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Abstract

Background: Today we are often interested in the predictive value of a continuous marker with respect to the
expected difference in outcome between a new treatment and a standard treatment. We can investigate thisin a
randomized control trial, allowing us to assess interactions between treatment and marker and to construct a
treatment selection rule. A first step is often to estimate the treatment effect as a function of the marker value. A
variety of approaches have been suggested for the second step to define explicitly the rule to select the treatment,
varying in the way to take uncertainty into account. Little is known about the merits of the different approaches.

Methods: Four construction principles for the second step are compared. They are based on the root of the
estimated function, on confidence intervals for the root, or on pointwise or simultaneous confidence bands. All of
them have been used implicitly or explicitly in the literature. As performance characteristics we consider the
probability to select at least some patients, the probability to classify patients with and without a benefit correctly, and
the gain in expected outcome at the population level. These characteristics are investigated in a simulation study.

Results: As to be expected confidence interval/band based approaches reduce the risk to select patients who do not
benefit from the new treatment, but they tend to overlook patients who can benefit. Simply using positivity of the
estimated treatment effect function for selection implies often a larger gain in expected outcome.

Conclusions: The use of 95% confidence intervals/bands in constructing treatment selection rules is a rather
conservative approach. There is a need for better construction principles for treatment selection rules aiming to
maximize the gain in expected outcome at the population level. Choosing a confidence level of 80% may be a first
step in this direction.
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Background

Today we are often confronted with the task to inves-
tigate the predictive value of a continuous marker with
respect to the expected difference in outcome between a
new treatment and a standard treatment. A randomized
controlled trial (RCT) can (and should) be used for such
an investigation. It does not only allow to demonstrate an
interaction between treatment choice and the marker, but
also to construct a treatment selection rule. Such a rule
aims at identifying those patients who can expect to ben-
efit from the new treatment. It is a function of the marker
value and hence can be applied also to future patients
outside of the trial.

Several statistical methods have been proposed in the
literature to construct treatment selection rules. Many
of them are based on estimating the treatment effect
0(x) as a continuous function of the biomarker value x.
Both parametric [1-3] as well as semi- or nonparametric
approaches [4—6] can be found. However, although esti-
mating 6(x) is a valuable step, it does not automatically
provide a rule to determine those biomarker values with
0(x) > 0; it remains the question whether and how to take
stochastic uncertainty of §(x) into account.

Confidence bands have been considered by several
authors to describe the uncertainty in é(x). Pointwise
bands (e.g. [5]) and simultaneous confidence bands (e.g.
[4]) as well as both together (e.g. [7, 8]) have been sug-
gested. Mackey and Bengtsson, Riddell et al. [1, 3] suggest
to construct a confidence interval for the root of 6(x)
(with respect to 0 or another threshold), and similarly
[2] suggest to compute horizontal confidence intervals.
In contrast, some authors (e.g. [6]) only present a raw
estimate of 6 (x). However, all these authors do not explic-
itly address the question how to move from a (graphical)
illustration of uncertainty to a concrete rule.

In recent years, there are some papers addressing the
question more explicitly. Baker and Bonetti [9] as well
as [10] suggest to check where the lower bound of the
simultaneous confidence interval of the estimated sub-
group treatment effect is positive. The former uses a
confidence level of 95% and the latter one of 99%. In an
overview about the construction of treatment selection
rules [11] also consider pointwise and simultaneous con-
fidence bands and rules based on comparing the lower
bound with 0 or another given threshold.

In summary, we would like to argue that all authors
directly or implicitly suggest to use one of the following
types of treatment selection rules: If only the estimate
6(x) is (graphically) presented, in future all patients with
O(x) > 0 should receive the new treatment. If pointwise
or simultaneous confidence bands for the treatment effect
are also shown, all covariate values x with positive values
of the lower bound should define the treatment selection
rule. If a confidence interval for the root of 6 (x) is given,
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only x-values outside of this interval satisfying also 6 (x) >
0 define the patients to be selected for the new treatment.
We focus in this paper on the threshold O for the treat-
ment effect, but our considerations are also applicable for
any other threshold.

It is the purpose of this paper to give some insights into
the performance of these principles to construct treat-
ment selection rules. We are interested in differences in
the impact for future patients outside of the trial when
following the various principles. As potential impact we
consider the correct identification of patients who do or
do not benefit from the new treatment and the change in
outcome at the population level.

