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Abstract

Background: Tacrolimus (TAC) is an immunosuppressant drug given to kidney transplant recipients post-transplant
to prevent antibody formation and kidney rejection. The optimal therapeutic dose for TAC is poorly defined and
therapy requires frequent monitoring of drug trough levels. Analyzing the association between TAC levels over time
and the development of potentially harmful de novo donor specific antibodies (dnDSA) is complex because TAC
levels are subject to measurement error and dnDSA is assessed at discrete times, so it is an interval censored
time-to-event outcome.

Methods: Using data from the University of Colorado Transplant Center, we investigated the association between
TAC and dnDSA using a shared random effects (intercept and slope) model with longitudinal and interval censored
survival sub-models (JM) and compared it with the more traditional interval censored survival model with a time-
varying covariate (TVC). We carried out simulations to compare bias, level and power for the association parameter in
the TVC and JM under varying conditions of measurement error and interval censoring. In addition, using Markov Chain
Monte Carlo (MCMC) methods allowed us to calculate clinically relevant quantities along with credible intervals (Crl).
Results: The shared random effects model was a better fit and showed both the average TAC and the slope of TAC
were associated with risk of dnDSA. The simulation studies demonstrated that, in the presence of heavy interval
censoring and high measurement error, the TVC survival model underestimates the association between the survival
and longitudinal measurement and has inflated type | error and considerably less power to detect associations.

Conclusions: To avoid underestimating associations, shared random effects models should be used in analyses of
data with interval censoring and measurement error.
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Background

There are nearly 100,000 patients on the U.S. kidney trans-
plant waiting list, with 13 people dying every day while
awaiting this life-saving therapy [1]. This national short-
age of organs has made it imperative to ensure the longest
possible kidney allograft survival for the approximately
20,000 patients that receive a transplant each year, yet
over half of kidney grafts fail by 10 years after transplan-
tation [1]. There has been an evolving recognition that
antibody-mediated rejection represents one of the promi-
nent barriers to improving long-term graft outcomes [2].
The antibodies that mediate this rejection process, de
novo donor-specific antibodies (AnDSA), have been estab-
lished as an early biomarker for post-transplant adverse
kidney events and patients are now screened for dnDSA
at regular intervals at most centers around the country
[3, 4]. Immunosuppression therapy is likely the most
directly modifiable factor in preventing dnDSA. The
majority of centers in the U.S. (93%) use Tacrolimus (TAC)
as the backbone of their immunosuppression protocols
[5], but the drug has a narrow and poorly defined thera-
peutic range that varies by patient.

The relationship between TAC and dnDSA is still
largely unexplored due to numerous complexities. TAC
trough levels, or the lowest concentration of drug in the
blood prior to the next dose of medication, are mea-
sured frequently post-transplant. The measurement error
is high because of biological variability in how the drug
is absorbed. In addition, TAC is considered an internal
covariate in relation to dnDSA since both processes are
occurring in the same individual and there may exist a
feedback loop in which low TAC levels lead to dnDSA
but the suspected presence of dnDSA causes a TAC dose
increase. To add to the complexities, screening for dnDSA
is conducted only periodically, e.g. every six months to
one year, which makes dnDSA an interval censored out-
come. It is known that dnDSA have developed during the
interval, but the exact timing of dnDSA is unknown. In
previous studies, one-dimensional functions of observed
TAC values were found to be associated with develop-
ment of dnDSA; these functions included the coefficient
of variation of TAC, the percentage of TAC levels below
5 ng/ml [6], the mean TAC troughs of less than 8 ng/ml
and the percentage of time TAC was in therapeutic range
[7]. These studies did not address the longitudinal aspect
of TAC, the measurement error or possible feedback
from dnDSA to TAC, or the interval-censored nature of
dnDSA.

We compare two methods to model a heavily inter-
val censored (dnDSA) and a highly variable longitudinal
outcome (TAC): (i) a joint model (JM) and (ii) a sur-
vival model with a time varying covariate (TVC). It has
been shown that when exact event times are known, the
presence of measurement error causes the association
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parameter estimated by a TVC model to be biased
towards null [8, 9]. We sought to further this exploration
by studying how the amount of measurement error and
the width of the censoring intervals around the time-to-
event outcome affect the association estimate in JM and
TVC. Interval censored time to event outcomes occur fre-
quently in clinical situations, in particular for conditions
that are subclinical and detectable only through a special-
ized assessment. However, to our knowledge, a thorough
comparison of TVC versus JM in the presence of differing
amounts of measurement error and interval censoring has
yet to be performed.

First, we fit a joint model to analyze the association
between longitudinal TAC levels and interval censored
dnDSA. The literature of joint models of longitudinal
and survival outcomes is extensive including textbooks
[10] and [11] and comprehensive review articles [12—15].
Although methods have been developed for single survival
outcomes [16—19], much less attention has been given to
interval-censored outcomes in joint models [20-22]. Gue-
orguieva et al. developed a joint model for longitudinal
and interval censored competing risk dropout outcomes
using a family of parametric baseline hazards including
Weibull and log-logistic and used maximum likelihood
estimation [22]. We build our joint model for TAC and
dnDSA based on this work, but with a single time to event
interval censored outcome, a correlated error structure
within the longitudinal sub-model, and estimation using
Markov Chain Monte Carlo (MCMC).

