered to investigate the value of proposed
methods differ considerably across methodological articles
(Additional file 1: Table S1).
There is no universally ‘best’ strategy for how authors of

systematic reviews should deal with MOD in included tri-
als. Like other types of missing data (e.g. missing studies
and outcomes), successful handling of MOD rests on
plausible yet untestable assumptions regarding the miss-
ingness mechanism in conjunction with appropriate ana-
lytical strategies [4]. In practice, the missingness
mechanism is explored by making sensible assumptions
on whether data are informatively missing, and if so, what
the outcomes would plausibly be if participants had never
left the trial. When included trials provide limited or no
information on the reasons for MOD, in order to explore
assumptions empirically, the meta-analyst examines the
sensitivity of results to plausible scenarios [2]. A usual
starting point of the analysis is to assume that data are
missing at random (MAR) and then investigate any devia-
tions from this assumption by performing a series of sen-
sitivity analyses (Additional file 1: Table S1) [2–4, 12].
According to the Cochrane handbook (version 5.1.0)

[13], principal options to deal with MOD in a pairwise
meta-analysis constitute (i) exclusion of missing partici-
pants from the analysis, (ii) imputation of missing out-
comes in each arm of every trial using specific scenarios
and (iii) statistical modelling of the missingness mechanism.
Furthermore, uncertainty induced by imputing MOD ac-
cording to item (ii) might be accounted for or not in the
meta-analysis results [1, 2]. These options are also relevant
in the context of NMA. Since NMA is an extension of pair-
wise meta-analysis, these options extend naturally even
though authors of relevant published literature may not
have explicitly done (e.g. Turner et al. [10]). However, ex-
tension of these options to a network of interventions
should be accompanied by comprehensive investigation
and acknowledgement of the implications of MOD on core
components of the NMA model (i.e. consistency equation
and ranking measures). Otherwise, a suboptimal reporting
and handling of MOD in a network of interventions can
greatly raise risk of providing misleading conclusions.

We consider statistical modelling to be a more proper
strategy to handle MOD because – contrary to exclusion
or imputation of MOD before analysis – it accounts for
possible bias and uncertainty around trial-specific esti-
mates of treatment effect due to MOD while maintaining
the randomised sample in each trial [10]. In particular,
modelling MOD using Bayesian approaches – the latter
being very popular in NMA as they foster probabilistic
statements that are an integral part of the inferential
NMA framework [14, 15] – naturally allows for uncer-
tainty induced by MOD to be incorporated into NMA es-
timates using proper prior distributions. To explore the
implications of different Bayesian modelling strategies of
binary MOD on core NMA components, we set up a
comprehensive empirical study using published systematic
reviews with NMA from a wide range of health-related
fields [16]. In this way, we can investigate whether, and for
which NMA estimates, the compared modelling strategies
disagree using real data and taking into account the extent
and balance of MOD within each network – factors that
may trigger this discordance. Since NMA constitutes an
increasingly applied evidence-synthesis tool that has be-
come widely acknowledged by researchers and
policy-making bodies, such as the National Institute of
Clinical Excellence [15, 17–19], it is crucial to provide the
necessary, empirically based directions to handle MOD
appropriately in a network of several interventions.
The rest of the article is organised as follows. Initially,

we describe our analysed dataset and then review the
modelling strategies and missingness scenarios that we
incorporated in the Bayesian random-effects NMA
model. Furthermore, we delineate the analyses we per-
formed to compare the reviewed modelling strategies in
terms of NMA estimates. Then, we present the results
of the empirical evaluation, we discuss our results and
highlight important limitations and recommendations,
and we provide our conclusions.

Methods
Selection process of analysed dataset
This empirical study was based on our previous survey
with systematic reviews of multiple interventions pub-
lished between 01/01/2009 and 31/03/2017 in
peer-reviewed journals of several health-related fields
[16]. Details on the search strategy and selection process
of the eligible systematic reviews and NMAs can be
found in our previous work [16].
We only considered NMAs (31 in total) that provided

arm-level binary outcome data with present MOD in in-
cluded trials; however, we excluded one review where no
NMA was employed, and one review for reporting data
in a non-extractable manner. The whole selection
process resulted in 29 eligible NMAs in total that com-
prised our empirical dataset.
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We used odds ratio (OR) as the effect measure in all
eligible NMAs mainly due to its preferred statistical
properties [20]. In each network, we recorded outcome
events so that OR more than 1 indicated beneficial effect
for the first intervention in each comparison.

Characterising networks based on prevalence and
balance of MOD
We considered the ‘five-and-twenty rule’ as proposed by
Sackett et al. [21] to determine a trial as having low
(MOD ≤5%), moderate and large risk (MOD > 20%) of
attrition bias. Furthermore, we calculated difference in
percentage of MOD (%MOD) between compared inter-
ventions in order to define MOD as being balanced or
unbalanced in each trial of every network. By applying
these rules, we distinguished networks with ‘low’, ‘moder-
ate and balance’, ‘moderate and imbalance’, ‘large and bal-
ance’ and ‘large and imbalance’ MOD. Step-by-step
details on this strategy can be found in the web appendix
(Additional file 2).