Methods

Notation

To compare these principles we introduce some basic
notations. Let X be the continuous covariate represent-
ing the biomarker value. Let Y be a continuous outcome
and T the treatment indicator, randomized with a 50 per-
cent chance to 0 or 1, and indicating a treatment with the
standard or the new treatment, respectively. The treat-
ment effect 0(x) is defined as the difference between the
expected outcomes:

Ox):=EY | X=xT=1)—EY |X=xT=0)

We assume that higher values of Y represent a higher
treatment success. Thus, a positive treatment effect char-
acterizes superiority of the new treatment.

A treatment selection rule can be regarded as the
choice of a subset C of all possible values of X. Patients
with covariate values in C should receive the new treat-
ment instead of the standard treatment in future. A con-
struction method is an algorithm to transform the data
(Y3, Xi, T)i=1,.,n observed in an RCT into a set C. Since
the result of a construction method depends on random
data, we consider it as a set-valued random variable C. We
can study the performance of the construction method by
considering the distribution of C.

Performance characteristics

We start by defining quality measures for a single set
C. Since this set C determines the treatment selection
for future patients, we introduce a new random variable
X* denoting the biomarker value for future patients. We
consider three quality measures:

Sensitivity := P(X* € C | 9(X™) > 0)
Specificity := P(X* ¢ C | 0(X*) < 0)
Overall gain := E@(X*)Ix«cc)
Sensitivity and specificity focus on the correct classifi-

cation of patients by the treatment selection rule. Sen-
sitivity measures the ability to select those patients who
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can expect to benefit from the new treatment. Speci-
ficity measures the ability to avoid recommending the new
treatment to patients who cannot benefit from it. The
overall gain is a summary measure taking into account
also the magnitude of the treatment effect. It represents
the change in the average outcome (i.e. in E(Y)), when
we apply the proposed treatment selection rule in future,
i.e. patients with x* ¢ C receive the standard treatment
and patients with x* € C receive the new treatment. It
takes into account that 6 (x*) may be actually negative for
some patients selected by the rule. The gain can be also
seen as one specific way to balance between sensitivity and
specificity, or — to be precise — between true positive and
false positive decisions. A patient with 6(x) > 0 correctly
selected to receive the new treatment gets a weight equal
to his or her individual benefit. A patient with 8(x) < 0
incorrectly selected to receive the new treatment gets a
weight equal to his or her individual, negative benefit. All
patients selected for standard treatment get a weight of 0.

We have chosen these three measures, as they cover
important characteristics. The different construction
principles mentioned in the introduction can be regarded
as attempts to control the specificity at the price of a
reduced sensitivity. The overall gain measures the suc-
cess of obtaining a sufficient balance in the sense that
a low specificity decreases the overall gain by including
too many patients with a negative 6(x*), and a low sen-
sitivity decreases the overall gain by excluding too many
patients with a positive 0 (x*). However, it takes also into
account that it is most favourable to include patients
with large positive values of 6(x*) and least favourable to
include patients with large negative values of 6 (x*). Mea-
sures similar to the overall gain have been considered in
the literature, but mainly with respect to the optimal rule
C = {x | 6(x) > 0} as a measure of the benefit we can
expect from a new biomarker. See [2] and the references
given there. In the presentation of the results we will also
indicate the maximal possible overall gain as a benchmark,
defined as E(9 (X*) ]Ig (X*)ZO)'

To describe the performance of a construction method
for treatment selection rules, we study the distribution of
these three quality measures when applied to C under the
assumption that X* follows the same distribution as X. In
this paper we will only consider the mean of this distribu-
tion, i.e. the expected sensitivity, the expected specificity,
and the expected overall gain. In the context of comparing
different subgroup analysis strategies, the expected overall
gain has also been considered by [12].

Construction principles for treatment selection rules

As mentioned above, we will consider four different con-
struction principles for the treatment selection rule. All of
them are based on the assumption that we have some sta-
tistical method providing us with an estimate 6(x). Three
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principles assume that we can also perform certain types
of statistical inference in order to construct pointwise or
simultaneous confidence bands of the treatment effect or
confidence intervals for the roots of 0(x). In the sequel,
let /,(x) and /;(x) denote the value of the lower bound
of a 95 percent pointwise and simultaneous confidence
band, respectively. Let CI(x,) denote a confidence inter-
val around any root x;, i.e. x, € 6-10) = {x | 6(x) = 0}.
Then, the construction principles can be described like
shown in Table 1.