Second, we fit an interval censored survival model with
a time-varying covariate (TVC), following the work by
Sparling et al. [23]. We compare the estimates of asso-
ciation between TAC and dnDSA, with the hypothesis
that the association parameter in the TVC model will be
underestimated. Finally, we perform a series of simulation
studies to further explore how the two models perform
in terms of bias, level and power based on (1) varying
strengths of association, (2) varying amounts of measure-
ment error in TAC, and (3) varying degrees of interval
censoring in dnDSA.

In the first section, we introduce the kidney transplant
study data. Next, the models are formulated and applied
to the motivating kidney transplantation dataset. A simu-
lation study comparing the models under different levels
of interval censoring and different amounts of measure-
ment error in the longitudinal process is presented and a
discussion on the findings and comparison of the models
follows.

Kidney Transplant Study

This retrospective study included patients who were at
least 18 years old at time of kidney transplant between
September 2007 and December 2013 at the University
of Colorado Hospital. Patients were excluded if they
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had primary non-function, simultaneous liver and kid-
ney transplant, islet cell transplant, had pretransplant
DSA, failed to undergo dnDSA screening, or had dnDSA
within the first week post-transplant. Informed consent
was provided by all patients, and this study was con-
ducted in accordance with the Declaration of Helsinki
and was approved by the ethics committee at the Uni-
versity of Colorado (COMIRB 13-3137). No organs or
tissues were obtained from prisoners and all kidney trans-
plant recipients received organs in accordance with the
United Network of Organ Sharing, the Organ Procure-
ment and Transplantation Network and a local organ pro-
curement organization, the Donor Alliance, as directed by
the United States National Organ Transplant Act.

Five hundred and thirty eight patients met the final
inclusion criteria for this analysis. Baseline characteristics
of interest are summarized in Table 1. It is hypothesized
that age, race, and the degree of Human Leucocyte Anti-
gen (HLA) mismatch between the donor and recipient
are associated with development of dnDSA [7]. Post-
transplant, each patient was closely monitored and data
on TAC trough levels and formation of dnDSA were col-
lected for up to 7 years. Each individual had up to 90
measures of TAC that ranged in value from 0 to 30. No
obvious violation of normality assumption in the distribu-
tion of TAC was observed (histogram in Additional file 1:

Table 1 Kidney Transplant Study Descriptive Statistics

Summary No dnDSA (n=357) dnDSA (n=181) Overall (n=538)
Measure
Male 225 (63%) 111 (61%) 336 (62%)
Age
Young 24 (7%) 23 (13%) 47 (9%)
(<30 years)
Middle 120 (34%) 80 (44%) 200 (37%)
(30-49 years)
Old (=50years) 213 (60%) 78 (43%) 291 (54%)
Ethnicity
Caucasian 265 (74%) 107 (59%) 372 (69%)
African 25 (7%) 26 (14%) 51 (9%)
American
Hispanic 53 (15%) 42 (23%) 95 (18%)
Other 14 (4%) 6 (3%) 20 (4%)
Number of HLA 4 (2,5) 4(3,5) 4(3,5)
Mismatches
median (IQR)
Total TAC 26 (18,37) 17 (11,25) 22(15,32)
Measurements
median (IQR)
Months of 48 (20, 60) 12 (6, 24) 36 (12,60)
Followup median
(IQR)

Page 3 0of 12

Figure S1). Due to the high variability and unreliability of
TAC levels within the first week, only TAC levels after day
7 were included in the analysis. TAC levels of zero indi-
cated that a patient was non-compliant and did not take
their prescribed TAC dose or a patient was purposefully
taken off the drug due to some other medical complica-
tion, such as an infection. The number and frequency of
TAC measures varied by patient, with an overall median
of 22 measurements per person (IQR: 15-32) (Table 1).
dnDSA screening was performed at 1, 6, 12 months, annu-
ally, and when clinically indicated. Of the 538 patients, 181
developed dnDSA during the study period. For the pur-
pose of this project, dnDSA was treated as a time to event
variable, with the event being the first time an individ-
ual tested positive for dnDSA. Figure 1 shows the TAC
trajectories and time to dnDSA or censoring of 4 ran-
dom individuals who developed dnDSA and 4 random
individuals who did not develop dnDSA.

Methods

To analyze the association between TAC and dnDSA,
we propose a shared random effects model and com-
pare it with a traditional interval censored survival model
treating TAC as a time-varying covariate.