Missingness models in network meta-analysis
In the presence of MOD, we need a model that incorpo-
rates both the missing and observed information and, in
addition, allows us to learn about missingness mecha-
nisms. We briefly describe two missingness models that
have been proposed for that purpose.

Pattern-mixture model
Consider a network of N trials investigating different
sets of T interventions. In arm k = 1, 2,… , ai of trial i,
we observe the number of events, rik, and the number of
MOD, mik, out of the total randomised, nik. In arm k of
trial i, the number of observed events and the number
of MOD are assumed to be sampled from the corre-
sponding binomial distributions [10]:

rik � Bin poik ; nik−mik
� �

and mik � Bin qik ; nikð Þ

with poik being the probability of event conditional on the
completers and qik being the probability of MOD.
The pattern-mixture model was the most commonly

described model to address MOD in systematic reviews
(Additional file 1: Table S1). It describes distribution of
the outcome between completers and missing partici-
pants [3, 10]. Then, the underlying probability of event
in arm k of trial i, pik, is modelled conditional on
whether an event is observed or missing [10]:

pik ¼ poik ∙ 1−qikð Þ þ pmik ∙qik

where pmik indicates the probability of event conditional
on missing participants in arm k of trial i. Following
Turner et al. [10], the above equation can be re-arranged
to link poik with the remaining parameters:

poik ¼
pik−p

m
ik ∙qik

1−qik
ð1Þ

Then, using the logit function, we define the log odds
of event in arm k of trial i as follows:

logit pikð Þ ¼ ui þ θi;k1∙I k > 1ð Þ ð2Þ
where ui = logit(pi1) is the log odds of event in the base-
line arm of trial i and θi, k1 is the log OR of event in arm
k relative to the baseline arm of trial i. Typically, θi, k1

follows a normal distribution with mean μtik ti1 (i.e. the
summary log OR of event between intervention tik and
ti1 of trial i) and variance τ2, which is commonly as-
sumed to be constant across different comparisons. The
index tik indicates the intervention studied in arm k of
trial i. In trial i with ai ≥ 3 arms, log ORs are correlated
since they share the same comparator and therefore fol-
low a multivariate normal distribution, which is equiva-
lent to conditional univariate normal distributions for θi,
k1 of arm k > 2, conditional on all arms from k = 2 to ai
− 1 (eq. 11 in Dias et al. [22]).
Under the consistency assumption (which implies stat-

istical agreement between direct and (possibly more than
one) indirect sources of evidence [14]), summary log
ORs for all possible comparisons among non-reference
interventions are obtained as functions of T − 1 sum-
mary log ORs for the basic parameters, namely, treat-
ment effects relative to the reference intervention of the
network (here, the reference is intervention 1):

μtl ¼ μt1−μl1 ð3Þ
with t, l = {2, 3, … ,T} and t ≠ l.

Selection model
Another way to model observed data (i.e. rik, nik − rik −
mik and mik) is to consider the following multinomial
distribution [4, 11] in arm k of trial i:

rik ; nik−rik−mik ;mikð ÞΤ � M p1;ik ; p2;ik;; p3;ik ; nik
� �

with

p1;ik ¼ 1−c1;ik
� �

∙pik
p2;ik ¼ 1−c0;ik

� �
∙ 1−pikð Þ

p3;ik ¼ c1;ik ∙pik þ c0;ik ∙ 1−pikð Þ
where p1, ik reflects the marginal probability of observing
the underlying event, p2, ik reflects the marginal prob-
ability of not observing the underlying event and p3, ik is
actually the probability of MOD in arm k of trial i (i.e.
p3, ik = qik) and is modelled conditional on whether the
missing participants may have experienced the under-
lying event or not [4, 11]. The last line describes the se-
lection model [4, 11]. Then, parameters c1, ik and c0, ik
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denote the probability of MOD conditional on those
participants with the underlying event and the probabil-
ity of MOD conditional on those participants without
the underlying event in arm k of trial i, respectively.
Only qik is estimable from the data, and thus, we need to
assign proper prior distributions on all other parameters.

Informative missingness odds ratio parameter
To be able to incorporate plausible informative prior be-
liefs about the missingness process, we need alternative
missingness parameters to pmik , c1, ik and c0, ik that meas-
ure the relationship between the underlying outcome
(event or non-event) and the status of the outcome (be-
ing missing or observed) [10]. Alternative missingness
parameters have been already proposed in the literature.
Informative missingness odds ratio (IMOR) appeared to

be the most popular missingness parameter in the literature
(Additional file 1: Table S1). Under the pattern-mixture
model, it is defined as the ratio of the odds of an event con-
ditional on missing participants to the odds of an event
conditional on completers in arm k of trial i [2, 3, 10]:

IMORik ¼ φik ¼
pmik= 1−pmik

� �

poik= 1−poik
� � :