There is a close conceptual relation between the two
principles POI and CIR. Both aim at excluding marker
values x for which 6(x) = 0 is "likely". POI tries to iden-
tify these values by considering the uncertainty in 6 (x).
CIR tries to identify these values by considering the uncer-
tainty in determining the root(s) of 6(.). (There can be
several roots when 6(.) is chosen as a non-linear func-
tion, resulting in the somewhat technical definition shown
above). Moreover, there is a direct mathematical relation.
If a pointwise 1 — y confidence band for 6(.) is given, we
can interpret it not only vertically, but also horizontally in
the following sense: If for a given 6; we consider all values
of x such that (6;,x) is within the confidence band, then
these values define a 1 — y confidence interval for 6 ~1(6;).
A proof is outlined in Additional file 1.

We will nevertheless consider POI and CIR as different
approaches, as there are a variety of methods to obtain
confidence intervals for #~1(0). In particular we will con-
sider a simple application of the delta rule to obtain
standard errors of ~1(0), as it has been also used in [1].

Design of simulation study

In the general set up of the simulation study we generate a
random variable X €[0, 1] representing the biomarker. T
is generated as a Bernoulli random variable with a proba-
bility of 0.5. The continuous outcome Y follows a normal
error model: Y = a(X) + 0(X)T + &, where ¢ ~ N(0, 1).
As the error variance is fixed to one, the value of 6(x)
can be interpreted roughly as an effect size. We chose
to investigate three shapes for the treatment effect func-
tion O(x), a linear, a concave and a convex shape, see
Fig. 1. Within each shape we have a scaling parameter

Table 1 Construction principles and the corresponding
treatment selection rules

Treatment selection rule
Cest = {x | §(x) = 0}
Cror = {x | [p(x) = 0}

Construction principle

estimator (EST)

95 percent pointwise
confidence band (POI)

95 percent simultaneous
confidence band (SIM)

Com = {x | s(x) = 0}

95 percent confidence Cor = {x100) > 0}\

interval of all roots (CIR)

U de

x€0~1(0)
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Fig. 1 Three shapes for 6(x) with 8 = 1.a8(x) = B(x — 0.5) bO(x) = B(0.3 — 0.9(x — 1)) €O(x) = B(—0.3 + 0.9x%)

(b) ()

B reflecting the steepness of the function. For the linear
case we chose to investigate two different distributions of
the biomarker, X ~ U(0,1) or X ~ 7(0,1,1/3), while
we only look at a uniformly distributed biomarker for the
other two shapes. Here 7 (a, b, ¢) denotes a triangular dis-
tribution on the interval (a4, b) with a mode in ¢. We do
not consider the case of a normally distributed X, as the
theory behind the methods we use to construct simulta-
neous confidence bands applies only to bounded intervals.
Thus, in total we are investigating four scenarios summa-
rized in Table 2. Without loss of generality we will assume
a(x) = 0 in generating the data. This is justified if we
assume that the analysis models used are correctly speci-
fied with respect to «(x), such that the estimates for 6 (x)
are invariant under the transformations Y’ = Y + «a/(X).

In estimating 0 (x) we use linear regression assuming a
linear or a quadratic model for «(X) and 6 (X):

General analysis model: Y=aX)+60s(X)T
Linear analysis model: a(X) =ap+ a1 X

0p(X) = Bo + f1X
a(X) = ag + o X+ as X?
0p(X) = Bo+P1X+ 2 X

We will focus on using the “correct” analysis model,
i.e. we apply the quadratic analysis model if  (x) is concave
or convex, and the linear model otherwise. The mathe-
matics for building the pointwise and simultaneous con-
fidence bands and the confidence intervals for the roots
are outlined in Additional file 2. Candidate sets are con-
structed as described above for each of the four principles.
However, this step is only performed in case of a signifi-
cant interaction test, i.e. if Hp:8; = 0 or Hy:81 = B2 =
0, respectively, could be rejected at the 5 percent level.
In case of no significance all candidate sets are empty,
ie.C=40.

Quadratic analysis model:

Table 2 Characteristics of the investigated scenarios

Scenario Shape of 0 (x) Distribution of X
1 Linear 6(x) = B(x — 0.5) Uuo, 1

2 Linear: 6(x) = B(x — 0.5) T0,1,1/3)

3 Concave: 0(x) = B(0.3 — 0.9(x — 1?) Uuao,mn

4 Convex: 0(x) = B(—0.3 + 0.9x%) Uuao,mn

In addition to the performance characteristics expected
sensitivity, expected specificity, and expected overall gain,
we also consider P(C # ), i.e. the probability to select
at least some patients for the new treatment. We refer
to this probability as the power, as it reflects the chance
to get a “positive” result from the investigation of inter-
est. It will also allow to judge the relevance of a chosen
B value. The numerical computation of the performance
characteristics is outlined in Additional file 3.