M1: Shared Random Intercept and Slope Model

Suppose there are N individuals each measured at n; time
points, i = 1,.., ;. Let y;; be the measurement for indi-
vidual i at time ¢, j = 1,..., n;. We assume that given the
vector of individual-specific random intercept and slope
(a0i>a1;)’, individual outcome measures y;; are indepen-
dent and normally distributed with mean 1;; and residual
variance o2, where

i =f &) + Bix1i + ao; + aiitiy. (1)
The time component £; can be modeled with any func-
tion f. Some examples include a linear trajectory, i.e.
f@j)) = bo + bity; or b-spline basis functions, i.e.
ftyp) = i1 Bywi(ty), where y(ty) is the k¥ of K
basis functions with coefficient Sy and the number of
basis functions K depends on the degree of the splines
(e.g. g = 3) and number of inner knots (4 = 3; K =
g + h + 1). The vector x); represents baseline covariates
with regression coefficients 8;. The parameters ay;, a1, are
the random intercepts and slopes that allow individuals
to vary in their baseline TAC level and time trend; they
are normally distributed with mean zero and a correlated
variance/covariance matrix

ao; 0 ol PO001
]G] e

Suppose the same N individuals are measured at dis-
crete and varying timepoints for a time to event outcome.
The time to event outcome is interval censored and only
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Fig. 1 Observed trajectories of four patients who developed dnDSA and four who did not. The x-axis represents time post-transplant, measured in
months. The y-axis represents observed TAC level. The black circles represent measured TAC levels, which are connected with a solid black line for
visibility. For those who developed dnDSA (1st row), the dotted red line represents the left censoring time and the solid red line represents the time
at which dnDSA was detected. For those who did not develop dnDSA (2nd row), the red dotted line represents the last time at which dnDSA was

known to happen between two discrete time points. Let
tr; denote the time at which the outcome was detected and
t; indicate the visit time immediately preceding tg;. The
true time to event, ¢;, lies somewhere in between ¢;; and
tr;. The hazard for individual i at any time ¢ is given by

hi(t) = ho(t) exp(Bo + Byxai + rodoi + A1dii) (3)

where /y(£) is the baseline hazard, By is the fixed intercept
and scale parameter, xy; is the vector of fixed covariates
and S is its parameter, (Ao, A1)’ are the association param-
eters, and (ag;, a1;)’ are the same random terms as above
in the longitudinal sub-model (1). The baseline hazard
can a number of flexible distributions, including paramet-
ric (typically exponential, Weibull, or gamma), piecewise
constant or spline forms. The two sub-models (1) and

(3) are connected by the shared random intercepts from
the survival portion with both the random intercepts and
slopes from the longitudinal portion. The first associa-
tion parameter, A9, corresponds to the risk of event for
a difference in average longitudinal measure of one unit.
Parameter A corresponds to the risk of event for a unit
increase in the slope of the longitudinal model.

Conditional on random effects, a;, a1;, the log likeli-
hood can be written for each individual:

n
- 1 1
LL; = Z{—Eln(ZﬂUeZ) - 2(7(%‘;‘ — f(t)) — Blxni — aoi — avity)*}
=1 ¢
— Ipilog{1 — Fi(tr)} + (1 — Ir;)log{F;(tr:) — Fi(tLi)}

(4)
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where I; is an indicator variable that is 1 when the indi-
vidual is right censored and 0 when interval censored, tg;
is the right censoring time, and ¢; is the left censoring
time. F;(t) corresponds to the cumulative density function
at time . Details on how this likelihood is constructed for
the Weibull hazard that was used in the results can be
found in the Additional file 1.

M2 and M3: Special Cases of M1

We also consider special cases of M1 where, instead of
sharing both the random intercepts and slopes from the
longitudinal model (1) with the random intercepts in the
survival model (3), only the random intercepts from the
longitudinal model are shared with the random intercepts
from the survival model. This model is called M2, and the
hazard function of the survival model is the special case
when A; = 0in Equation (3). Model M3 is the special case
when A9 = 0 in Equation (3). This model shares the ran-
dom slope from the longitudinal model with the random
intercept from the survival model.

M4: Time Varying Covariate Survival Model

We also consider an interval censored survival model with
a time-varying covariate for this data. Assume that each
individual, i = 1, ..., N, has longitudinal measurements at
update times #;, where j = 1,..,n;. Let z; denote a vec-
tor of baseline covariates for individual i and w;; denote
the value of the time-varying covariate for individual i at
update time j. The hazard of event for individual i at time
j can be written as:

hij(t) = howe(ty) exp(vo + ¥'zi + nwy) (5)

where /s, is the baseline hazard function (which can be
specified as any flexible distribution, as in M1), yy is the
fixed intercept, ¥’ is the coefficient vector for baseline
covariates, and 7 is the coefficient for the time-varying
covariate, w;;. In this case, w;; is the same covariate as the
longitudinal outcome in M1 (y;), since we are compar-
ing the performance of M1 and M4 in modeling the same
outcome, TAC from our motivating kidney dataset.

