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Abstract

Background: Large and complex studies are now routine, and quality assurance and quality control (QC)
procedures ensure reliable results and conclusions. Standard procedures may comprise manual verification and
double entry, but these labour-intensive methods often leave errors undetected. Outlier detection uses a data-
driven approach to identify patterns exhibited by the majority of the data and highlights data points that deviate
from these patterns. Univariate methods consider each variable independently, so observations that appear odd
only when two or more variables are considered simultaneously remain undetected. We propose a data quality
evaluation process that emphasizes the use of multivariate outlier detection for identifying errors, and show that
univariate approaches alone are insufficient. Further, we establish an iterative process that uses multiple multivariate
approaches, communication between teams, and visualization for other large-scale projects to follow.

Methods: We illustrate this process with preliminary neuropsychology and gait data for the vascular cognitive
impairment cohort from the Ontario Neurodegenerative Disease Research Initiative, a multi-cohort observational
study that aims to characterize biomarkers within and between five neurodegenerative diseases. Each dataset was
evaluated four times: with and without covariate adjustment using two validated multivariate methods – Minimum
Covariance Determinant (MCD) and Candès’ Robust Principal Component Analysis (RPCA) – and results were
assessed in relation to two univariate methods. Outlying participants identified by multiple multivariate analyses
were compiled and communicated to the data teams for verification.

Results: Of 161 and 148 participants in the neuropsychology and gait data, 44 and 43 were flagged by one or both
multivariate methods and errors were identified for 8 and 5 participants, respectively. MCD identified all participants
with errors, while RPCA identified 6/8 and 3/5 for the neuropsychology and gait data, respectively. Both
outperformed univariate approaches. Adjusting for covariates had a minor effect on the participants identified as
outliers, though did affect error detection.

Conclusions: Manual QC procedures are insufficient for large studies as many errors remain undetected. In these
data, the MCD outperforms the RPCA for identifying errors, and both are more successful than univariate approaches.
Therefore, data-driven multivariate outlier techniques are essential tools for QC as data become more complex.
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Background
As technologies advance, the collection, management,
curation, and analysis of large data become increasingly
feasible, and large and complex studies are more prevalent
as a result. In order for analyses to generate reliable results
and allow for trustworthy conclusions, it is essential that
these data be of high quality. For that reason, large-scale
studies often include comprehensive quality assurance
(QA) protocols to minimize occurrence of errors during
data collection and preservation, as well as thorough quality
control (QC) protocols to ensure accuracy once data have
been collected.
Previous papers have discussed the importance of

quality control [1–3], though details of the process are
often minimal and success rates are rarely addressed.
When details are given, they are often ad hoc and
domain-specific [4], as opposed to a systematic process
that can be applied to a variety of data types.
Numerous large and complex studies have been initiated

in recent years, including the Canadian Longitudinal Study
on Aging (CLSA) [5], the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [6], and the Parkinson’s Progression
Markers Initiative (PPMI) [7]. All three of these studies are
multi-site initiatives with multiple types of data (including
cognitive, neuroimaging, and genomics) and have the intent
to share collected data openly with other researchers. While
data sharing can stimulate the development of testable hy-
potheses or research designs [8] and improve reproducibil-
ity [4], it also substantially restricts the ability to verify data
with source documents or assessment administrators when
errors are suspected.
All three studies have internal statistical groups [9–11]

that monitor data during acquisition and release stages,
and generally report checking for anomalies, missing data,
invalid entries, and general errors. While it is noted that
QA and QC processes were undertaken [5, 12], there are
not detailed descriptions of how they were performed, such
as which techniques and approaches were used, or how
these were applied to various types of data. Such informa-
tion is important for consumers of these data, and would
be useful to other groups collecting similarly large and
complex multi-modal data.
Another such large and complex study is the Ontario

Neurodegenerative Disease Research Initiative (ONDRI),
a longitudinal, multi-site, and multi-cohort observational
study that aims to characterize biomarkers within and
between five neurodegenerative diseases [13]. The levels
of disease, dysfunction, and decline are assessed for each
participant across multiple measurement platforms (see
Data below). The ONDRI baseline data have been ac-
quired and we report on a data quality evaluation
process based on multivariate outlier detection methods
that was designed and used within ONDRI to ensure
that data are of the highest possible accuracy. We also
examine the sensitivity of univariate outlier detection to
errors identified by the multivariate detection so that it
may guide future large scale projects.

Motivation for outlier detection as data quality evaluation
Data collection protocols usually include but are not lim-
ited to recording the measurement, transcribing compo-
nents of the measurement, entering values into a database,
calculating derived measures (e.g., standardized scores,
summary scores), and subsequently distributing data. Many
of these steps are performed manually and mistakes could
feasibly be made during any stage, introducing erroneous
values into the dataset [1]. When these steps are performed
automatically human error is less likely, but errors can
occur when equipment fails or through preprocessing steps,
during which unstructured data may be misinterpreted
(e.g., voice recordings). Herein, we consider any recorded
value that does not accurately reflect the performance of
the observed participant to be an error.
Common practices for ensuring data are accurate in-

clude manually checking the data for errors and double
entry, where data are entered into the database twice by
two different people and subsequently compared for ac-
curacy. However, studies of the effectiveness of these tech-
niques suggest that while they are successful in identifying
some errors, they are often not sufficient as many errors
remain [14, 15]. Also, manual procedures become increas-
ingly time consuming as data grow in number of observa-
tions, number of variables, and/or variety of data types.
Data-driven processes that search for empirical relation-