Then, Eq. (1) can be re-written as follows (see also Ap-
pendix A in Turner et al. [10]):

poik ¼
− qik−pikð Þ 1−φik

� �
−1

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qik−pikð Þ 1−φik

� �
−1

� �2−4pik 1−qikð Þ 1−φik

� �q

2 1−qikð Þ 1−φik

� �

Under the selection model, IMOR is defined as the ra-
tio of the odds of MOD conditional on those with the
underlying event to the odds of MOD conditional on
those participants without the underlying event in arm k
of trial i [4, 11]:

φik ¼
c1;ik= 1−c1;ik

� �

c0;ik= 1−c0;ik
� �

Then, c1, ik and c0, ik can be parameterised with regard to
φik in the logarithmic scale (i.e. log(φik) = δik) and parameter
γik that indicates the average MOD across underlying event
and underlying non-event in arm k of trial i as follows [4, 11]:

logit c1;ik
� � ¼ γ ik þ δik=2

logit c0;ik
� � ¼ γ ik−δik=2

with

γik ¼
logit c1;ik

� �þ logit c0;ik
� �

2

In both missingness models, IMOR takes positive
values, with IMOR equals 1 being equivalent to MAR.
Then, in both missingness models, we use equations (2)

and (3) with a random-effects model for θi, k1 to apply
random-effects NMA model with consistency equations.
Similar to OR, IMOR is applied in the logarithmic

scale but is back-transformed in order to aid interpret-
ation. Then, a natural choice is to apply a normal prior
distribution on δik:

δik � N Δik ; σ2ik
� �

where Δik is the average belief about the missingness
scenario in arm k of trial i and σ2

ik is the uncertainty
about this belief.
Other alternative missingness parameters that have

been proposed are the event probability ratio within a
pattern-mixture model by Akl et al. [6], and the re-
sponse probability ratio within a selection model by
Magder [23]. Being ratios of risks, these missingness pa-
rameters are more likely to be used alongside the relative
risk ratio as outcome measure. Turner et al. [10] also re-
ported these missingness parameters in the context of a
Bayesian framework. In the present study, we preferred
IMOR to the aforementioned alternative missingness pa-
rameters for being intuitively related to OR and for shar-
ing the same statistical properties with OR (i.e.
symmetry and prediction of event rates within [0, 1]) [2].

Identical and hierarchical structure of normal prior
distribution for δik
Identical structure was the preferred prior structure in
the majority of methodological articles (Additional file 1:
Table S1) and is the simplest assumption as it yields the
least parameters to estimate. Under this structure, δik is
considered identical depending on further assumptions
that relate to whether missingness mechanisms may be
common in the whole network:

δik ¼ δ; δ � N Δ; σ2
� �

with Δik ¼ Δ and σ2ik ¼ σ2;

trial-related:
δik ¼ δi δi � NðΔi; σ2i Þwith Δik ¼ Δi and σ2ik ¼ σ2

i ;

or intervention-related:

δik ¼ δtik ; δtik � NðΔtik ; σ
2
tik Þwith Δik ¼ Δtik and σ2ik ¼ σ2

tik

In the present study, we considered σ2, σ2i and σ2tik to

be the same: σ2 ¼ σ2i ¼ σ2tik .
Hierarchical structure assumes that δik s are different

yet related to each other by allowing for ‘information to
be borrowed’ that is common-within-network:
δik~N(Δ, σ

2) with Δ~N(ξ,ψ2), σ~U(0, ψ),
trial-specific (i.e. across different interventions in the

same trial):
δik � NðΔi; σ2i Þ with Δi � Nðξ i;ψ2

i Þ and σi~U(0, ψi),
or intervention-specific (i.e. across different trials for

the same intervention):
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δik � NðΔtik ; σ
2
tik Þ with Δtik � Nðξtik ;ψ2

tik Þ, σ tik � Uð0;ψtik Þ:
with ξ, ξi and ξtik being the mean of the

hyper-parameters Δ, Δi and Δtik , respectively, and ψ2, ψ2
i

and ψ2
tik being the corresponding variances. In the

present study, we considered ψ2, ψ2
i and ψ2

tik to be the

same: ψ2 ¼ ψ2
i ¼ ψ2

tik . We assigned a uniform distribu-
tion on σ, σi and σ tik ; however, researchers may consider
other appropriate prior distributions for variance com-
ponents [24]. Turner et al. [10] also briefly presented the
independent structure, which is the least strong assump-
tion to consider but yields the most parameters to esti-
mate; however, in the present study, we did not consider
the independent structure.