The likelihood for this model can be written as in
Sparling et al. [23]:

N

LLi =[] —Inil1 = Filtily ;s Witz )] X ©)
i=1

(A — IR Fi(tR, |y i» Wit(t)) — FiCL, ¥ s Wite,)1)]

where F;(t;|y,;, wi[t))) is the cumulative density, condi-
tional on the fixed covariate values y; and the relevant
time-dependent covariate values w;; up to the right or
interval censoring times. The cumulative density can be
iteratively calculated based based on equation (5) for
each subject, by using the cumulative hazard and survival
functions.
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Bayesian Model Fit

Model estimation and inference is based on the Bayesian
framework where the hyper-parameters are assigned
weakly informative priors. Priors for the parameters are as
follows:

, ind
bo, b1, Bo, B, By hos A, vo, ¥sm = N(0,10000)
oe ~ Uniform(0, 100)

o, Uy ind Gamma(100, 100)

-1
2
0.00001 0
% pooza 1 ~ Wishart ,2
popo1 O} 0 0.000001

where # ~ Normal(u,0?) with probability density
1/((7\/%) exp {—(u — M)Z/ZGZ}; u ~ Uniform(a, b) with
probability density 1/(b — a) fora < u < by u ~
Gamma(r, A) with probability density A"u” ’lexp(—)\u)/
I'(r); and 2 ~ Wishart(R, k) with probability density (|
Q |k=P=D/2| R M2 exp{—Tr(RS2/2})/(2P%/2T(k/2)) for
k > p, where p = 2, Tr is the trace function and I', is the
multivariate gamma function.

Markov Chain Monte Carlo (MCMC) simulations were
performed to estimate the posterior distribution. A Gibbs
sampler was used to construct two Markov chains using
JAGS software [24] and the runjags package in R [25].
Convergence of the samples was assessed by trace plot
inspection, and Gelman and Geweke tests which test for
equality of the means of the first and last part of a Markov
chain [26]. After a burn-in period of 20,000 and thin-
ning of 40 of 80,000 sampling iterations, 2000 samples per
chain were used for inference.

Model Selection and Comparison

Model selection was carried out using (a) the Deviance
Information Criterion (DIC) [27] and (b) the Watanabe-
Akaike information criterion (WAIC) introduced by
Watanabe [28]. The DIC is a measure calculated based
on the deviance, D(6) = —2logL(y|#), that penalizes for
the number of effective degrees of freedom in the model
and is definedA as DIC = D(0) + pp = 2D() — D(é),
where D and 0 are obtained from MCMC output as the
mean of the deviance and the posterior mean, respec-
tively. WAIC approximates leave-one-out cross-validation
[28] and works well for hierarchical models where the
number of degrees of freedom is not obvious [29]. The
best model should have the lowest values of DIC and
WAIC; differences of at least 5 points will be considered
important. We followed the traditional recommendations
by Spiegelhalter and Ntzoufras [26, 27] to use the con-
ditional likelihood rather than the marginal to compare
model fits. More discussion on this topic can be found in
the work by Kapur [30] and in the supplement (Part G) of
Juarez-Colunga [31].
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Results

Models and Model Selection

Models M1-M4 were fitted to the kidney transplant data.
The three joint models (M1, M2, M3) had a longitudinal
sub-model with TAC as the outcome, a fixed intercept and
slope for time (f(t;) = bo + b1t;)) and a random inter-
cept and/or slope for time (depending on the model) for
variations across individuals. Spline terms for time were
tested, but DIC and WAIC indicated that a linear trend
was sufficient. For the survival sub-models, various base-
line hazard functions were tested (exponential, Weibull,
gamma, piecewise constant) and the Weibull yielded the
best model fit (hy(t) = wt?~!, where « is the Weibull
shape parameter). The Weibull distribution makes intu-
itive sense for this data, as the hazard can flexibly be
increasing or decreasing over time and the risk of dnDSA
is thought to decrease as time from transplant progresses.
The parameters from the Weibull model can easily be
interpreted as the change in log-relative risk. All survival
sub-models had time to dnDSA as the interval censored
outcome, random intercept(s) associated with the longitu-
dinal sub-model, and a vector of baseline covariates: age,
ethnicity, and number of HLA mismatches. See Table 1
for the description of these covariates. Baseline covari-
ates were tested in both the longitudinal and survival
sub-models, but none were significant predictors in the
longitudinal sub-model, so they were removed.

The interval censored survival model with a time-
varying covariate (M4) had dnDSA as the outcome, TAC
as the time-varying covariate, and the same baseline
covariates as listed above. After considering other base-
line hazard functions for M4, we chose the Weibull due to
model fit and to compare to M1, so kg (t) = Opyet®tre™1
where a4, is the Weibull shape parameter.

Table 2 displays the results of model comparisons based
on the DIC and the WAIC. The survival sub-model fits
in M1-M3 can be directly compared with the model fit
for M4. The best fitting survival model according to both
DIC and WAIC is Model 1, which shares both the random

Table 2 Model Selection Criteria: DIC, and WAIC as defined in the
“Model Selection and Comparison” section

Model DIC

M1: Shared Random 68943 (67672+1271)
Intercept/Slope with
Intercept

M2: Shared Random
Intercepts

M3: Shared Random
Intercept with Slope

M4: TVC Model

WAIC
68917 (67608+1309)

69052 (67716+1336) 69029 (67675+1354)

69104 (67739+1365) 69057 (67691+1366)

1327 1329

The parentheses contain the (linear sub-model fit + survival sub-model fit). Lowest
value indicating best model fit is in bold
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intercept and slope from the longitudinal model with the
random intercept from the survival model.