ships complement these typical data checking approaches.
An error can often occur randomly (e.g., transcription
errors) and an observation that possesses an error may
appear distinct in relation to the other observations as a
result. In such a case, the observation would qualify as an
outlier under some statistical criteria. Outlier detection pro-
tocols use statistical techniques that identify patterns exhib-
ited by the bulk of the data, and any data point that
deviates from such a pattern becomes more evident. It
could be a single value within a participant’s vector of data
(e.g., a value that is several standard deviations away from
the mean on a single variable), or as a result of the pattern
exhibited by the relationships between multiple variables
(e.g., a participant with values that depart from the covari-
ance structure for the rest of the observations). To our
knowledge, only one other paper recommends outlier de-
tection for the purpose of error identification, but it does
not provide methodological detail, nor the efficacy of the
approach [16]. Outlier detection-based processes come
with the caveat that they will not identify errors that do not
appear distinct in relation to the other observations (i.e. are
erroneous but appear typical). Further, correcting only
errors that lie outside the general distribution reinforces
the data relationships observed, without considering
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erroneous values within the bulk of the data that would be
more accurately represented outside the distribution.

Techniques for outlier detection
Some of the most common techniques for outlier detection
focus on each variable independently, identifying extreme
observations based on the observed univariate distribution.
For example, when the distribution is assumed normal, ob-
servations are often considered outlying when they are be-
yond a pre-specified number of standard deviations from
the mean [17, 18]. Since outliers can influence the esti-
mated mean and standard deviation, their effect on these
parameters could mask the degree to which they are outly-
ing and they consequently may not be identified as outliers
[19]. However, using robust methods for outlier detection
can reduce or remove the effect of outliers on estimates of
location and spread [17, 20]. One approach is truncation,
where a pre-specified number of data points are excluded
at both extremes of the distribution when calculating par-
ameter estimates [21], consequently excluding any potential
outliers and instead capturing the distribution of the major-
ity of the data. Alternatively, methods based on the median,
such as the Median Absolute Deviation or boxplots can be
used as the extremity of an outlier is irrelevant to these
robust measures of location and scale [19, 22]. However,
because these approaches only consider each variable inde-
pendently, they will not identify observations that are
outlying given relationships between two or more variables.
As a result, multivariate outlier detection methods may be
valuable in most data sets.
Hadi, Rahtmatullah Imon, & Werner [23] suggest that

multivariate outlier detection techniques fall into two gen-
eral categories: methods based on distances and methods
based on lower dimensional projections. One of the com-
monly used distance metrics in the multivariate space is
the Mahalanobis Distance (MD), which considers the mean
and covariance of the data, and for which larger distances
are returned for observations that deviate from the mean
in directions with smaller covariance [24]. However the
influence of outliers is an issue with multivariate methods
as well [25], so there exist a number of methods that first
identify the robust distribution. These methods include the
Minimum Volume Ellipsoid [26, 27] and the Minimum
Covariance Determinant (MCD) [26, 27], where the MCD
is more common and exhibits greater statistical efficiency
and a faster convergence rate [28].
The goal of dimension-reduction based techniques is

to extract “interesting” structure from a multivariate
dataset by reducing the data to only a few informative
dimensions [23]. The most well-known dimension-based
technique is Principal Component Analysis (PCA) [29].
PCA has become a common tool for outlier detection as
observations that do not fit the structure are exaggerated
when projecting the data back onto the components.
Further, it can handle data with more variables than ob-
servations, making it applicable to a more general selec-
tion of datasets. While PCA can be susceptible to
influential values, many robust variations that are less
susceptible to these effects have been introduced in re-
cent years. These techniques often use regularization in
some form to mitigate the effects of outliers and provide
robust estimates of covariance. Some of these include
regularized PCA [30], principal orthogonal complement
thresholding [31], and Candès’ robust PCA (RPCA) [32].
For our data quality evaluation process we use two

multivariate methods, one from each of the two general
categories, and compare their selection of outliers and
ensuing success in identifying errors with one another.
We consider the MCD, coupled with Monte Carlo simu-
lation and a corr-max transformation [33], and the
RPCA, coupled with Orthogonal Distance measure-
ments (see Methods). We do not propose that these are
the optimal methods, but rather they are methods with
which we had success. We further compare these results
with two univariate methods: a simplification of the pre-
viously described MCD by applying it univariately
(uMCD) [34], and the commonly used univariate box-
plots [22]. Further, both stem from the distance-based
outlier methods described for multivariate detection.
Herein, we describe a data quality evaluation process

that emphasizes the use of multiple multivariate tech-
niques, communication, and visualization, and assess the
sensitivity of standard univariate techniques to detect er-
rors that were identified by multivariate outlier tech-
niques. We describe motivation for, performance and
limitations of our process for two exemplar datasets
from ONDRI’s vascular cognitive impairment (VCI)
cohort, i.e., the neuropsychology and gait platform data
at baseline, and provide a roadmap for large or complex
datasets, and especially other large-scale projects.

Methods
Data
ONDRI consists of 520 participants from multiple sites
across Ontario, Canada who have been diagnosed with
one of five neurodegenerative diseases: Alzheimer’s dis-
ease or amnestic mild cognitive impairment, amyotrophic
lateral sclerosis, frontotemporal lobar degeneration, Par-
kinson’s disease, or vascular cognitive impairment (VCI).
Each participant completes baseline assessments at the
time of enrolment, and is subsequently followed for up to
3 years to monitor disease progression. Disease character-
istics are measured with multiple assessment platforms in-
cluding neuropsychology, gait, genomics, eye tracking,
retinal imaging, and multiple neuroimaging assessments.
Participants are required to complete each assessment
platform, so individuals with significant cognitive (e.g.,
Montreal Cognitive Assessment score below 18) or
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physical (e.g., unable to ambulate independently) impair-
ment are not included. All ONDRI participants provide
written and informed consent. Details on the ONDRI
study design have been provided previously [13].
In this paper, we consider a core subset of the neuro-

