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Abstract

Background: Length of stay evaluations are very common to determine the burden of nosocomial infections.
However, there exist fundamentally different methods to quantify the prolonged length of stay associated with
nosocomial infections. Previous methodological studies emphasized the need to account for the timing of infection
in order to differentiate the length of stay before and after the infection.

Methods: We derive four different approaches in a simple multi-state framework, display their mathematical
relationships in a multiplicative as well as additive way and apply them to a real cohort study (n=756 German
intensive-care unit patients of whom 124 patients acquired a nosocomial infection).

Results: The first approach ignores the timing of infection and quantifies the difference of eventually infected and
eventually uninfected; it is 12.31 days in the real data. The second approach compares the average sojourn time with
infection with the average sojourn time of being hypothetically uninfected; it is 2.12 days. The third one compares the
average length of stay of a population in a world with nosocomial infections with a population in a hypothetical world
without nosocomial infections; it is 0.35 days. Finally, approach four compares the mean residual length of stay
between currently infected and uninfected patients on a daily basis; the difference is 1.77 days per infected patient.

Conclusions: The first approach should be avoided because it compares the eventually infected with the eventually
uninfected, but has no prospective interpretation. The other approaches differ in their interpretation but are suitable
because they explicitly distinguish between the pre- and post-time of the nosocomial infection.
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Introduction
Length of stay (LOS) is one of the most important out-
comes in clinical epidemiology since it is directly linked
to patients’ morbidity and economic costs [1]. It is easy
to measure and often routinely collected in surveillance
data bases. During the stay in hospital, patients are at risk
to acquire nosocomial infections (NI) which belong to the
major common adverse events in hospitals. Many obser-
vational reports have studied the impact of NI on length
of stay by using different statistical methods. When eval-
uating the prolonged LOS of NI, the timing of NI plays an
important role to distinguish between pre-infection time
and consequence of NI. Several methodological papers
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showed the magnitude of the so-called time-dependent
(aka immortal-time) bias which occurs if the timing of
infection is not adequately addressed or rather ignored in
the analysis [2, 3]. Multi-state models or time-dependent
matching techniques account for the timing of NI to avoid
the time-dependent bias [2–4]. However, there exist fun-
damentally different estimands to quantify this prolonged
LOS associated with NI. In this article, we describe four
different approaches and estimands in a simplemulti-state
framework [5], display their mathematical relationships in
a multiplicative as well as additive way and apply them to
a real cohort study.

Methods
We consider a time-homogeneous multi-state model
(Fig. 1) with the three states 0=admission, 1=nosocomial
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infection, 2=discharge/death and assume constant hazard
rates λ01, λ02 and λ12 between the corresponding states.
The hazards λij are interpreted as the daily risk of moving
from state i to state j.
The infection hazard λ01, also denoted as the inci-

dence density of NI, is estimated by dividing the number
of NI events by the number of summed patient-days in
state 0 [5]. Analogously, the event densities λ02 and λ12
are estimated by dividing the discharge/death events by
the number of summed patient-days in state 0 and 1,
respectively [5]. These estimates are formally obtained via
maximum likelihood estimation [6]. Since the hazard rates
are assumed to be time-constant, the time to leave state 0
follows an exponential distribution with the hazard rate
λ01 + λ02. Thus, the average sojourn time in state 0 is

1
λ01+λ02

. Analogously, the time to leave state 1 follows an
exponential distribution with the hazard rate λ12 leading
to an average sojourn time in state 1 of 1

λ12
. The probability

to acquire a NI is equal to λ01
λ01+λ02

.
We can write the average LOS in terms of the haz-

ards from the multi-state model, which is the sum of the
sojourn time in state 0 and the sojourn time in state 1
multiplied with the probability to acquire a NI:

LOS = 1
λ01 + λ02

+ λ01
λ01 + λ02

× 1
λ12

If we assume the common case that NI reduce the dis-
charge hazard, i.e. λ12

λ02
< 1, we can use some algebra to

derive following relationship:

1
λ02

< LOS <
1

λ12

where 1
λ02

is interpreted as the average LOS in a hypo-
thetical world without NI. The first inequality is shown
as 1

λ02 < LOS ⇔ λ12(λ01 + λ02) < λ02(λ12 + λ01) ⇔
λ12λ01 < λ02λ01 ⇔ λ12 < λ02. The second inequal-
ity is shown as LOS = (λ12 + λ01)/((λ01 + λ02)λ12) <

(λ02 + λ01)/((λ01 + λ02)λ12 = 1/λ12

0

1

2

(dead or alive)
discharge admission

initial state terminal state 

nosocomial infection

Fig. 1Multi-state model

These inequalities mean that the mean LOS in a world
without NI is smaller than the mean LOS in a real
world and this is smaller than the mean sojourn time in
state 1. Based on the multi-state model, four different
approaches to quantify the LOS associated with NI can be
derived.