Estimation of Associations

Table 3 presents the results from the final model, M1,
and the time-varying covariate model, M4. The longitu-
dinal portion of M1 shows that on average, individuals
start at a TAC level of about 7 ng/ml. For every one
month post-transplant, the average individual’s TAC lev-
els decrease by 0.05 ng/ml. There is a significant nega-
tive correlation between the random intercept and slope,
p = —0.38, indicating that individuals with higher start-
ing TAC have a lower slope. The survival portion of the
model has a decreasing hazard over time, parameter-
ized by « = 0.57. The degree of HLA mismatching is
significantly associated with dnDSA; for every one unit
increase in mismatching, the risk of dnDSA increases
1.26-fold (95% Crl: 1.13, 1.40). Race is also associated
with risk of dnDSA; compared to Caucasian individuals,
African Americans and Hispanics have a higher risk of
dnDSA (2.09 and 1.60, respectively). Age is also a fac-
tor, as middle-aged (30-49 years) and older-aged (50+
years) individuals both have a reduced risk of dnDSA
compared to individuals under the age of 30 (Hazard
Ratios: 0.57 and 0.30, respectively). These covariate effects
are all conditional on the same initial level and slope
of TAC, so these results are not explained by differ-
ent TAC levels across HLA mismatches, race or age
groups. The first association parameter, Ao, explains the
risk of dnDSA associated with a difference in overall
average level of TAC. For every one ng/ml higher aver-
age TAC level, the risk of dnDSA lowers 0.64-fold (95%
CrlL: 0.52, 0.75). The second association parameter, Aj,
explains the risk of dnDSA associated with a difference
in the slope of TAC levels. For every 0.05 ng/ml/month
higher TAC slope, the risk of dnDSA lowers 0.43-fold

(95% Crl: 0.32, 0.58).
The interval censored survival model M4 does not have

alinear sub-model, but instead uses a time-varying covari-
ate for TAC. The scale parameter of the survival model
is @ = 0.46, which also results in a decreasing hazard of
dnDSA over time. The effects of baseline covariates, y’,
are similar in magnitude to 8’ in M1. The hazard ratio
for the time-varying TAC is n = 0.80. Within an individ-
ual, following a one unit increase in TAC level, the risk of
dnDSA decreases 0.80-fold (95% Crl: 0.75, 0.85). Though
this is still a significant finding, the effect size of n in M4
is smaller than Xy in M1. We explore this further in the
“Simulation Study” section.

Goodness of Fit of Kidney Transplant Study

To assess the adequacy of model fit for M1-M3, we
simulated 1000 datasets from the posterior predictive
distribution and compared them to the observed data.
We performed these posterior predictive assessments
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Table 3 Results from M1 and M4. M1 is the joint model that shares both the random intercept and slope from the longitudinal
sub-model with the random intercept from the survival model. M4 is the interval censored survival model with the longitudinal
measurements as a time-varying covariate

M1: Shared Random Effects

M4: Time Varying Covariate

Lower Upper Lower Upper

Parameter Estimate SD 95% Crl 95% Crl Estimate SD 95% Crl 95% Crl
Linear Sub-Model
bo 724 0.06 712 7.36 - - - - -
by -0.05 0.005 -0.06 -0.04 - - - - -
o? 744 0.09 7.26 7.63 - - - - -
o} 1.66 0.14 140 1.94 - - - - -
012 0.004 0.0006 0.003 0.005 - - - - -
P -0.38 0.07 -0.51 -0.24 - - - - -
Survival Sub-Model
o 0.57 0.06 047 0.69 Qtye 046 0.03 0.40 0.53

Hazard Hazard

Ratio Ratio
Bo 003 0.01 0.01 0.06 Y0 0.17 0.06 0.08 0.30
B1 (HLA Mismatch Number) 1.26 0.07 113 140 7 1.29 0.06 117 143
B> (African American) 2.09 0.56 123 3.39 %) 1.79 0.40 111 2.70
B3 (Hispanic) 1.60 033 1.05 231 V3 1.67 031 1.14 233
B4 (Other Race) 1.14 0.56 0.34 241 V4 1.12 047 0.40 2.20
Bs (30-49 years) 0.57 0.15 032 093 Vs 067 0.17 042 1.05
Be (=50 years) 0.30 0.08 0.17 049 V6 041 0.10 0.25 0.65
Ao 0.64 0.06 052 0.75 n 0.80 0.03 0.75 0.85
A1 (per 0.05 change) 043 0.07 032 0.58 - - - - -

For M1, the posterior mean and 95% credible intervals are presented for the linear portion of the model, the survival portion of the model, and the association parameters.
The longitudinal portion is comprised of a fixed intercept (by), a fixed slope (by), and a random error term (~ N(0, 2)). There is also a random intercept (do; ~ N(O, 05)) and a
random slope for each individual (a1; ~ N(O, (rf)), which have a correlation parameter p. The survival model is comprised of fixed covariates (8), the Weibull association
parameter «, and a random intercept for each individual that is related to the random intercept and slope of the longitudinal sub-model through two association parameters.
The first association parameter (i) links the two sub-models through their shared random intercepts. The second association parameter (1) links the two sub-models
through the longitudinal random slope and the survival random intercept. M4 contains the Weibull scale parameter, o, baseline covariates with parameter y, and the

coefficient for the time-varying covariate,

separately for the longitudinal and survival sub-models.
This is usually done through a discrepancy function rep-
resented by a scalar or a vector, often represented graph-
ically [32, 33]. For comparing the observed longitudinal
TAC data with the posterior distribution of longitudinal
measures on given individuals, we have conditioned on
the posterior mean of the random effects at the individual
level; e.g. for M1: dg;, di; in (1) are considered fixed [34].
We compared 1000 posterior predictive TAC trajectories
against the observed trajectory for 3 random individu-
als using M1, M2 and M3. Due to the large variability in
TAC levels within and between individuals, the plots are
all nearly identical, which is indicative that no one model
fits the longitudinal trajectory better than another model.
The plots are shown in Additional file 1: Figure S2.