psychology and gait measurements of the baseline data for
the VCI cohort for illustrative purposes. The VCI cohort
includes 161 participants between 55 and 85 years of age
who experienced an ischemic stroke, as documented by
magnetic resonance imaging or computed tomography, at
least 3 months prior to enrolment.
The core neuropsychology dataset has 53 variables

from 13 cognitive assessments and two questionnaires.
Approximately half of the variables within this dataset
are raw observed scores, while the other half are the
same raw scores transformed based on published educa-
tion- and/or age-adjusted normative data [35]. As a re-
sult, there is strong correlation between the raw and
corresponding transformed scores.
The core gait dataset has 29 variables that describe

walking performance over multiple experimental condi-
tions (i.e., preferred walking, three types of dual task walk-
ing (walking while counting backwards from 100; naming
animals; and subtracting multiples of seven from 100),
and fast walking) by measuring the number of steps and
time required for a 6metre walk [36]. Depending on the
site, the primary source of data collection was through
tri-axial accelerometers worn on both ankles and the right
hip or an electronic GAITRite walkway, set up across the
center portion of the walk [37]. Regardless of the data col-
lection modality, administrators used tablets for tracking
the walking condition and recording the time to walk
completion, for data verification and in case of equipment
malfunction. Unfortunately, the gait data for 13 partici-
pants (8.1%) were not properly recorded and these partici-
pants are excluded from the analysis as a result, reducing
the sample for the gait platform to 148 participants.
Both data platforms performed rigorous QA and QC

procedures to maintain accuracy and consistency across
multiple testing locations [36]. Extensive training was
provided to all study coordinators on all facets of the
data collection, including administering, scoring, and en-
tering data into the database.
Table 1 Preliminary summary demographics for the ONDRI VCI
cohort

Neuropsychology Gait

Sample size 161 148

Age in years, mean (sd) 68.72 (7.42) 68.61 (7.39)

Education in years, mean (sd) 14.61 (2.92) 14.65 (2.98)

Number of Males/Females 110 / 51 104 / 44
Data preparation
We conducted outlier detection on each of the afore-
mentioned datasets with and without adjusting for co-
variates. From a quality evaluation perspective, adjusting
for covariates could illuminate or obscure errors by
moving an error away from or towards the observed
distribution. Therefore, we investigated whether covari-
ate adjustment altered the outlier and subsequent error
results, in comparison to unadjusted versions.
The covariate adjusted dataset was composed of the
residuals from a linear regression of each variable with age,
sex, years of education, and all interactions. These demo-
graphic variables are common adjustment factors for stud-
ies of aging or neurodegenerative diseases [38], and further
are used in the analysis of many neuropsychology and gait
measurements [35, 39]. Summary demographics for the
preliminary data for the VCI participants in ONDRI are in
Table 1.
For both the adjusted and unadjusted datasets, each

measure was scaled to have zero mean and unit standard
deviation. This ensures that variables are comparable to
one another by preventing scale differences from biasing
the results. For multivariate approaches, missing values
on any variable would exclude the participant so any
missing values were imputed using the univariate mean.

Notation
Here we define a notation set for use throughout the
paper. Upper case bold letters (e.g., X) denote matrices
and lower case bold letters (e.g., x) denote vectors. Two
matrices that appear side-by-side (e.g., XY) denote
standard matrix multiplication. diag(X) denotes the vec-
tor of diagonal elements of matrix X, ‖X‖∗ denotes the
nuclear norm (sum of the singular values) of X, and
‖X‖1 is the l1-norm of a vectorized X. I is the identity
matrix. The superscript −1 denotes matrix inversion and
the superscript T denotes matrix transpose. Subscripts
denote different versions of a matrix or vector (e.g., xj
denotes the jth column vector of matrix X, for j = 1, 2, 3,
…). Lower case italic letters (e.g., x) denote scalar values.
⌊x⌋ denotes the floor function. n denotes the number of
observations, p denotes the number of variables, and
raw data matrices are assumed to contain n × p
elements.

Outlier detection methods
We used two multivariate methods to obtain robust esti-
mates and identify multivariate outliers within each data-
set: the Minimum Covariance Determinant (MCD) and
Candès’ Robust Principal Component Analysis (RPCA).
We assessed the sensitivity of the univariate MCD (uMCD)
[34] and traditional boxplots [22] to identifying observa-
tions originally identified by the multivariate techniques
that were found to have errors.
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Minimum covariance determinant (MCD)
The minimum covariance determinant (MCD) algorithm
provides a robust estimate of the multivariate mean ðμ̂Þ
and covariance (Σ̂Þ by searching for the subset of h data
points with a minimum determinant of the covariance
matrix [34], where nþpþ1

2 ≤h≤n . The MCD relies on the
Mahalanobis Distance (MD):

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X−μ̂ð ÞTΣ̂−1

X−μ̂ð Þ
q

;

Since the covariance cannot be inverted when Σ̂ is singu-
lar, m is undefined for h < p and thus can be calculated only
for datasets with more observations than variables (n > p).
To obtain the exact MCD is computationally expensive
[34], and so the fast-MCD [40] is used in practice [34].
The fast-MCD begins by randomly selecting a subset

of p + 1 observations from dataset X, producing X�
0 and

subsequently computing m0 for all n observations, with

mean, μ̂0 , and covariance, Σ̂0 . The h observations for
which m0 are smallest are then extracted to form a new
subset, X�

1. h is determined by:

h ¼ 2
nþ pþ 1

2

� �
−nþ 2α n−

nþ pþ 1
2

� �� �� �
;

where α is a user-defined parameter between 0.5 and 1 that
specifies the desired robustness, with smaller values equat-
ing to increased robustness but at the cost of lower effi-
ciency and a potentially larger set of outliers. From X�

1 , m1

is computed for all n observations and a new subset of h
observations is selected, decreasing the covariance deter-
minant with each new subset. This process repeats until
the subset of h observations at a given iteration is the same
subset as the previous iteration. At this point, the determin-
ant of the covariance is a localized minimum. The algo-
rithm is repeated for every p + 1 subset, or for some
maximum number of random subsets (e.g., 100,000), and
the subset of h observations with the (global) minimum co-
variance determinant is defined as the most concentrated
subset, hereafter called X�

MCD . The MCD-robust parameter
estimates are subsequently calculated:

μ̂ MCD ¼ 1
h

Xh

i¼1

xMCDi

Σ̂MCD ¼ c0
1
h

Xh

i¼1

xMCDi−μ̂ MCDÞ xMCDi−μ̂ MCDÞT
��

where c0 is a scalar consistency factor to correct for the
smaller sample [41, 42], followed by the corresponding
mMCD estimates.
To determine the threshold of mMCD beyond which an

observation is considered an outlier, we follow an approach
similar to Dovoedo & Chakraborti [43]. First, we transform
each mMCD to the Robust Mahalanobis Distance Outlying-
ness [43] statistic to constrain the distribution of distances
to between zero and one:

rMCD ¼ 1−
1

1þmMCD

Then, we simulate 100 multivariate normal samples of

size n with μ̂MCD and Σ̂MCD , calculate the outlyingness
of the simulated observations, and use the ϵMCD percent-
ile from these simulations as the threshold for outliers,
where ϵMCD is user-defined and between 0 and 1.
Like most multivariate outlier techniques, there is no dir-

ect information about the source of outlyingness for each
observation. Therefore, we supplement the MCD with the
corr-max transformation [33]. The corr-max transform-
ation identifies a partition, W, that breaks the mMCD into a
sum of p terms, where the combination of variables that
contribute most to the sum are those that most influence
the value ofmMCD, i.e.,m2

MCD ¼ Pp
j¼1 ŵ j

2. To identify this

partition, we obtain the transformation matrix:

Ĉ¼ðD̂MCDΣ
̂

MCDD̂MCDÞ−
1
2D̂MCD;

where D̂MCD is a diagonal matrix with entries 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðΣ̂MCDÞ

q
. Finally, the contribution matrix is de-

rived by multiplying Ĉ with the vector of deviations
from the mean, xi−μ̂MCD . The contribution matrix is
proportional to the identity matrix, and the maximum of
the sum of correlations between each variable’s observed
values and corresponding vector of contributions is
obtained. As a result, a deviation of a given magnitude
will have a larger measured contribution on variables
with less noise, versus a smaller contribution on vari-
ables with more noise. The resulting contribution values
highlight variables that contribute the most variance to
each robust MD, and can be used as a guide for deter-
mining the reason each outlier is considered atypical.

Robust principal component analysis (RPCA)
Candès’ Robust Principal Component Analysis
(RPCA) [32] aims to deconstruct a dataset X into two
separate datasets, L and S, where X = L + S. Here L is
a low-rank and robust approximation of X, and S is a
generally sparse matrix with non-zero values repre-
senting deviations from the robust structure. L and S
are determined by optimizing:

min Lk k� þ λ Sk k1
� 	

s:t:X¼LþS;

where λ is a user-defined regularization parameter that
controls the level of sparsity in S, commonly defined as
λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðn;pÞ
p . However, S often contains many non-zero

values, and so we have introduced a user-defined
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hyperparameter, τ, to allow the user to specify more dir-
ectly the proportion of non-zero elements desired (e.g., τ
= 5%). In practice, RPCA can be performed in the fol-
lowing five steps:

1. Set X0
0¼X−S00, where S

0
0 is a n × p matrix of zeros.

2. Apply the Singular Value Decomposition [29] such
that X0

0¼U0Δ0VT
0 , and threshold Δ0 to Δ0

0 through
a regularization procedure such as [44].

3. Construct L0¼U0Δ0
0V

T
0 .

4. Compute S0 ¼ kX0
0−L0k1.

5. If X0
0−L0−S0 ≈ 0, stop. Else return to step 2 with

X0
1¼L0þS0 .

For our work, the five steps above are repeated,
decreasing λ each time until the proportion of non-zero
elements are <τ.
To assess the deviation of participants and determine

which are outlying, we supplement the RPCA by meas-
uring the Orthogonal Distance (OD), that is, the sum of
squared distance between two datasets. This was moti-
vated by Hubert, Rousseeuw, & Vanden Branden’s use of
the OD [45] to identify observations that change sub-
stantially between two versions of the same data. We
calculate the OD between X and S:

oXS ¼
Xp

j¼1

xj−s j

 �2

and similarly for L and S, oLS. For each participant, the
proportion between oXS and oLS represents the deviation
between the robust estimates and observed values, given
the sparsity in S. To determine which participants are
outliers, the proportional OD estimates are ordered and
the ϵRPCA percentile is used as a threshold. The non-zero
values in S for each outlier are considered the contributing
variables for the RPCA approach, and the proportion
dictates the order of importance.

Univariate MCD
The univariate MCD (uMCD) generally follows the same
process as the previously described MCD, but with some
simplifications. Since the approach is applied to each
variable independently, the subset of h concentrated data
points is selected based on the variance, and the robust
estimates are the mean and variance [34]. The Monte
Carlo simulations of a multivariate normal distribution
were replaced with simulations of a normal distribution.