The sample size for a single trial was chosen in order to
obtain for a clinically relevant situation a power of at least
90 percent with the most conservative method (i.e. SIM)
in scenario 1. The relevant situation is characterized by
one quarter of the patients to have a treatment effect
above 0.2, corresponding to the choice § = 0.8. The cal-
culations resulted in a sample size of 1500, which we used
for all scenarios. The number of repetitions in the simula-
tion study was set to 2500, allowing to estimate a power of
90 percent with a standard error of 0.6 percent.

All calculations were performed using Stata 13. We
used the available built-in procedures for generating ran-
dom numbers, performing linear regression, construction
of pointwise confidence bands (1incom) and applica-
tion of the delta rule (nlcom). The calculation of the
simultaneous confidence intervals were performed with
self-written Stata programs and self-written functions
in Mata, a programming language integrated in Stata.
Source code for reproducing the results of the simulation
can be viewed as Additional file 4 which also includes the
data sets produced by the simulation.

Results

Scenario 1

In this scenario we consider the case of a linear true treat-
ment effect 6(x) and X being uniformly distributed. We
can observe distinct differences between all four construc-
tion principles (Fig. 2). As expected EST has the highest
power while SIM, as the most conservative method, has
the lowest power. As § increases so does power, sensi-
tivity and overall gain for all construction methods. In
contrast, specificity is rather constant with a level of about
95 percent for EST and levels close to 100 percent for
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Fig. 2 Simulation results of the performance characteristics for all four construction principles as function of 8. Shown is scenario 1, i.e. 6 (x) linear,
X ~U(0, 1) using a linear model for analysis. For the overall gain, the thin grey line indicates the maximally possible overall gain

the other three methods. Sensitivity of POI, SIM, CIR is
smaller compared to EST. SIM, being the most conserva-
tive method, evidently has the lowest value, while the most
liberal method, EST, has the highest value. Looking at the
overall gain and hence balancing the opposite trends for
sensitivity and specificity, EST performed best and comes
close to the maximal possible gain for § > 0.8. Using a
confidence band or confidence interval to lower the num-
ber of patients incorrectly selected for the new treatment
reduces the overall gain by a small amount.

Scenario 2

When changing the distribution of X to be triangular with
mode at 1/3 there are less patients with a positive treat-
ment effect. Power is lower in this situation (Fig. 3), as é(x)
is more variable and confidence intervals for true positive
effects are larger due to fewer observations. Specificity
behaves similar as in scenario 1 but sensitivity and overall
gain are considerably lower. Furthermore, there are big-
ger differences between the construction principles. For
larger values of 8, the loss in sensitivity is substantially
greater when going from a liberal method to a more con-
servative one. A distinct loss can also be seen in the overall
gain. For example, for 8 = 0.8 more than half of the over-
all gain is lost when using SIM instead of EST and more
than one third when using POl instead of EST. In contrast,

the overall gain in EST is only about 15 percent below the
maximal possible gain.

Scenario 3

Figure 4 shows the results for this scenario with a uni-
formly distributed X and a concave true treatment effect.
The results for power and specificity are similar to the first
scenario but the specificity of EST is now slightly below
95 percent. On the other hand, there is a substantial loss
in sensitivity and overall gain when comparing POI, SIM,
and CIR with EST. This is probably due to the fact that
the positive values of the treatment effect 6(x) are closer
to zero than in the linear case (cf. Fig. 1). However, it still
holds that the overall gain of EST is close to the maximal
possible gain if § > 0.8.

Scenario 4

The last scenario considers a convex true treatment effect
and a uniform distribution of X. The results shown
in Fig. 5 look similar to the first scenario with a lin-
ear true treatment effect. The loss in sensitivity and
overall gain is minor when choosing a more conserva-
tive method instead of EST, especially when compared
to the last two scenarios. This can be explained by
large positive values of 6(x) for the majority of patients
with 6(x) > 0.
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X ~U(0, 1) using a quadratic model for analysis. For the overall gain, the thin grey line indicates the maximally possible overall gain

Further results

When choosing the quadratic model for analysis in sce-
nario 3 and 4, there may be a concern that the interaction
test has little power as we test for a difference in two
parameters. As we expect a monotone treatment effect it
can be justified to use here also the interaction test based
on the linear model. We investigated also this alternative,
but the results were very similar. There may also be a con-
cern that our results presented so far are too optimistic, as
the model used to analyse the data coincides always with
the true model. In Additional file 5 we present further
results for misspecified models. They support the results
presented so far.