Missingness scenarios using δik
On average MAR (i.e. Δ ¼ Δi ¼ Δtik ¼ 0 and ξ ¼ ξ i ¼ ξtik
¼ 0 under identical and hierarchical structure, respect-
ively) with moderate prior variance of δik (i.e. σ2 = 1 and
ψ2 = 1 under identical and hierarchical structure, respect-
ively) was the principal scenario in the present study. In
addition, we considered the following extreme scenarios
for identical structure only and we applied them under
the pattern-mixture model (again with σ2 = 1):

� eΔtik ¼ 2: the odds of an event in missing
participants is twice the odds of an event in
completers across all interventions – we call this
scenario ‘more missing cases are events (MME)’;

� eΔtik ¼ 1=2: the odds of an event in completers is
twice the odds of an event in missing participants
across all interventions – we call this scenario ‘more
missing cases are non-events (MMNE);

� the odds of an event in missing participants is twice
the odds of an event in completers in all non-
reference interventions of the network (i.e. eΔtik ¼ 2
for tik ≠ 1 with 1 being the reference of the network),
whereas the opposite holds for the reference inter-
vention (i.e. eΔ1 ¼ 1=2 with 1 being the reference of
the network) – we call this scenario ‘more missing
cases are events for the non-reference interventions
of the network’ (best-case scenario (BC) for the non-
reference interventions); and

� the odds of an event in completers is twice the odds
of an event in missing participants in all non-
reference interventions of the network (i.e. eΔtik ¼ 1=
2 for tik ≠ 1 with 1 being the reference of the net-
work), whereas the opposite holds for the reference
intervention (i.e. eΔ1 ¼ 2 with 1 being the reference
of the network) – we call this scenario ‘more miss-
ing cases are non-events for the non-reference inter-
ventions of the network’ (worst-case scenario (WC)
for the non-reference interventions).

Ideally, Δtik≠0 should be defined based on expert judg-
ment tailored to the condition and interventions studied;
however, we used the values we applied in our previous
work [11].

Research questions investigated
We re-analysed all 29 networks while considering the
aforementioned missingness models and structures of nor-
mal prior distribution for δik in order to investigate, initially
(i) whether there is agreement between on average MAR
and extreme scenarios (analysis A1); and (ii) whether there
is agreement between accountability and ignorance of un-
certainty due to MOD under MAR and extreme scenarios
(analysis A2). Then, we evaluated (i) whether there is agree-
ment between identical and hierarchical prior structure for
δik while considering δik to be common-within-network,
trial- and intervention-specific (analysis B1); (ii) whether
there is agreement among further structural assumptions
(i.e. common-within-network, trial- and intervention-
specific) when δik has identical prior structure (analysis
B2a) and when δik has hierarchical prior structure (analysis
B2b); and (iii) whether there is agreement between
pattern-mixture and selection model while considering δik
to be common-within-network, trial- and intervention-
specific (analysis B3). Lastly, as an additional analysis, we
investigated whether moderate prior variance of δik (σ

2 = 1
applied in all aforementioned analyses) agrees with conser-
vative (σ2 = 4) and liberal (σ2 = 0.25) prior variance of δik
(analysis C1) – the latter carries more information about
the missingness mechanism. These prior variance values
for δik have been recommended by White et al. [3, 4]. De-
tails on missingness models, structures of δik and missing-
ness scenarios considered in each analysis can be found in
Table 1.

Network estimates and measure of disagreement
We obtained posterior distribution of log ORs for the
basic parameters, τ2 s, inconsistency factors (IF; difference
between direct and indirect estimates for a comparison in
a closed loop, that is, a polygon that connects three or
more interventions [14]) through the node-splitting ap-
proach [25, 26], SUCRAs (surface under the cumulative
ranking) and posterior median rankings for all studied in-
terventions [27]. A brief explanation of node-splitting ap-
proach and SUCRAs can be found in Additional file 2. For
each analysis, we measured disagreement in compared
methods in terms of NMA estimates using difference in
posterior mean of log ORs, IFs, SUCRAs, and ratio of pos-
terior median of τ2 s. Furthermore, we measured disagree-
ment in compared methods in terms of uncertainty
around NMA estimates using ratio of posterior standard
deviation of log ORs, τ2 s, IFs, and difference in posterior
standard deviation of SUCRAs. Moreover, we measured
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disagreement in compared methods in terms of δik (ana-
lyses B1, B3, and C1) using differences in posterior
mean and ratio of posterior standard deviation under
the corresponding structural assumptions (Table 1).

Presentation of results using Bland-Altman plots and
Cohen’s kappa statistic
We used Bland-Altman plots to investigate level of
agreement in all analyses [28]. In each Bland-Altman
plot, we displayed average bias (i.e. mean of the differ-
ences or exponential of the mean of log ratios) and 95%
limits of agreement (LoA; average bias as mean of differ-
ences or log ratios ± 1.96 ∙sD, that is, the standard devi-
ation of differences or log ratios, respectively) [28]. We
decided in advance to consider compared methods as
having good agreement when average bias was close to 0
(for differences) or 1 (for ratios) and most of the points
were uniformly scattered within the LoA – the narrower
the LoA, the better the agreement. Agreement in terms
of posterior median of rankings was investigated using
heat-maps.
Furthermore, in each analysis, we compared strength

and direction of evidence in posterior mean of log ORs
and posterior mean of IFs. For that purpose, we applied
Cohen’s kappa statistic (a coefficient that measures the
inter-rater agreement for nominal items) [29] and we pre-
sented the estimated statistic alongside its 95% confidence
interval. We used the divisions of agreement reported in
Landis and Koch [30] in order to interpret this statistic. In
a similar way, we worked with the extent of τ2 in each net-
work, where we considered empirical distributions tai-
lored to studied outcome and intervention-comparison
type per network in order to determine posterior median
of τ2 as low (less than the median of empirical distribu-
tion), moderate (between median and 3rd quartile) and
large (above 3rd quartile) [31].

