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Abstract

Background: Online clinical risk prediction tools built on data from multiple cohorts are increasingly being utilized
for contemporary doctor-patient decision-making and validation. This report outlines a comprehensive data science
strategy for building such tools with application to the Prostate Biopsy Collaborative Group prostate cancer risk
prediction tool.

Methods: We created models for high-grade prostate cancer risk using six established risk factors. The data comprised
8492 prostate biopsies collected from ten institutions, 2 in Europe and 8 across North America. We calculated area
under the receiver operating characteristic curve (AUC) for discrimination, the Hosmer-Lemeshow test statistic (HLS) for
calibration and the clinical net benefit at risk threshold 15%. We implemented several internal cross-validation schemes
to assess the influence of modeling method and individual cohort on validation performance.

Results: High-grade disease prevalence ranged from 18% in Zurich (1863 biopsies) to 39% in UT Health San Antonio
(899 biopsies). Visualization revealed outliers in terms of risk factors, including San Juan VA (51% abnormal digital rectal
exam), Durham VA (63% African American), and Zurich (2.8% family history). Exclusion of any cohort did not significantly
affect the AUC or HLS, nor did the choice of prediction model (pooled, random-effects, meta-analysis). Excluding the
lowest-prevalence Zurich cohort from training sets did not statistically significantly change the validation metrics for any
of the individual cohorts, except for Sunnybrook, where the effect on the AUC was minimal. Therefore the final
multivariable logistic model was built by pooling the data from all cohorts using logistic regression. Higher prostate-
specific antigen and age, abnormal digital rectal exam, African ancestry and a family history of prostate cancer increased
risk of high-grade prostate cancer, while a history of a prior negative prostate biopsy decreased risk (all p-values < 0.004).

Conclusions: We have outlined a multi-cohort model-building internal validation strategy for developing globally
accessible and scalable risk prediction tools.
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Background

The widespread use of prostate-specific antigen (PSA) in
combination with other established risk factors to assist
clinicians in the early detection of prostate cancer has
fostered user-friendly online risk tools for assessing the
chance of prostate cancer detection if a prostate biopsy
were to be performed. Patients and clinicians use risk es-
timates to assist their decision-making considering
procession to biopsy. The first prostate cancer risk tools
emanated in the mid-2000s following completion of
large prostate cancer screening and prevention studies in
Europe and North America [1, 2]. In addition to helping
individual patients, their online accessibility enabled val-
idation in heterogeneous populations ranging from simi-
lar to divergent from where they were developed [3, 4].
However, as technical, reporting and other changes oc-
curred globally in prostate cancer, such as the systematic
increase in the number of biopsy cores to increase detec-
tion, there came the need to collect contemporary real
time data outside of the screening/prevention trial
framework in order to expediently adapt the online risk
tools to modern practice [5].

Towards this end the Prostate Biopsy Collaborative
Group (PBCG) was formed to prospectively collect
the standard risk factors and prostate biopsy outcomes
from ten diverse international centers in Europe, North
America and its territories [6]. The PBCG received fund-
ing to centralize data so that uniform analysis could be ap-
plied at the individual-patient level. However, a secondary
aim of the PBCG was to find scalable methods for multi-
cohort risk modeling that would enable the addition of
cohorts into the future as well as the addition or modifica-
tion of data from existing cohorts once funding for cen-
tralized data processing ceased.

In this report we provide the multi-cohort risk model
development strategy used to develop the online PBCG
prostate cancer risk tool [7]. In the spirit of data science,
we propose informative visualization graphics for com-
munication of cohort heterogeneity to partnering clinics.
We identify five potential methods for performing logis-
tic regression with clustered cohort data, including those
working on the individual patient-level versus traditional
meta-analysis methods that only work with study level
aggregated summaries, commonly referred to in the lit-
erature as one- versus two-stage meta-analyses, respect-
ively [8]. To compare modeling methods and assess the
impact of individual cohorts on prediction we outline a
comprehensive internal validation strategy for ensuring
the globally intended tools are as accurate as possible for
the widest berth of populations. Although demonstrated
for a specific application in prostate cancer, we believe
our comprehensive cohort visualization/model compari-
son/internal validation concept for creating globally
intended risk tools generalizes to other clinical multi-
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cohort risk prediction applications intended for online
use.