Finally, we should mention that the performance char-
acteristics between CIR and POI partially differed — in
particular when using the linear analysis model — although
POI can be also interpreted as a CIR approach. This
indicates that using the delta method may not be very ade-
quate. Indeed, in the linear analysis model the root is a
ratio (cf. Additional file 2).

Discussion

Summary of results

The results of our simulation study indicate that using
confidence bands for 0(x) or confidence intervals for
6~1(0) to construct treatment selection rules are rather

conservative approaches when compared to selecting just
those patients with a positive treatment effect estimate.
They allow to move the rate of incorrect selections in
patients not benefiting from the new treatment from
about 5 percent to nearly O percent. But we have to pay
the price to overlook a substantial fraction of patients
who could benefit from the new treatment. Consequently,
we often obtain a substantially lower overall gain than it
would be possible when just requiring positive treatment
effect estimates. Actually, this simple approach allows
often to approach the maximally possible gain.

Outlook

The step from modelling treatment effects as a function
of a covariate to explicit construction of treatment selec-
tion rules has not yet been addressed systematically in
the literature. The results of our simulation study suggest
that requiring the lower bound of a 95 percent confidence
interval for 0 (x) to be above 0 is a very strict rule. At first
sight such a rule may make sense, as in deciding whether
to select patients with the biomarker value x for the new
treatment, we control the probability of a type I error in
these patients: If patients with this value do not benefit on
average from the new treatment, the probability to select
the new treatment is limited to 2.5 percent. This sounds
similar to the traditional rationale in RCTs. However, in
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traditional RCTs we make a decision for a large patient
population. Now we make a decision for a very small
patient population, namely those with a specific covariate
value. So it might not be surprising that the probability of
a type II error, namely to overlook the benefit from the
new treatment for this small population, is actually rather
large.

Such considerations may suggest to allow higher type-I
error rates in order to decrease the type II error rate and
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hence to improve the overall gain. In Fig. 6 we consider
specificity and overall gain as a function of the (1-y)-level
of the confidence bands / the confidence interval in the
case of B = 0.8. We can observe a distinct increase of the
overall gain when lowering (1 — y) from 0.95 to values
around 0.8, but only a moderate decrease in specificity,
keeping it at levels above 0.98 for all construction princi-
ples. This holds for all four scenarios and actually also for
all values of 8 € {.4,.6,.8,1, 1.2}, see Additional file 6.
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Limitations

Our investigation was mainly limited to the case of cor-
rectly specified models in the sense that the true model
is within the class of models used in the analysis. Mis-
specification of the model used for the analysis has a
further impact on the performance characteristics, briefly
touched in Additional file 5. However, the main point we
tried to make in this paper is that even in the case of a
correctly specified model, there is a need to come to a
consensus on how to take uncertainty in parameter esti-
mates into account when deriving a treatment selection
rule. Consequently, our focus was also on rules varying
in the way to take this uncertainty into account. Further
variants of the rules which may take other aspects into
account were not considered. For example rules of the
type 6(x) > c for some ¢ may aim to take the clinical
relevance of the treatment effect into account. We also
focused on the three specific performance characteristics
sensitivity, specificity and gain, as these were sufficient
to make our point. However, for a complete picture it
might be necessary to take further aspects into account,
for example we can define the unmet gain as the aver-
age potential benefit for patients with 6(x) > 0 who are
overlooked by the rule.

Future comparisons should also include methods based
on selecting optimal cutpoints directly, for example those
on fitting cut point models [13, 14], or using the treatment
selection curve [15]. Also alternatives to simply using an
interaction test as pretest [2] can have an impact on the
performance. In particular such alternatives may take into
account the possibility that all patients may benefit from
the new treatment to a similar degree.

Conclusions

The use of 95% confidence intervals/bands in construct-
ing treatment selection rules is a rather conservative
approach. There is a need for better construction princi-
ples for treatment selection rules aiming to maximize the
gain in expected outcome at the population level. Choos-
ing a confidence level of 80% may be a first step in this
direction.
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