Model specification
All NMA models were fitted using JAGS via the R
package R2jags [32] (statistical software R, version
3.3.1 [33]), whereas the node-splitting model was per-
formed using the R package gemtc [25, 34] in conjunc-
tion with the node-splitting model of Dias et al. [26].
Further information on specification of the NMA
models and node-splitting approach (e.g. prior distri-
butions assigned and diagnostic evaluation of conver-
gence) can be found in the web appendix (Additional
file 2). The codes to run all NMA models in JAGS can
be found in Additional file 3, whereas the analysed
dataset can be found in Additional file 4. We produced
self-created Bland-Altman plots using the R packages
ggplot2 and cowplot [35, 36].

Results
Distribution of MOD across health-related fields
Out of 29 NMAs, 14 (48%) were judged to have ‘moder-
ate and balance’ MOD, followed by 12 (41%) with ‘low’
MOD, two with ‘moderate and unbalanced’ MOD, and
one with ‘large and unbalanced’ MOD (Additional file 1:
Tables S2 and S3). No network fell into the ‘large and
balance’ MOD category.
Overall, there was great dispersion of total %MOD

(blue violin plots) across trials in all health-related fields
(Fig. 1). In comparison with dermatology, diabetes, in-
fections and ophthalmology, total %MOD for the
remaining health-related fields were distributed across a
greater range – most of them exceeding 10%. On the
contrary, differences in %MOD between compared arms
(red violin plots) were relatively less dispersed across
health-related fields, except for cardiology, neurology,
respiratory, rheumatology and urology (Fig. 1).

Implications of extreme scenarios about the missingness
mechanism
Overall, differences in terms of posterior mean of log
ORs ranged in much narrower LoA for on average MAR
versus MME and MMNE as opposed to on average
MAR versus BC and WC where almost all differences
were concentrated systematically below and above 0, re-
spectively, for networks with moderate and large MOD
(Fig. 2). Most ratios were uniformly scattered at low av-
erages of posterior median of τ2 s (approximately below
0.15). In line with log ORs, differences in terms of pos-
terior mean of IFs and posterior mean of SUCRAs, as
well as ratios in terms of posterior standard deviations,
ranged overall in narrower LoA for on average MAR
versus MME and MMNE as opposed to on average
MAR versus BC and WC (Fig. 2; Additional file 5: Figure
S1(a)). Generally, there were small perturbations in pos-
terior median of rankings (Additional file 5: Figure
S1(b)).

Implications of discounting uncertainty due to MOD
Discounting uncertainty due to MOD led to systematic-
ally larger posterior mean of log ORs for MMNE and
BC scenarios, yet systematically smaller posterior mean
of log ORs for WC scenario, especially for moderate and
large MOD (Fig. 3). The majority of ratios of posterior
standard deviation of log ORs were systematically above
1 across all scenarios indicating a tendency for increased
precision when uncertainty due to MOD was ignored
(Additional file 5: Figure S2(a)).
Interestingly, posterior median of τ2 s was systematic-

ally larger when uncertainty due to MOD was ignored
regardless of scenario (Fig. 3). Overall, ignoring uncer-
tainty due to MOD led to slightly smaller and larger
posterior mean of SUCRAs for averages below 50% and

Spineli BMC Medical Research Methodology           (2019) 19:86 Page 7 of 16



above 75%, respectively, regardless of scenario. Most dif-
ferences in posterior standard deviation of SUCRAs
were systematically positive across all scenarios after dis-
counting uncertainty due to MOD, indicating a tendency
for increased precision. Generally, there was little impli-
cation for posterior median of rankings (Additional file
5: Figure S2(b)).

Agreement between identical and hierarchical prior
structure for δik
Imposing identical, as opposed to hierarchical, structure on
δik led to systematically larger posterior median of τ2 s
across all structural assumptions for δik; however, ratios of
posterior standard deviation of τ2 s were uniformly scat-
tered (Fig. 4; Additional file 5: Figure S3(a)). Overall, differ-
ences ranged in quite narrow LoA in terms of posterior
mean of log ORs (mostly in the case of low MOD), poster-
ior mean of IFs and posterior mean of SUCRAs, as well as
ratios of posterior standard deviations (especially for log
ORs and SUCRAs under intervention-specific assumption)

(Fig. 4; Additional file 5: Figure S3(a)). In general, perturba-
tions for posterior median of rankings were small (Add-
itional file 5: Figure S3(b)).
In all structural assumptions, the majority of differences

in posterior mean of log IMORs (i.e. δ s and Δ s for identi-
cal and hierarchical structure, respectively), especially
those corresponding to networks with low MOD, were
uniformly scattered around 0 and in a range from − 0.25
to 0.25 averages of posterior mean of log IMORs (Add-
itional file 5: Figure S3(c)). Ratios of posterior standard de-
viation of log IMORs were also scattered uniformly in
narrow LoA (especially under the trial-specific structure).