Methods

Patients and materials

We prospectively and retrospectively collected data from
10 PBCG sites under local ethics board approval at each
of the sites. Participating sites included Cleveland Clinic,
Mayo Clinic, San Raffaele, Zurich (University Hospital
Zurich), MSKCC (Memorial Sloan Kettering Cancer
Center), UCSF (University of California San Francisco),
Durham VA (Veterans Affairs), VA Caribbean Health
Care System (San Juan VA), Sunnybrook and UT Health
(San Antonio) with data collected from 2006 to 2017. Bi-
opsy results, including grade of prostate cancer, were
collected along with the pre-biopsy risk factors PSA,
digital rectal exam (DRE), age, African ancestry, first-
degree family history of prostate cancer and whether or
not a prior prostate biopsy that was negative for prostate
cancer was ever performed. PSA was transformed to the
log-base-2 scale (log2PSA) for improved fitting, and sub-
sequently standardized by subtracting the mean and div-
iding by the standard deviation (across all sites) of the
transformed values for inclusion in all analyses. Age was
similarly standardized for all analyses. Description of the
cohorts can be found in [7].

Visualization of cohort differences and influence on risk
factors

We created graphical displays using the ggplot2 package
from the R statistical software to investigate heterogen-
eity among the 10 cohorts in terms of numbers of biop-
sies, prevalence of the high-grade (Gleason grade>?7)
prostate cancer outcome, distribution of risk factors, and
odds ratios for association of the risk factors to high-
grade disease [9, 10].

Prediction models

The online PBCG risk tool built on these data and avail-
able at riskcalc.org used multinomial logistic regression
for predicting the three outcomes of high-grade, low-
grade, and no-cancer on biopsy based on the main ef-
fects log2PSA, age, DRE, African ancestry, family history
and prior biopsy [7]. For this study, in anticipation of
future updates to the online risk tool, we additionally
included the interactions log2PSA:DRE, age:DRE, and
age:African ancestry as they marginally improved the
Bayesian Information Criterion (BIC), and performed lo-
gistic regression for predicting high-grade cancer versus
the other outcomes low-grade and no cancer combined.
We fixed the set of covariates for all subsequent analyses
as feature selection was not the goal of this study. We
completed the TRIPOD checklist for prediction model
development [11].
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With the fixed set of covariates, we compared five dif-
ferent methods for developing a prediction model, listed
in Table 1. The first three methods pooled individual-
level data from the cohorts and fit a single model. The
first ignored the center effect altogether and the second
two adjusted for it with a random effect. These methods
required individual level data from the centers as op-
posed to the last two methods that used traditional
meta-analysis, whereby only the coefficients and their
corresponding variances from center-specific models
were combined using fixed and random effects, respect-
ively. Predictions from the five methods equaled the in-
%, with By and B the
coefficients from the respective fitting methods. We did
not test whether or not random effects sufficiently im-
proved goodness-of-fit in models that included them
(Models 2, 3 and 5 of Table 1), but rather included the
effects regardless in fitting the models. We then used the
estimated fixed effects and considered two methods for
handling predictions for new individuals based on
random-effects models. The first set the random effect
for the new individual to the prior mean value of 0 in
the Normal distribution, termed median prediction by

verse logistic function,

[12]. The second more commonly used method inte-
exp (o thoc+6 %)
{1+ exp(By+Boc+B %)}
distribution assumed for the random effects, S, using

grated the prediction, , over the Normal

numerical integration in R [12].
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Missing data

Five biopsies from five patients were excluded due to
missing age or Gleason score. For missing values in the
four binary covariates, we imputed non-African, normal
DRE, and no prior biopsy or family history. We investi-
gated the impact of multiple imputation and found no
impact on effect sizes or significance, apparently due to
the large sample sizes and low percentage of missing
data [13].