Boxplots
Boxplots use the median and the two other quartiles as
measures of location and spread, as opposed to the
mean and standard deviation, and are consequently
more robust by design. To identify outliers, the
interquartile range is calculated as the difference be-
tween the first and third quartiles, and any values greater
than 1.5 times the interquartile range from the third
quartile, or more than 1.5 times the interquartile range
less than the first quartile, are considered outlying. Visu-
ally, these are represented as any values beyond the
whiskers. Although the boxplot is often regarded as an
informal or exploratory approach to outlier detection
[28, 47], is it one of the simplest methods to identify
atypical observations on the univariate scale, is not af-
fected by the magnitude of outliers, and offers clear
visualization.

List of outliers
It is expected that each outlier detection method will pro-
duce a different subset of outliers due to the differences in
technique. Further, while the multivariate methods we used
consider patterns between variables when identifying
outliers, they also note participants that are extreme on a
single variable (i.e., univariate outliers) and therefore
remain valuable when variables are fully uncorrelated. As a
result, we did not include univariate techniques in our ini-
tial assessment of outliers and therefore only considered
the results of the multivariate approaches when selecting
participants to review for accuracy.
Ultimately, participants identified as outlying with two or

more of the four multivariate approaches (i.e., MCD or
RPCA; adjusted or unadjusted) were compiled into a single
list, based on the assumption that outliers detected at
higher frequencies are more generally deviant. The contrib-
uting variables were also included to guide the platforms in
determining the location of potentially erroneous recorded
observations. This list is forwarded to the corresponding
platform team, where the recorded data for each outlying
observation are verified and subsequently classified as erro-
neous or atypical but correct. Values with evidence that an
error occurred are corrected, while truly outlying values
are left unchanged and accommodated during the analysis
phase as indicated by the specific goals of the researcher.
Note that the selected outliers and proposed reasons for
detection are based on thresholds jointly chosen by the bio-
statistics and assessment platform teams. Therefore, data
highlighted in the overall list should be approached with
curiosity, as they can change with additional iterations of
outlier detection.

Multivariate visualization
With univariate methods, understanding why a partici-
pant is flagged is straightforward as the variable on
which the participant is deviating is clear, and many
common visualization techniques, such as boxplots and
histograms, can be used. While identifying contributing
variables for each outlying participant allows us to
better pinpoint why they were flagged, these lists can
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be difficult to appreciate without also understanding
the observation’s relation to the rest of the data struc-
ture. Therefore, multivariate visualization was used to
gain some understanding of how each outlying partici-
pant deviates. Specifically, the observed values of all
participants were mapped on a scatterplot for the two
primary contributing variables of a given outlying par-
ticipant. Where the reason for outlying did not become
obvious, a colour or size gradient was used to depict a
third variable.

The data quality evaluation process
We have described the pieces of our proposed data qual-
ity evaluation process. Figure 1 summarizes the steps for
an iterative process that other large-scale projects can
employ as part of their own data quality evaluation to
identify outliers and potential errors.
A new iteration of this process should occur each time

an error is identified, prompting corrections and gener-
ation of a new dataset, as corrected data may alter the
set of outlying observations. When none of the outlying
participants are determined to be an error and the data-
set remains static, the data quality evaluation process is
considered complete.
In order to perform these multivariate outlier detec-

tion procedures efficiently, an R package outlieRs [48]
was developed. This package is available online for use
by other large-scale projects.
Fig. 1 The data quality evaluation process steps, represented as a process
the platform team from the biostatistics team, while the dashed arrow indi
Results
Our proposed data quality evaluation process was
applied to the neuropsychology and gait core data-
sets. In this section, we provide results for each of
the datasets from four multivariate approaches –
MCD or RPCA, with or without covariate adjust-
ment – and assess the sensitivity of four univariate
approaches – univariate MCD or boxplots, with or
without covariate adjustment – to the errors
identified.
Outliers and errors
Parameters were selected for each of the multivariate
outlier detection approaches based on the number of ob-
servations and variables in the dataset, the data distribu-
tion, the resources that would be required to verify the
resulting outlier list within platforms, and the unknown
relative performance characteristics of the MCD and the
RPCA. The same parameters for both the neuropsych-
ology and gait datasets were used in order to compare
results between different datasets: α = 0.8 and ϵMCD =
0.99 were used for the MCD, and λ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðn;pÞ
p , ϵRPCA =

0.90, and τ = 0.05 were used for the RPCA. The impact
of varying α and ϵRPCA on the number of outliers for
each approach, and how a change would affect the de-
tection of errors, is explored in Additional file 1. For the
univariate approaches, the parameters for the uMCD
that may loop. The dashed line separates steps that are performed by
cates that the process will not always return to Step 1
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were set equal to those selected for the MCD (α = 0.8
and ϵMCD = 0.99) for a direct comparison.
Table 2 shows the number of participants identified as

outliers by multivariate methods. The summary compares
the number of outlying participants identified with the two
methods, regardless of whether covariates were adjusted,
while the individual results compare adjusted and
unadjusted within each method. The numbers of errors
that were identified after verifying the values of participants
identified by two or more approaches are also compared.
Univariate outlier detection methods were performed to

assess whether the errors identified with multivariate
methods could have been identified with simpler methods.
The number of outlying participants and errors identified
by univariate methods are in Additional file 2. Table 3
compares results between multivariate and univariate
methods, regardless of adjustment. Note that while partic-
ipants with an error may have been identified with a uni-
variate approach, we only included them as errors if the
corresponding variable was flagged. Further, only partici-
pants flagged with two or more multivariate methods were
verified, so we are not able to report errors identified by
only univariate approaches.