Agreement among different prior structures for δik
Under identical structure, differences in terms of posterior
mean of log ORs, posterior mean of IFs and posterior
mean of SUCRAs as well as ratios of posterior standard
deviations were scattered in narrower LoA when
common-within-network was compared with trial-specific
prior structure (Additional file 5: Figure S4(a-c)).

Fig. 1 Split violin plots grouped by health specialty. Red violins illustrate density of differences in percentage missing outcome data between
compared intervention arms across trials of all networks, whereas blue violins indicate distribution of total percentage missing outcome data
across trials of all networks
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Particularly interesting were the results on posterior
standard deviation of log ORs and SUCRAs as they were
systematically larger under intervention-specific prior
structure, especially in the case of moderate and large
MOD (Additional file 5: Figure S4(b)). Under hierarchical
structure, inferences were similar to those under identical
structure for all NMA components (Additional file 5: Fig-
ure S5(a-c)).

Agreement between pattern-mixture model and selection
model
Assuming common-within-network or intervention-specific
prior structure on identical δik led to relatively wider LoA for
posterior mean of log ORs and SUCRAs as opposed to
trial-specific prior structure where differences were uni-
formly scattered in narrower LoA (Fig. 5). Overall, ratios of
posterior standard deviation of all NMA estimates were

Fig. 2 Bland-Altman plots on level of agreement between on average missing at random and four extreme scenarios in terms of posterior mean of
log odds ratio for basic parameters (first row), posterior median of common between-trial variance (second row), posterior mean of inconsistency
factor (third row) and posterior mean of SUCRA values (fourth row). Use of identical, intervention-specific, normal prior distribution on log IMORs
with moderate prior variance. Different colors indicate extent and balance of MOD across 29 networks (17 networks with at least one closed
loop). BC, best-case scenario; IF, inconsistency factor; MAR, (on average) missing at random; MME, more missing cases are events in all
interventions; MMNE, more missing cases are non-events in all interventions; OR, odds ratio; SUCRA, surface under cumulative ranking; WC,
worst-case scenario
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scattered in narrow LoA (especially for trial-specific struc-
ture) (Additional file 5: Figure S6(a)). Perturbations for pos-
terior median of rankings were small (Additional file 5:
Figure S6(b)). Most posterior means of δik s were scattered
uniformly around 0 and in a range from − 0.5 to 0.5 averages
of posterior mean of δik s for all prior structures (Add-
itional file 5: Figure S6(c)). Results for posterior standard

deviation of δik s were particularly interesting: selection
model led to systematically imprecise δik s more frequently
than pattern-mixture model for all prior structures and espe-
cially for moderate and large MOD.
Overall, there was agreement in strength and direction

of posterior mean of log ORs and posterior mean of IFs
in all analyses (Additional file 1: Tables S4 – S9). The

Fig. 3 Bland-Altman plots on level of agreement between accountability and ignorance of uncertainty due to MOD under missing at random and
four extreme scenarios in terms of posterior mean of log odds ratio for basic parameters (first row), posterior median of common between-trial
variance (second row), posterior mean of inconsistency factors (third row) and posterior mean of SUCRA values (fourth row). Use of identical,
intervention-specific, normal prior distribution on log IMORs with moderate and zero prior variance to reflect accountability and ignorance of
uncertainty due to MOD, respectively. Different colors indicate extent and balance of MOD across 29 networks (17 networks with at least one
closed loop). BC, best-case scenario; IF, inconsistency factor; MAR, missing at random; MME, more missing cases are events in all interventions;
MMNE, more missing cases are non-events in all interventions; OR, odds ratio; SUCRA, surface under cumulative ranking; WC, worst-case scenario
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level of agreement in extent of τ2 could not be judged
with confidence due to few estimated τ2s (only 29).

Additional analysis
Different prior values for the variance of δik
Using conservative prior variance led to systematically
smaller posterior median of τ2 s, yet systematically larger
posterior standard deviation of log ORs and posterior

standard deviation of SUCRAs (Additional file 5: Figure
S7(a)). Contrarily, using liberal prior variance led to sys-
tematically smaller posterior standard deviations of log
ORs and SUCRAs. Overall, differences between moder-
ate and conservative prior variance ranged within wider
LoA in terms of posterior distribution of NMA estimates
as compared to differences between moderate and liberal
prior variance. Implications for posterior median of