Restrospective stratification of eventually infected and
uninfected
The most common approach (A1) is to compare the aver-
age overall LOS of eventually infected patients with the
average overall LOS of eventually uninfected patients.
It addresses the following medical question of interest
(see Table 1): ’How many days do patients with NI stay,
on average, eventually longer in hospital than patients
who will never acquire a NI?’. In terms of the multi-
state model, the average overall LOS of eventually infected
patients is the sum of the average sojourn times of
state 0 and state 1, 1

λ01+λ02
+ 1

λ12
. The average overall

LOS of eventually uninfected patients is the sojourn time
in state 0, 1

λ01+λ02
. Thus, approach A1 is mathematically

expressed by

Table 1 Medical question of interest

Approach Medical question of interest /
meaning of corresponding
estimand

A1 - How many days do patients
with NI stay, on average,
eventually longer in hospital
than patients who will never
acquire a NI?

- How many days do patients
with NI stay, on average, after
the NI?

A2 - How many hospital days are,
on average, attributable to NI
per patient?

- How many hospital days, on
average, would a patient have
stayed shorter if he/she would
not have acquired a NI?

A3 - How many hospital days are,
on average, attributable to NI
in a hospital population?

- How many hospital days
would the average length of
stay be shorter if all NI in the
population would be
eliminated?

A4 - How many days does a
patient with NI stay, on
average, longer in hospital?

- How many days, on average,
is the expected prolonged
stay for patients with NI?
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A1 =
(

1
λ01 + λ02

+ 1
λ12

)
−

(
1

λ01 + λ02

)
= 1

λ12

= LOS difference of eventually infected and
eventually uninfected

which is the average sojourn time in state 1, given the
patient has reached this state, i.e., has acquired a NI. In
this approach, the classification of infected and uninfected
is done retrospectively at the end of hospital stay.
This approach does not distinguish between pre- and

post-infection LOS and thus does not allow a prospective
associational (or even causal) interpretation. The limita-
tion is that the LOS before NI which is included in the
LOS of eventually infected patients can not be interpreted
as LOS attributed due to NI. Instead, the LOS before NI
(which is per-se not attributable to NI) should count as
uninfected LOS. Therefore, the following approaches have
been developed.

Differentiating between pre- and post-infection length of
stay
In contrast to the previous approach, the following
approaches will differentiate between the pre-infection
time and consequence of NI in terms of LOS.
The second approach A2, termed as attributable LOS

[7, 8], compares the average sojourn time in state 1
(

1
λ12

)
with the average sojourn time in state 0 in a hypothetical
world without NI

(
1

λ02

)
. The medical question of inter-

est (see Table 1) is ’How many hospital days, on average,
would a patient have stayed shorter if he/she would not
have acquired a NI?’.
This is quantified by

A2 = 1
λ12

− 1
λ02

= Attributable length of stay

In contrast to approachA1, the left part of the difference
in approach A2

(
1

λ12

)
considers only the post-infection

LOS of infected patients. Moreover, the right part
(

1
λ02

)
considers a longer LOS than the one of approach A1
as 1

λ02
> 1

λ01+λ02
. This corrects for the limitations of

approach A1. However, the limitation of approach A2 is
that 1

λ02
is not a real world mean time and is therefore a

hypothetical quantity for LOS of uninfected patients.
In the third approach A3, we substract the average LOS

in a hypothetical world from the one in a real world
addressing the medical question ’How many hospital days
would the average length of stay be shorter if all NI in the
population would be eliminated?’. Algebraically, it is

A3 = LOS − 1
λ02

= λ01
λ01 + λ02

× 1
λ12

× (λ02 − λ12)