For the survival sub-model predictive check, we cre-
ated artificial intervals (that resembled the kidney study
data intervals) around the survival times taken from the

1000 posterior predictive datasets. Next, using these inter-
vals, we plotted the predicted Weibull cumulative den-
sity functions from the 1000 posterior datasets and then
overlaid the estimated cumulative density curve from
the raw data. We chose to plot the cumulative den-
sity function instead of the survival function because
of the low event rate in these sub-groups [35]. We
had to choose certain values of baseline covariates for
these checks, so we presented three different types of
individuals that represent the most prevalent combina-
tions of covariates. The results of the survival predic-
tive checks for three particular combinations of base-
line covariates, for all three models M1-M3, are found
in the Additional file 1: Figure S3. The coverage of the
observed survival curve by the posterior predictive sur-
vival curves is best for M1. This is indicative that M1
fits the survival data better than the other two joint
models.



Campbell et al. BMC Medical Research Methodology (2019) 19:130

Sensitivity Analysis

To determine if the choice of priors affected the esti-
mates of M1 parameters, an alternative prior dis-
tribution of Uniform (U(—100,100)) was compared
against a Normal (N(0,1000)) prior for by, b1, B,
A0 and Aj, and the half-Cauchy (HC(0,25)) distribu-
tion for o, was compared against the uniform prior
(U4(0,100)) for this variance component. The results,
tabulated in Additional file 1: Table S1, indicate the
choice of priors has very little effect on the parameter
estimates.

Simulation Study

We conducted a simulation study to compare how the
joint M1 and the time varying covariate model per-
form under (1) varying degrees of association, (2) vary-
ing amounts of interval censoring (IC), and (3) varying
amounts of measurement error (ME). We simulated data
using the joint model with shared random intercepts (M2)
under nine scenarios, each with a different combination
of measurement error (none [0 = 0], low [0 = 1], and
high [aez = 8]) and degree of interval censoring (lighter
[0-1 month, 1-6 month, 6-12 month, 12—-24 month,
yearly after], visits missed at random, and heavier [3
year intervals]). For the random interval censoring, we
assumed patients had a fixed follow-up schedule match-
ing the lighter IC scenario, but missed 50% of visits at
random (we also set the missing-ness to 25% and the
results were almost identical). All other variables were set
to be similar to the kidney transplant data, with Weibull
parameters ¢ = 0.50 and By = —2. Two hundred
datasets were simulated under each of these six condi-
tions, and the JM and TVC models were fitted to each
dataset using MCMC. Each dataset contained 300 indi-
viduals, and approximately half developed dnDSA. The
results from all simulations were obtained using two par-
allel chains; the TVC model had a burn-in of 1000 samples
and 1000 samples for inference, while the JM had a burn-
in of 2000 samples and 2000 samples for inference. The
average model estimates from the light and heavy IC sce-
narios are reported in Table 4. The light and random IC
scenarios did not differ significantly, so the results from
the random IC scenarios are in the Additional file 1:
Table S2.

To compare power for detecting an association between
the longitudinal and the time to event outcomes, we
varied the association between TAC and dnDSA (A¢ in the
JM and 7 in the TVC) between -0.50 and 0 within each
scenario. We calculated power based on each model at
each true association value using the credible intervals of
Ao or n. For example, for simulation run m, m = 1,..,.M
(M=200 for our simulations), let Aoz and Aoy denote
the 2.5% and 97.5% percentiles of the distribution of the
MCMC samples of %o. The power is calculated as: Power

Page 8 of 12

M A ~
=1-—1/MY I(kot < O < Aqu), where I(E) is the

indicator funygticl)n of event E. The power curves for all
nine scenarios are presented in Fig. 2.

As expected, the association parameter was consistently
attenuated toward zero in the TVC compared to the JM.
As more measurement error was introduced, the TVC
underestimated the association even more (true value:
A0 = —0.50, low ME: 7= -0.32 and high ME: 5= -0.18),
while there was no evidence of substantial bias for the
JM (low ME: 4y = —0.53 and high ME: 1y = —0.54).
As heavier interval censoring was introduced, the asso-
ciation estimates were further from the true value in
both modeling approaches, but the standard deviations
also increased. The parameter that was most affected by
heavier interval censoring was the Weibull shape param-
eter, o. Although the bias of o was lower in the TVC
context, this model should not be preferred when there
is high measurement error and heavy censoring, due to
the underestimation of the association between the two
outcomes, which is typically of more interest.