Fig. 4 Bland-Altman plots on level of agreement between identical and hierarchical structure of log IMORs in terms of posterior mean of log odds
ratio for basic parameters (first row), posterior median of common between-trial variance (second row), posterior mean of inconsistency factors
(third row) and posterior mean of SUCRA values (fourth row) with respect to common-within-network, trial-specific and intervention-specific
normal prior distribution on log IMORs under on average missing at random with moderate prior variance. Different colors indicate extent and
balance of MOD across 29 networks (17 networks with at least one closed loop). Common, common-within-network; IF, inconsistency factor;
Intervention, intervention-specific; OR, odds ratio; SUCRA, surface under cumulative ranking; Trial, trial-specific
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rankings were small (Additional file 5: Figure S7(b)).
There was poor agreement between moderate and alter-
native prior variances in terms of posterior mean and
posterior standard deviation of δik s as indicated by evi-
dence of proportional bias (Additional file 5: Figure
S7(c)). Compared to moderate prior variance, posterior
mean of δik s was scattered across twice the range under
conservative variance but half the range under liberal

prior variance (Additional file 5: Figure S7(d)). Further-
more, posterior standard deviation of δik s did not con-
cur between moderate and alternative prior variances as
the former always gave smaller and larger posterior
standard deviations compared to conservative and liberal
prior variance, respectively (Additional file 5: Figure
S7(d)). Overall, there was good agreement in strength
and direction of posterior mean of log ORs and

Fig. 5 Bland-Altman plots on level of agreement between pattern-mixture model and selection model in terms of posterior mean of log odds ratio
for basic parameters (first row), posterior median of common between-trial variance (second row), posterior mean of inconsistency factors (third
row) and posterior mean of SUCRA values (fourth row) with respect to common-within-network, trial-specific and intervention-specific normal
prior distribution on identical log IMORs under on average missing at random with moderate prior variance. Different colors indicate extent and
balance of MOD across 29 networks (17 networks with at least one closed loop). Common, common-within-network; IF, inconsistency factor;
Intervention, intervention-specific; OR, odds ratio; SUCRA, surface under cumulative ranking; Trial, trial-specific
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posterior mean of IFs (Additional file 1: Table S10). The
level of agreement in the extent of τ2 could not be
judged with confidence.

Discussion
Using a collection of 29 NMAs from a wide range of
health-related fields [16], we have performed the first em-
pirical study on the most frequently described Bayesian
modelling strategies for binary MOD in meta-analyses
and elucidated their implications for core NMA estimates.
We found that consideration of BC or WC resulted

systematically in much larger and lower log ORs, re-
spectively, particularly when the network was predomi-
nated by trials with moderate or large MOD (Fig. 2). A
number of methodological articles have illustrated these
implications in the context of pairwise and network
meta-analysis using invented or real-life examples [2, 4,
8, 10, 11]. Some of the authors pronounced these sce-
narios as being unrealistic for primary and sensitivity
analysis, especially for considerable numbers of missing
participants in included trials [2].
Furthermore, we revealed that ignorance of uncer-

tainty due to MOD could implicate estimation of NMA
components. Specifically, such a strategy yielded system-
atically smaller posterior standard deviation of log ORs
and smaller posterior standard deviation of SUCRA
values, systematically larger posterior mean of log ORs
and larger posterior median of τ2 s when coupled with
extreme scenarios and slight exaggeration of potency of
highly ranked interventions in terms of SUCRA value. In
our previous study, we showed that fixing δik s, while
considering BC or WC scenarios, considerably perturbed
effects of log ORs and inflated τ2 even in the case of low
MOD [11]. White et al. [3], Turner et al. [10], Spineli et
al. [11], and Spineli [37] also indicated an association be-
tween τ2 inflation and fixation of the observations or
missingness parameter, especially under extreme scenar-
ios. A possible explanation might be that by fixing the
observations or missingness parameter, uncertainty
about the trial-specific estimates is reduced and hence,
the extent of τ2 is uncovered.
We found that pattern-mixture and selection models

yielded similar results, particularly when trial-specific
structure was considered for δik s. White et al. [4] com-
pared selection model with pattern-mixture model in a
real meta-analysis and found a tendency of the former to
provide slightly larger ORs. Nevertheless, we found that
selection model yielded imprecise δik s and by extension,
reduced our ability to learn about the missingness mech-
anism with certainty.
Making different assumptions about prior structure of

δik added further insights into implications of MOD on
NMA estimates. Selecting between identical and hier-
archical structure mostly affected estimation of τ2,

whereas the decision to select common-within-network,
trial-specific or intervention-specific prior structure for
δik mostly implicated uncertainty around the estimation
of log ORs and SUCRA values, especially in the case of
moderate and large MOD. We found that the
intervention-specific structure led to systematically lar-
ger posterior standard deviation of log ORs and
SUCRAs as opposed to the other prior structures for δik.
A possible explanation might be the following: since
most networks had either low or moderate but balance
MOD across trials, the common-within-network and
trial-specific structure (which assumed that MOD were
equally informative in the whole network or in all arms
of each trial, respectively [3]) assigned relatively larger
weight on these trials as opposed to the
intervention-specific structure (which assumed that
MOD were differently informative in the arms of each
trial [3]) – the latter was affected by extent of total
MOD in each trial [3].
Nevertheless, as mentioned by Turner et al. [10],

structural assumptions for the missingness parameter
would be best led by experts and tailored to the condi-
tion and interventions investigated, since different prior
structures may affect our ability to learn about the miss-
ingness mechanisms in a specific meta-analysis and by
extension, may impact meta-analysis results. In the con-
text of NMA, the analyst deals with multiple interven-
tions that are appointed to a wider patient setting and
thus, interventions may bear on different degree of
MOD in different comparisons and possibly different
missingness mechanisms. Consequently, we view
common-within-network to be a rather implausible
structure, especially in networks that include interven-
tions of different functionality (e.g. placebo and active
interventions), as the missingness mechanisms are ex-
pected to differ in different interventions.
The shortcomings of our study must be acknowledged.