λ02
= Population-attributable length of stay

This estimand is called the population-attributable LOS
[8, 9], which is a population measure of extra LOS and
compares the average LOS of a population in a world with
NI with a population in a hypothetical world without NI.
In the fourth approach A4, we subtract the average

length of stay from the sojourn time in state 1 which aims
to answer the medical question ’How many days does a
patient with NI stay, on average, longer in hospital?’ (see
Table 1). It is

A4 =
(

λ02
λ12

− 1
)

× 1
λ01 + λ02

= Residual LOS of currently infected vs.
currently uninfected

This estimand, also called the change of length of stay,
is the established multi-state approach [10] and compares
mean residual LOS between currently infected and unin-
fected patients using landmarking on each day in the
hospital, it is a difference per infected patient.

Basic properties related to the hazard ratio λ12
λ02

In this section we consider basic relationships to the haz-
ard ratio λ12

λ02
. The hazard ratio λ12

λ02
is often calculated and

it describes in a multiplicative way if and how NI prolongs
LOS. A hazard ratio of 1 means that the daily chance to
be discharged does not change if the patient acquires a
NI meaning that NI does not prolong the LOS. It is more
often the case that the hazard ratio is smaller than 1 indi-
cating a prolonged LOS associated with NI. It is rarely the
case that the hazard ratio is greater than 1 which would
mean a shortened LOS associated with NI. It is obvious
that approach A1 is always larger than 0 (A1 > 0) as
λ12 > 0. Since it further does not depend on λ02, A1
always means that NI patients stay eventually longer than
patients who never acquired NI, even if λ12

λ02
= 1 or λ12

λ02
> 1

which is not a required property. For the other approaches
we have: λ12

λ02
= 1 ⇔ A2 = 0 ⇔ A3 = 0 ⇔ A4 = 0. It is

also easily shown that λ12
λ02

< 1 ⇔ A2 > 0 ⇔ A3 > 0 ⇔
A4 > 0 and λ12

λ02
> 1 ⇔ A2 < 0 ⇔ A3 < 0 ⇔ A4 < 0.

Thus, approaches A2, A3 and A4 have the required mathe-
matically equivalent properties regarding the direction of
the hazard ratio λ12

λ02
whereas approach A1 does not.

In Table 2, the properties of all approaches are displayed,
summarized and contrasted to each other.
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Table 2 Approaches and their properties

Approach Properties / pros and cons

A1 - is a real quantity

- undesired properties related to hazard
ratio λ12

λ02

- yields positive values even if NI patients
are discharged faster, i.e., λ12

λ02
> 1

- does not distinguish between pre- and
post-infection time

- does not allow causal interpreta-
tion about attributable length of stay
associated with NI

- not appropriate to quantify the burden
of NI

A2 - is a hypothetical quantity

- desired properties related to hazard
ratio λ12

λ02

- considers only the post-infection time
for NI patients

- contributes pre-infection time to
patients without NI

- allows a causal interpretation about
attributable length of stay associated
with NI

- appropriate to quantify the burden of
NI at patient-level

A3 - is a hypothetical quantity

- desired properties related to hazard
ratio λ12

λ02

- considers only the post-infection time
for NI patients

- contributes pre-infection time to
patients without NI

- allows a causal interpretation about
attributable length of stay associated
with NI

- appropriate to quantify the burden of
NI at population-level

A4 - is a real quantity

- desired properties related to hazard
ratio λ12

λ02

- distinguishes between pre- and post-
infection time

- appropriate to quantify the burden of
NI at patient-level

Additive andmultiplicative comparisons of approaches
Before we compare the approaches in a additive and mul-
tiplicative way, we note that approaches A1 and A2 do not
depend on infection hazard λ01 whereas approaches A3
and A4 do. Further, approaches A1, A2 and A4 are at the
patient-individual level and therefore directly comparable
whereas A3 is at the population-level. All approaches are
displayed in the Table 3. We further note that there is also
following relationship: A3 + A4 = A2.