The power of the TVC model was consistently lower
than the power of the JM (Fig. 2). When more mea-
surement error was introduced, the power of the TVC
model significantly decreased while the power of the JM
stayed approximately the same. When visits were missed
at random, the decrease in power on both approaches
was minimal. The wider interval censoring around dnDSA
resulted in a high type I error in the case of the TVC
model (type I error=0.23 in the high ME and heavy IC
simulation from Fig. 2). The average credible intervals and
coverage probabilities for all simulations are reported in
the Additional file 1: Figure S3.

Discussion
In this paper, we compare two modeling techniques
for two outcomes: a longitudinal outcome with high
measurement error and a survival outcome with heavy
interval censoring. For our motivating dataset, both DIC
and WAIC suggested that a shared random effects model
with random effects for both the intercept and slope of
the longitudinal process (TAC) was the preferred model.
Results from this model and from the TVC model (M4)
support the hypothesis that the association between TAC
and dnDSA is underestimated when a TVC model is fit.
The simulation study further confirmed this hypothesis
and showed that the TVC has lower power and higher
type I error compared to the JM when the outcomes have
high measurement error and heavy interval censoring.
TAC is the most commonly used immunosuppressant
drug in kidney transplantation and yet optimal therapeu-
tic dose to prevent dnDSA, a common reason for graft
loss, is unknown. Most published studies on the influence
of immunosuppressant drugs on development of dnDSA
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No Measurement Error

Low Measurement Error

High Measurement Error

Variable True Value M2 M4 True Value M2 M4 True Value M2 M4
Lighter interval by -0.03 -0.02 (0.00) -0.03 -0.03 (0.005) -0.03 -0.03 (0.005)
censoring
bo 7.00 6.92 (0.001) 7.00 7.02(0.05) 7.00 6.99 (0.07)
ol 0 0.00 (0.00) 1.00 1.00 (0.01) 8.00 8.01(0.09)
o -0.005 -0.01 (0.001) -0.005 -0.005 (0.06) -0.005 -0.001 (0.08)
002 1.75 1.76 (0.003) 1.75 1.76 (0.15) 1.75 1.75(0.16)
ol 0.004 0.004 (0.00) 0.004 0.004 (0.000) 0.004 0.004 (0.001)
Bovo  -200 -2.10(0.006) 0.63(0.009) -2.00 -2.14(0.26)  0.21(039) -2.00 -2.14(0.27)  -0.82(0.31)
B1 (HLA)  0.25 0.26(0.002) 0.24(0.002) 0.25 0.26 (0.07) 0.24(0.07) 025 0.26 (0.07) 0.23(0.07)
o 0.50 0.54(0.00)  041(0.00)0 050 0.53 (0.04) 047(0.04) 050 0.54 (0.04) 047 (0.04)
Ao -0.50 -0.52(0.002) -0.33(0.001) -0.50 -0.53(0.07)  -0.32(0.05 -0.50 -0.54(0.08)  -0.18(0.04)
Heavier interval by -0.03 -0.02 (0.00) -0.03 -0.03 (0.004) -0.03 -0.03 (0.005)
censoring
bo 7.00 6.93 (0.00) 7.00 7.00 (0.05) 7.00 7.00(0.08)
o? 0 0.00 (0.00) 1.00 1.00 (0.01) 8.00 8.01(0.09)
o -0.005 -0.01 (0.001) -0.005 -0.005 (0.06) -0.005 -0.001 (0.08)
002 1.75 1.76 (0.003) 1.75 1.76 (0.15) 1.75 1.75(0.16)
ol 0.004 0.004 (0.00) 0.004 0.004 (0.000) 0.004 0.004 (0.001)
Bovo  -200 -3.99(0.01) -0.80(0.01) -2.00 -400(049) -1.61(0.56) -2.00 -4.20(0.55)  -2.24(0.49)
B1 (HLA) 025 0.28(0.002) 0.24(0.002) 0.25 0.27 (0.09) 0.23(0.08) 025 0.28 (0.09) 0.23(0.08)
o 0.50 1.08(0.002) 0.69(0.002) 050 1.09(0.11) 0.87(0.10) 050 1.15(0.13) 0.89 (0.09)
Ao, M -0.50 -0.56 (0.002) -0.26 (0.001) -0.50 -0.59(0.10)  -0.25(0.06) -0.50 -064(0.12)  -0.18(0.05)