First, we were able to extract arm-level binary outcome
data in every trial in only 29 (11%) out of 273 NMAs
with MOD due to severe limitations in reporting quality
of the reviews [16]. As a result, there was scarcity of
points in Bland-Altman plots for τ2 and δik s for the
common-within-network structure that prevented us
from fully understanding method performance when
compared for these components. Nevertheless, we would
not expect our conclusions to differ should a larger data-
set be collected. Furthermore, the limited extracted net-
works did not allowed us to thoroughly learn about the
implications of extent of MOD (in terms of prevalence
and imbalance) on NMA estimates since relevant groups
(as defined in Methods under Characterising networks
based on prevalence and balance of MOD) were consid-
erably unbalanced in frequency (Results under Definition
of MOD across health-related fields).
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Second, using the extraction criteria we developed in a
previous work [38], we found that extraction quality was
unacceptable in 23 (79%) reviews, because reviewers
provided no information on observed outcome or how
MOD were handled, whereas for the remaining 6 re-
views, extraction was judged as unclear, since only infor-
mation on observed outcome was unavailable
(Additional file 1: Table S11). Consequently, no distinc-
tion could be made between observed and imputed out-
comes in order to achieve an accurate extraction. In
nine networks, unacceptable extraction manifested as
calculated negative non-events in some of the included
trials, which we removed in order to be able to perform
NMA. For discussion on the issue of negative
non-events the reader could refer to Spineli [38].
Ideally, good agreement should reflect clinically mean-

ingful differences in measurements of compared
methods [28]. We determined two methods as having
good agreement when average bias was close to 0 (for
differences) or 1 (for ratios) and points were uniformly
scattered within narrow LoA. Since we dealt with many
different conditions and clinical outcomes, it was not
possible to decide in advance on a specific clinically
meaningful average bias that would indicate good agree-
ment between compared methods.
Finally, normal prior distributions on log IMORs were

specified using values for mean and variance as recom-
mended in relevant methodological articles [3, 4, 11] ra-
ther than based on expert opinion. Ideally, informative
prior distributions should be elicited tailored to the clin-
ical condition and interventions studied, since the extent
and reasons for MOD are expected to vary across differ-
ent conditions and interventions [10]. Empirical elicit-
ation studies are needed to provide us with proper prior
distributions for log IMORs.

Recommendations for good practice
While the focus of our study was on systematic reviews
with NMA, the following recommendations also apply
to systematic reviews with pairwise meta-analyses.

� In line with other authors [2, 39–41], perform a
primary analysis under on average MAR
assumption, and opt for assumptions with clinical
plausibility as sensitivity analyses in order to explore
robustness of primary analysis results.

� Avoid fixing the dataset either by imputing or
excluding MOD before analysis and instead, opt for
modelling the missingness mechanism via the IMOR
parameter in order to accommodate uncertainty
about the missingness scenarios considered.

� Consider hierarchical rather than identical structure
on δik s when MOD are substantial. Nevertheless,

further research is needed to clarify conditions for
proper utilization of each structure.

� Opt for trial-specific prior structure on δik s when
compared interventions are believed to trigger similar
missingness mechanisms as opposed to trial set-up.
Consider intervention-specific prior structure on δik s
when missingness mechanisms are believed to differ
across interventions. Avoid the common-within-
network prior structure, especially in the case of mod-
erate or large MOD. Consult an expert to discuss the
prior structure on δik that best fits collected trials (i.e.
good knowledge of the specific examples being con-
sidered and detailed inspection of the properties of in-
cluded trials is desired). In line with the
aforementioned point, further research is needed to
comprehend performance of NMA components
under different prior structures for δik s in depth.

� When low MOD is present, choice between pattern-
mixture and selection models could be based upon
conceptual and computational convenience for the
researcher. For considerable MOD, pattern-mixture
model tends to preserve precision in estimation of
δik s. Nevertheless, further research is needed to
understand when it is most proper to use one model
over the other.

� In terms of prior variance for δik, select liberal prior
variance (σ2 = 0.25) for large MOD and moderate
prior variance (σ2 = 1) for moderate MOD in order
to preserve precision in NMA estimates.

Conclusions
Addressing MOD using extreme scenarios and/or ignor-
ing uncertainty induced by MOD constitutes naïve strat-
egy with serious implication for NMA estimates,
especially when participant losses in included trials are
substantial. Instead, aiming to model MOD via the log
IMOR parameter can ensure credible NMA results via
adjustment of attrition bias and, furthermore, offer valu-
able insights into underlying missingness mechanisms.
Researchers should consult an expert in order to decide
on the structure of log IMOR that best aligns to the con-
dition and intervention studied and, in addition, to de-
fine parameter values of prior distribution for log IMOR.
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