Table 3 Overview and relationships of approaches to quantify
prolonged hospital stay associated with nosocomial infections

Approach real data example (SIR-3 study)

λ̂01 = 124/6442 ≈ 0.0192

λ̂02 = (756 − 124)/6442 ≈ 0.0981

λ̂12 = 124/1527 ≈ 0.0812

A1 = 1
λ12

12.31 days

A2 = 1
λ12

− 1
λ02

2.12 days

A3 = λ01
λ01+λ02

× 1
λ12

×
(λ02−λ12)

λ02

0.35 days

A4 = ( λ02
λ12

− 1) × 1
λ01+λ02

1.77 days

Additive relationships
between approaches
(differences)

A1 − A4 = 1
λ12

× λ01+λ12
λ01+λ02

10.54 days

A1 − A3 = 1
λ02

×
λ202+λ12λ01

λ12λ02+λ12λ01

11.97 days

A1 − A2 = 1
λ02

10.19 days

A4 − A3 = λ02−λ01
λ02

×
λ02−λ12

λ12(λ01+λ02)

1.43 days

A2 − A3 = A4 =
λ02−λ12

λ12(λ01+λ02)

1.77 days

A2 − A4 = A3 = λ01
λ02

×
λ02−λ12

λ12(λ01+λ02)

0.35 days

Following relationship
holds: A3 + A4 = A2

Multiplicative relationships
between
approaches (ratios)
A1
A4

= λ01+λ02
λ02−λ12

≥ 1 6.94
A1
A3

= λ02(λ01+λ02)
λ01(λ02−λ12)

≥ 1 35.4
A1
A2

= λ02
λ02−λ12

≥ 1 5.80
A3
A4

= λ01
λ02

= odds(NI) 0.196
A3
A2

= λ01
λ01+λ02

= risk(NI) ≤
1

0.164

A2
A4

= λ01+λ02
λ02

=
odds(NI)
risk(NI) ≥ 1

1.20

Following relationship
holds if λ01 ≤ λ02 : A3 ≤
A4 ≤ A2 ≤ A1

Comparing approaches A1 and A2
The additive relationship between approaches A1 and A2
is just the average length of stay of a population in a
hypothetical world without NI

(
1

λ02

)
. The multiplicative

relationship is A1
A2

= λ02
λ02−λ12

.

Comparing approaches A1 and A3
As before, the relationship between approaches A1 and
A3 is best described and communicable in an additive
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way. The difference between A1 and A3 is A1 − A3 =
1

λ02
× λ202+λ12λ01

λ12λ02+λ12λ01
(Table 3). It is mainly the average length

of stay of a population in a hypothetical world without
NI

(
1

λ02

)
; multiplied with the factor λ202+λ12λ01

λ12λ02+λ12λ01
which is

often larger than 1 as λ02 is often larger than λ12. In con-
trast, the multiplicative relationship is A1

A3
= λ02(λ01+λ02)

λ01(λ02−λ12)
.

Comparing approaches A1 and A4
The relationship between approaches A1 and A4 is best
described in an additive way. The difference is A1 − A4 =
1

λ12
× λ01+λ12

λ01+λ02
= LOS (Table 3). Thus, it mainly depends on

the average sojourn time of state 1 which is 1
λ12

; the factor
λ01+λ12
λ01+λ02

is usually lower than 1 as λ02 is often larger than
λ12. The multiplicative relationship is A1

A4
= λ01+λ02

λ02−λ12
.

Comparing approaches A2 and A3
Approaches A3 and A2 are best compared in a multi-
plicative way: A3

A2
= λ01

λ01+λ02
= risk(NI). The additive

comparison is A2 − A3 = A4 = λ02−λ12
λ12(λ01+λ02)

.

Comparing approaches A2 and A4
Approach A2 is linked to approach A4 with A2

A4
=

λ01+λ02
λ02

= odds(NI)
risk(NI) . Based on this formula, it follows that

both approaches give similar results if the nosocomial
infection is rare (risk is smaller than 10%). The additive
comparison is A2 − A4 = A3 = λ01

λ02
× λ02−λ12

λ12(λ01+λ02)
.

Comparing approaches A3 and A4
In contrast to the previous comparisons to approach A1,
approaches A3 and A4 are best compared in a multi-
plicative way. There is the following simple relationship:
A3
A4

= λ01
λ02

= odds(NI). Thus, the factor odds(NI) links
the population-level approach A3 to the individual-level
approach A4. The additive relationship is rather complex:
A4 − A3 = λ02−λ01

λ02
× λ02−λ12

λ12(λ01+λ02)
.