Neuropsychology
On the first iteration of the quality evaluation process, 44
participants (27.3%) were identified by one or more of the
four multivariate outlier approaches across 53 neuropsych-
ology variables. The MCD identified 22 participants (13.7%)
with each of the adjusted and unadjusted approaches, and
the RPCA identified 22 participants (13.7%) with the
adjusted and 23 participants (14.3%) with the unadjusted
approach; 11 participants (6.8%) were identified with both
the MCD and the RPCA, regardless of adjustment.
Table 2 Comparison of outlying participants and errors identified b
iteration of the data evaluation process: first, between MCD and RPC
then, between the adjusted and unadjusted results within each mul
outliers/errors by each approach is reported (MCD vs. RPCA; adjusted
between the two approaches

Neuropsychology n = 161; p = 53

Summary MCD & RPCA MCD

(Adj. & Unadj. are combined)

Outlying Participants 11 26

Number of Errors 6 8

Individual Results Adj. & Unadj. Adj.

MCD

Outlying Participants 18 22

Number of Errors 8 8

RPCA

Outlying Participants 16 22

Number of Errors 4 4
The list provided to the neuropsychology team for
verification comprised the 29 participants (18.0% of all
161 participants) that were flagged by two or more
multivariate approaches. For each of the listed partici-
pants, the neuropsychology team compared the values
stored in the database with those recorded on the paper
form (how the data were originally collected) and, where
possible, with the audio recordings of the participant’s
responses. Values differed between the recorded and
source data for eight of the 29 participants (27.6%) on
the list, 5.0% of all 161 participants. The MCD was suc-
cessful in identifying all eight of these participants, while
the RPCA was successful in identifying six (75.0%).
Using the contributing variables identified by each of

the approaches proved valuable in highlighting the vari-
ables upon which to focus. With the MCD, the errone-
ous variable was among the top three contributing
variables for seven of the eight participants with errors,
regardless of adjustment, while the erroneous variables
were included among the set of contributing variables
for four of the six participants with errors that the RPCA
identified. The error identified despite the variable not
having been a primary contributor highlights the idea
that multivariate outliers are the result of relationships
among all the variables, not only the first few contribu-
tors, and atypical relationships may be hiding deeper.
With univariate outlier detection, all values within the

subset identified by the uMCD were equal for one vari-
able when covariate adjustment was not applied, result-
ing in a robust variance of 0 and making it impossible to
calculate the Mahalanobis distance. As a result, this vari-
able was excluded from the unadjusted approach. Never-
theless, 133 of the 161 participants (82.6%) were
identified by at least one approach on at least one
y the multivariate outlier detection approaches during the first
A directly, combining results with and without adjustment;
tivariate method. For each set of results, the total number of
vs. unadjusted), as well as the number that overlapped

Gait n = 148; p = 29

RPCA MCD & RPCA MCD RPCA

29 19 29 33

6 3 5 3

Unadj. Adj. & Unadj. Adj. Unadj.

22 24 25 28

8 5 5 5

23 19 26 26

6 3 3 3



Table 3 Comparison of outlying participants and errors identified by the multivariate and univariate outlier detection approaches in
the first iteration of the data evaluation process, regardless of specific method and whether covariate adjustment was applied

Neuropsychology
n = 161; p = 53

Gait
n = 148; p = 29

Multi. & Uni. Multi. Uni. Multi. & Uni. Multi. Uni.

Outlying Participants 44 44 133 25 43 42

Number of Errors 3a 8 3b 3 5 3b

aAll outlying participants identified by multivariate methods were also identified by univariate methods. However, not all univariate methods identified the
participant as an outlier on the variable with the error
bOutlying participants identified by univariate methods only were not verified.
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variable. One hundred twenty participants (74.5%) were
flagged by the uMCD with covariate adjustment, 126
participants (78.3%) were identified by the uMCD un-
adjusted approach, 80 participants (49.7%) were flagged
by boxplots with adjustment, and 78 participants (48.4%)
were flagged by boxplots without adjustment. We note
that all 44 participants identified by the multivariate
approaches were also identified by the univariate
approaches on at least one variable.
While the univariate approaches were not considered

when building the list, we confirmed post hoc that using
only the uMCD would have yielded only two or three of
the errors identified with multivariate methods, depending
on adjustment, while the boxplots would have yielded only
one. Figure 2 shows boxplots for the variables on which
errors were identified with the multivariate approaches, not
adjusted for covariates. The crossed circles on each boxplot
represent the erroneous values within the univariate distri-
bution, and the curly brackets represent the non-outlying
range identified by the uMCD, showing a similar span to
the whiskers on the boxplots, though occasionally narrower
or shifted, causing an increase in values identified as out-
liers. Most errors that were not identified using either uni-
variate method were errors from manually calculating
transformed scores from raw scores, and so were only evi-
dent when both types of scores were considered together.
After correcting the eight identified errors, the entire data

evaluation process was performed again. This subsequent it-
eration of the process identified four additional errors in the
data that had not been identified during the first pass. Most
intriguingly, one of the participants with an error identified
in the initial iteration was identified again in the second iter-
ation – while the initial error for this participant had been
corrected, the second iteration enabled a different error to
become apparent. The newly identified error had been
masked during the first iteration by the original error, thus
validating the use of an iterative process until errors are no
longer identified and the list of outliers remains static.

Gait
On the first iteration of the quality evaluation process, 43
participants (29.1%) were identified by at least one of the
multivariate outlier approaches. The MCD identified 25
participants (16.9%) with the adjusted and 28 participants
(18.9%) with the unadjusted approach, and the RPCA iden-
tified 26 participants (17.6%) with each of the adjusted and
unadjusted approaches; 19 participants (12.8%) were identi-
fied by both the MCD and RPCA, regardless of adjustment.
The list provided to the gait team for verification com-

prised the 29 participants (19.6% of all 148 participants)
that were identified by two or more multivariate ap-
proaches. For each of the listed participants, the gait
team reprocessed the data using participant-specific
thresholds for step detection and manually inspected
each footstep. Through the manual inspection, they dis-
covered erroneous step counts were calculated by the
software for five of the 29 participants (17.2%) on the
list, or 3.4% of all 148 participants. Again, the MCD was
successful in identifying all five of these participants, and
the RPCA identified three (60.0%).
The contributing variables were again effective in