Data were simulated from the joint model with shared random intercepts, M2, and used to fit M2 and M4 by MCMC. Six simulations were performed with varying amounts of
measurement error (none (ae2 =0), low (oez =1),and high (oez = 8)) and varying amounts of interval censoring (lighter (as in our data) and heavier (3 year intervals)). Unlike
in Table 3, none of these estimates are converted into hazard ratios, because the interest here is comparing the results from the simulation to the true values. The numbers

presented are mean (standard deviation) of the estimates from the 200 datasets for each simulation condition

compare drugs rather than evaluate dosing of a specific
drug [36, 37]. A study in the liver transplant setting by
Kaneku et al. analyzed risk factors for dnDSA in 749 adult
liver transplant recipients [38]. They found 8.1% of indi-
viduals developed dnDSA at one year and at least one
low TAC (<3 ng/ml) or cyclosporine (<75 ng/ml) level
were associated with dnDSA (OR 2.66, p = 0.015). In our
dataset, 21.7% of individuals had dnDSA by 1 year and we
also found that for every one ng/ml lower average TAC the
risk of dnDSA was higher (HR [95% CrI]: 1.56 [1.33, 1.92])
and the hazard of dnDSA also increased 2.33-fold (95%
Crl: 1.72, 3.13) for every 0.05 ng/ml/month decrease in
the slope of TAC. The higher levels of dnDSA detected in
our study may be due to several reasons, including center
differences in detection levels of antibody counted as posi-
tive and inclusion criteria. Advancing previous models, we
modeled the time to dnDSA while accounting for changes
in TAC, where TAC is modeled as a variable with mea-
surement error. Although minimization of TAC exposure
with lower drug trough levels may decrease its associated
toxicities, our results suggest that this strategy may place

individuals at increased risk for dnDSA, which may have
important implications for intermediate and long-term
graft survival.

Similar to the findings presented by Kolagmunnage
and Prentice [8, 9], our simulation found severe
underestimation of the association between the longitu-
dinal and survival outcomes when using the time-varying
covariate model for longitudinal data with a considerable
amount of measurement error. We also found a similarly
severe underestimation of the association using the TVC
model when the survival outcome was interval censored,
even in the case of no measurement error. Importantly,
the TVC model had a lower power to detect an associa-
tion compared to the JM, and it had a higher type I error
rate when heavy interval censoring was introduced. Inter-
estingly, when half of the follow-up visits were missed at
random for the scenarios studied, there was a negligible
overall effect on power for both the TVC and JM. These
results are important in understanding the behavior of the
JM and TVC since in many clinical settings time to event
outcomes can often be observed only within intervals. In
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Fig. 2 Power curves for each simulation scenario presented in Table 4. ME: measurement error. IC: interval censoring. Dotted grey line represents
0.05. Random IC: patients had the same follow-up schedule as the light IC, but randomly missed 50% of follow-up visits

future work, we would like to study the effect of infor-
mative missing-ness (e.g. probability of missing depends
on a covariate, such as age, or the probability of miss-
ing increases as time from transplant progresses) on the
power of detecting associations within these models.

We recognize the inherent differences in the two model-
ing approaches discussed here. The joint models (M1-M3)
all result in between-subject association interpretations.
For example, Ag is interpreted as the increased hazard of
dnDSA for an individual with an average TAC level of
one ng/ml lower than another individual. In contrast, the
time-varying covariate model (M4) yields a within-subject
interpretation. In this model, 5 relates to the increased
hazard of dnDSA for a given individual, immediately fol-
lowing a one ng/ml decrease in TAC.

By employing MCMC to fit all models, we were able
to easily obtain the posterior distribution of all estimated
parameters. Since the main focus of this analysis was to
assess the association between TAC and dnDSA, we were
particularly interested in the association parameters: X
and A1 in M1 and n in M4. We calculated credible intervals

(Crl) for these parameters, which give the straightforward
interpretation as an interval that contains the association
parameter with 95% certainty. The MCMC framework
also allows for easy calculations of dynamic predictions
and this will be explored in future work. The code to fit the
final joint model (M1) and time-varying covariate model
(M4) on simulated data in JAGS is located in the Addi-
tional file 2. The code for fitting M1 in SAS using PROC
NLMIXED is also provided.

Conclusion

The joint model examined in this paper allows for flex-
ible modeling of dnDSA development as it relates to
TAC levels over time. As our simulation study showed,
this approach accommodates modeling heavily inter-
val censored survival data jointly with highly vari-
able longitudinal data, and if a time varying covariate
(TVC) approach is used with heavy interval censoring
and high measurement error, the associations may be
severely underestimated, missed completely, or detected
spuriously.
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Additional files

Additional file 1: Supplemental materials. Contains details on likelihood
construction, additional figures and tables, and selected output from the
reproducible examples. (PDF 393 kb)

Additional file 2: Reproducible Example Files:

example-1-JM.R: Code to fit M1

longitudinal-data.csv: simulated TAC data for M1

survival-data.csv: simulated dnDSA data for M1

model-1-JM.txt: JAGS model, called by example-1-JM.R

example-1-NLMIXED.SAS: Code to fit M1 with PROC NLMIXED, uses

same simulated data

example-4-TVCR: Code to fit M4

e |ongitudinal data tvc.csv: simulated TAC data for M4 (carried forward
values of TAC)

® model-4-TVC.txt: JAGS model, called by example-4-TVCR (ZIP 199 kb)
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Crl: Credible interval; DIC: Deviance information criterion; dnDSA: de novo
Donor specific antibody; HLA: Human leucocyte antigen; IC: Interval censoring;
JAGS: Just another Gibbs sampler; JM: Joint model; MCMC: Markov chain
Monte Carlo; ME: Measurement error; TAC: Tacrolimus; TVC: Time-varying
covariate; WAIC: Watanabe-Akaike information criterion
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