Real data example
We use publicly available data from the R-package etm
[11]. This is an observational prospectively collected
cohort study including 756 intensive care patients from
Germany of whom 124 patients acquired a nosocomial
pneumonia (NI) during their stay in the intensive care unit
(ICU). The data used here is a random sample from a
larger cohort which is described in detail elsewhere [12].

Results
The cohort study followed 756 patients during their stay
at the intensive-care unit. Of these patients, 124 patients
acquired a NI during their stay in the ICU. The summed
patient-days without NI was 6442 and with NI 1527.
Thus, the constant hazards can be estimated as follows:
λ̂01 = 124/6442 = 0.0192, λ̂02 = 632/6442 = 0.0981,
and λ̂12 = 124/1527 = 0.0812. The average length of

stay of this cohort is LOS = 10.54 days; the sojourn
time in state 0 is 1

λ̂01+λ̂02
= 8.52 days and 1

λ̂12
= 12.31

days in state 1, respectively. The results of the different
approaches are diverse, however, with different interpre-
tation. As expected, A1 provides a exaggerated value of
12.31 days which just means that patients with NI stay
eventually 12.31 days longer at ICU then eventually unin-
fected patients. In contrast, A4 yields that a NI prolongs
the LOS by mean 1.77 ICU days per infected patient.
The population-attributable LOS (A3) is 0.35 days mean-
ing that there are on average 0.35 additional ICU days
attributable to NI at the population level. The attributable
LOS (A2) is 2.12 ICU days, interpreted as the average LOS
which is attributable to NI for an infected patient.

Discussion
A multi-state model was used to mathematically derive
four fundamentally different approaches to quantify the
prolonged length of stay associated with nosocomial
infections or other adverse events [13]. The relationships
were displayed in an additive as well as a multiplicative
way.
As in previous articles [2, 4], we encourage researchers

to not retrospectively stratify by infection status and, con-
sequently, to avoid the use of approach A1 because it does
not differentiate between pre- and post-infection time and
thus does not allow a causal interpretation.
The other approaches are suitable because they implic-

itly distinguish between the pre-infection time (which
might be a risk factor) and post-infection time (which
might be a consequence) of nosocomial infections. The
main difference is the interpretation andwe showedmath-
ematical formulas how they are linked to each other. Thus,
this knowledge can be used to better understand appar-
ent discrepancies in the literature and transfer published
values from one approach to the other.
The question whether nosocomial infections prolong

hospital stay is - from the methodological point of view -
related to ’life years lost among patients with a given dis-
ease’ [14] by replacing discharge with death and length
of stay with age. Andersen [14] considered also a mul-
tistate model, the classical illness-death model, in order
to study different statistical variants and extensions of
our approach A4 including time-inhomogeneous Markov
models, censoring and semi-Markov models. Approaches
A1-A3 are not considered by Andersen and complement
his considerations.
This study has following limitations. First, we focused

on the basic approaches and did not consider any
other covariates such as characteristics from the patient-,
hospital- or even country-level (for instance, as in Stew-
ardson et al. [15]). Even though there exists regres-
sion models [16] which allows for adjusting the change
of length of stay (approach A4), we believe that the
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choice of the fundamental approach has a much stronger
impact on the results than the adjustment for covariates.
For instance, previous studies indicated that the time-
dependent bias could not be redeemed by adjustment
of several patient-level covariates [4]. Second, the haz-
ard rates are often not time-homogeneous in real-data
settings. Even though time-inhomogeneous approaches
exist, we are convinced that this simplification is required
to provide a clear transparency which leads to a better
understanding of basic distinctions. Third, we combined
the diametrically opposed endpoints discharge (alive) and
death. We think that this combination is reasonable if the
focus is on length of stay and their related economic costs,
the topic of this paper. However, as rapid death results in
shorter LOS, a length-of-stay analysis should always be
accompanied with an analysis with respect to mortality.
This can be done by using an extended multi-state model
that distinguishes between inpatient death and discharge
alive [5, 6].

Conclusion
We conclude that a clear distinction between different
estimands is needed to better understand apparently large
discrepancies in the literature. We recommend the use of
approaches which differentiates between pre- and post-
infection time.
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