pointing towards the source of error, but unlike with the
neuropsychology data, they did not indicate all variables
affected by an error. The errors identified in the gait
dataset were as a result of the pre-processing pipeline
miscounting the number of steps taken by the partici-
pant during the walk, and as a result affected all values
for that walk. Therefore, while many of the contributing
variables possessed an error, they were only those that
appeared most atypical as a result of the error and were
not the only values affected. In order to pinpoint these
errors, the gait expert was required to examine data be-
yond the top contributing variables.
With univariate outlier detection, 42 of the 148 partic-

ipants (28.4%) were identified by at least one approach
on at least one variable. Thirty-eight participants (25.7%)
were flagged by the uMCD with covariate adjustment,
35 participants (23.6%) were flagged by the uMCD with-
out adjustment, 29 participants (19.6%) were identified
by boxplots with adjustment, and 26 participants (17.6%)
were flagged by boxplots with the unadjusted approach.
In total, 25 participants (16.9%) identified by at least one
multivariate approach were also flagged by a univariate
approach on any variable.
Again, while the univariate approaches were not con-

sidered when building the list, it was confirmed post hoc



Fig. 2 Boxplots for neuropsychology variables on which an error was identified with the multivariate data quality evaluation process. All data
were adjusted for age, sex, and years of education, and normalized to have zero mean and unit standard deviation. The range of typical values
identified by the univariate MCD is represented by curly brackets. Values at which an error was identified with the data quality evaluation process
are represented by crossed circles. BNT = Boston Naming Test. DS = Digit Span assessment. JLO = Judgement of Line Orientation. RAVLT = Rey
Auditory Verbal Learning Test. Stroop = Colour-Word Interference

Sunderland et al. BMC Medical Research Methodology          (2019) 19:102 Page 10 of 16
that using only a univariate method would have missed
some of the errors the multivariate approaches were able
to find. In particular, the univariate approaches identified
only two or three of the errors, depending on adjustment.
Figure 3 shows boxplots for the contributing variables
identified by the multivariate outlier detection approaches,
with data not adjusted for covariates. Again, the crossed
circles represent the erroneous values within each univari-
ate distribution, and the curly brackets represent the
non-outlying range identified by the uMCD. In this case,
the uMCD range was almost identical to the span of the
whiskers, suggesting that it would not be possible for any
univariate outlier detection method to identify some of
the errors the multivariate approaches could.
Subsequent iterations of the data quality evaluation

process did not reveal any additional errors in the gait
dataset.

Multivariate visualization
Visualization proved to be an effective diagnostic and
communication tool as it allows viewing how each outly-
ing participant deviated from the others. Figure 4 exem-
plifies a scatterplot of the top two contributing variables
for an outlying participant. This representation clearly
conveys that there is a correlation between the raw and
transformed scores for the A7 trial of the Rey Auditory
Verbal Learning Test [35], with the exception of a single
participant whose transformed score was considerably
higher than that of other participants with a similar raw
score. This participant appears typical on each variable
individually (as exhibited by the boxplot in Fig. 2) and
consequently would not be easily identified without the
benefit of the scatterplot which illustrated the bivariate
relationship for these variables. As a result, the plots
assisted the biostatistics team in motivating the utility of
multivariate outlier detection to platforms.
Visualization also highlighted the differences between

the MCD and RPCA. Data for two primary contributing
variables selected by each method are plotted in Figs. 5
and 6. Observe that the data for contributing variables
identified with the MCD, plotted in Fig. 5, exhibit a 1:1 re-
lationship, with the exception of two observations with
slightly higher transformed BNT scores given their raw
BNT scores. Both of these participants were flagged as
outliers and identified as erroneous on the transformed
BNT score, however only the participant marked by the
crossed circle was also identified by the RPCA. Further,
the contributing variables selected by the RPCA did not
include the transformed BNT score but a Digit Span vari-
able instead. With this difference, the patterns exhibited
by the contributing variables identified with the RPCA do
not convey a strong correlation like the MCD, as shown



Fig. 3 Boxplots for gait variables identified as primary contributing variables and on which an error was identified with the multivariate data
quality evaluation process. All data were adjusted for age, sex, and years of education, and normalized to have zero mean and unit standard
deviation. The range of typical values identified by the univariate MCD is represented by curly brackets. Values at which an error was identified
with the data quality evaluation process are represented by crossed circles. As previously noted, errors identified in the gait dataset affected
multiple variables, so two variables are included per error

Fig. 4 Observed data for two measures of the Rey Auditory Verbal Learning Test (RAVLT). All data were adjusted for age, sex, and years of
education, and normalized to have zero mean and unit standard deviation. The outlier is represented by a crossed circle
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Fig. 5 Observed data for two measures of the Boston Naming Test (BNT). All data were adjusted for age, sex, and years of education and
normalized to have zero mean and unit standard deviation. The outlier is represented by a crossed circle

Fig. 6 Observed data for a measure from each of the Boston Naming Test (BNT) and the Visual Object and Space Perception battery (VOSP). All
data were adjusted for age, sex, and years of education, and normalized to have zero mean and unit standard deviation. The outlier is
represented by a crossed circle
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in Fig. 6, and the outlying participant is merely away from
the cluster formed by the bulk of the observations. While
this is also a valid outlier, the erroneous value for the
transformed BNT score was not flagged.

Discussion
The data quality evaluation process proved effective in
identifying errors in each of the neuropsychology and
gait datasets. The identification of thirteen errors across
both datasets on the first iteration of the process shows
that typical manual curation is insufficient, and both
teams revisited their processes after these results. Fur-
ther, multivariate approaches are necessary as seven of
the thirteen errors (53.8%) were not flagged as outliers
by univariate methods, and were apparent only when
multiple variables were considered together.
Identifying extreme values on each variable independ-

ently is important, and it can be argued that univariate
outlier detection is an important step to perform in its
own right. However, we assumed that since multivariate
methods identify points located away from the cluster
center, not merely those with atypical relationships, that
performing univariate detection separately would be re-
dundant. Further, verification of participants and values
identified using univariate approaches as well would
have increased the outlier lists. Particularly, for the
neuropsychology dataset, the list would have increased
from 29 to at least 113 of 161 participants, given the
overlap and large number of outliers in adjusted and un-
adjusted uMCD, even if the rule of verifying participants
identified with two or more approaches remained. Given
the time and effort involved in the iterative error detec-
tion process, we considered testing up to 70% of partici-
pants for errors to be impractical and beyond our
resources. Further, while the univariate thresholds were
quite liberal and could have been made more stringent,
many errors identified with the multivariate approaches
were missed with the liberal thresholds nonetheless, so
reducing the number of outliers detected would seem
less optimal.
Based on communication between the biostatistics and

data platform teams, it was deduced that sources of error
included both human and technological mistakes. Specif-
ically, errors in the neuropsychology dataset occurred as a
result of incorrectly recording values in the database or in-
correctly computing transformed scores manually, while
errors in the gait dataset occurred as a result of the pro-
cessing script misidentifying the number of steps made by
the participant. Further, because many of the calculated
variables for a walking task are dependent on the total
number of steps recorded, an error in identifying the
number of steps subsequently made the other measures
for that task erroneous, and multiple values had to be
recalculated for each of the affected participants.
Each of the four multivariate outlier detection ap-
proaches identified slightly different subsets of outliers,
and the overlap and differences between them allowed us
to better understand aspects of these methods. Consider
the overlap between the MCD and the RPCA, regardless
of adjustment: 11 of the 44 participants (25.0%) flagged in
the neuropsychology dataset were identified with both
methods, while 19 of the 43 participants (44.2%) flagged
with the gait dataset were identified with both methods.
While we could assume that these overlaps highlight
participants that are more outlying, it begs to be
asked why other participants were identified with only
one method. One possible explanation is offered by
Figs. 5 and 6: that each method is more successful at
identifying outliers with a specific type of deviation.
Specifically, the contributing variables identified by
the MCD suggest that the MCD is more sensitive
when strong correlations exist, while the RPCA is less
influenced by these correlations.
Manual QA and QC procedures occurred within each

data platform, but the characteristics of any observations
that were identified as erroneous (and subsequently cor-
rected) at that stage were not recorded. However, the
MCD had better success in identifying both errors and
the contributing variables for errors than the RPCA in
both the neuropsychology and gait datasets. Further, the
erroneous observations missed by the RPCA typically
possessed characteristics similar to those in Fig. 5, sug-
gesting that errors of this nature are more difficult to
identify with typical QC procedures.
Finally, if the MCD and the RPCA are effectively

focusing on different types of outliers, it may not be
appropriate to compile an outlier review list based on
the frequency of identification, but to give more
weight to visualization. This is especially true because
two errors in each of the neuropsychology and gait
datasets were not identified with the RPCA, regard-
less of adjustment, and therefore would not have been
verified had the overall list been limited to partici-
pants identified by three or more approaches, as op-
posed to two. Nevertheless, we do not propose that
the MCD and RPCA are the most appropriate multi-
variate outlier detection techniques, and encourage
the reader to explore some of the many other ap-
proaches available (see [18, 46, 49, 50] for reviews).
While there is often a desire for an objective deci-

sion making process in statistics [51], knowledge
about the subject field and data generation processes
are also critical in order to make appropriate
decisions. In fact, it has been argued that outliers
identified by automated algorithms should be
thought of as potential outliers and that field experts
should decide which nominations require accommo-
dation [23].
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Limitations
These methods are data dependent and identify observa-
tions that deviate from patterns established by other obser-
vations. Therefore, while there was success in identifying
previously unknown errors, erroneous observations that did
not deviate from the pattern were not identified through this
process. Further, systematic errors (i.e., those that occur as a
result of an incorrect operation that invalidates all or a sub-
set of the observed values, such as a protocol deviation) are
also unlikely to be identified if a sufficient number of obser-
vations with the systematic error exist. Therefore, traditional
quality assurance and quality control procedures should
continue to be applied a priori, as errors will distort the true
pattern and may dominate the distribution.
The MCD and the RPCA are limited to datasets with

exclusively continuous data. As a result, some categor-
ical variables were excluded from the data quality evalu-
ation process, leading to the possibility that errors may
have been missed. This will be especially limiting in plat-
forms with a high proportion of categorical variables
(e.g., genomics). Therefore, extending the MCD and the
RPCA for use with categorical and mixed data types is
an area in which future research should be focused [52].
Finally, the MCD is undefined for n < p, as previously

mentioned, and so the RPCA must be used with wide
datasets. While some amendments have been proposed to
address this limitation in the MCD [45, 53], we cannot
comment on their effectiveness in relation to the RPCA.

Conclusions
We have implemented a process that effectively identifies
erroneous observations using multivariate outlier detection
techniques in two exemplary datasets from different data
platforms of ONDRI. This framework has facilitated the
improvement of data integrity as errors can be corrected,
and a new dataset can be generated prior to analysis. It was
imperative that multivariate approaches were used as uni-
variate methods missed errors that exist only when multiple
variables were considered together. In particular, the MCD
proved to be more effective as the RPCA consistently
missed errors that the MCD identified, though cannot be
used for datasets with fewer observations than variables.
Additional files
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Additional file 2: Comparison of outlying participants and errors
identified by the univariate outlier detection approaches during the first
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