Out-of-sample prediction criteria

We graded the performance of the risk tools in terms of
discrimination, calibration, and net benefit. Metrics
assessing these features are best observed as curves
dependent on thresholds of the risk for referral to bi-
opsy, as we have reported for the online PBCG risk tool
[7]. Here due to the high number of internal validations
performed, the curves are summarized in terms of rele-
vant single number statistics, whose average and vari-
ation over different test sets can be computed.

For discrimination, we used the area under the re-
ceiver operating characteristic curve (AUC), which mea-
sures for a randomly chosen pair of persons with and
without the clinical outcome of interest, the probability
that the person with the outcome has a higher model-
estimated risk [14]. The AUC ranges between 0.5, corre-
sponding to random prediction, to 1.0, corresponding to
perfect prediction.

For calibration, we used the Hosmer-Lemeshow test
statistic (HLS) that summarizes differences between

Table 1 Five methods for optimal prediction in the validation; logit x = log{:%}, y;=1 high-grade cancer, 0 otherwise and x; =
vector of covariates for the i th individual for all individuals across all centers (n the total number of individuals), 8 a fixed intercept,

B=Bi ..

B .., Bo) a fixed vector of parameters of length 9 for the covariates I0og2PSA, age, DRE, African ancestry, family history

and prior negative biopsy history, as well as the interactions log2PSA and DRE, age and DRE, age and African ancestry

Type of logistic regression Model form

Risk predictor

1.Pooled data, cohort ignored

2.Pooled data, cohort as random
effect, median prediction

logit P(y;=1) =By + B x; by logistic regression fit to
i=1, ..., n total number of patients

logit P(yi,c=1) = Bo + Boc + B, Boc~N(O, d), by generalized
linear mixed-effects models (binomial with logistic link)

(B8 x)
{1+ exn(B+6}

ep(Byt8 )
{1+ exn(B+6)}

fittoi=1, ..., n.patientsinc=1, ..., C centers

3.Pooled data, cohort as random
effect, mean prediction

4 Meta-analysis, fixed effects by
center

logit P(yie = 1) = Bo + Boc + BXier Boc~N(O, d), by generalized I
linear mixed-effects models (binomial with logistic link) fit -
toi=1,...,ncpatientsinc=1, ..., C centers

logit Ply;=1) = Bo+ B"x; with B, :L?W—k‘ﬁk‘7k: 0,...,9,

{1+ exp(Bo-+Boc+6 x)} f (Boc)dBoc

with f(Bo.) density of Bo~N(O, d)

exp(By 8 x)
{1+ (B +60)

c=1"K¢

Bk estimated by separate logistic regressions for each center
c=1, ..., C wy=1/var(By), where var(By.) is the within-center

estimate of the variance of Sy

5.Meta-analysis, random effects by
center

C
logit Ply,= 1) = Bo+ B xy with B, = 2=P< k — 0. o

exp(ﬁﬁﬁ/{)
{1+ exp(Bo+B8 x)}

wj
=1 ke

Bk estimated by separate logistic regressions for each center
c=1, ..., C wye=1/var(By) + b}, where var(By) is the
within-center estimate of the variance of B4, and b the
between-center estimate of variance based on a

method-of-moments estimation.
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observed and expected counts according to risk decile
groups [15]. Specifically, model-based predictions are
calculated for all individuals of the test set, the individ-
uals are sorted from lowest to highest risk, with the sam-
ple deciles of risk calculated to form the endpoints of
ten intervals of risk, from the lowest 10% to the highest
10% of risk. Within each decile group, the average of the
model-based risks is calculated as the expected risk and
the sample proportion of individuals with the outcome
as the observed risk. The HLS statistic is the sum of the
squared difference between the observed - expected
risks divided by the expected risks, and asymptotically
follows a chi-square statistic with eight degrees of free-
dom. For the HLS, lower values as close to the minimal
value of zero are better. To be comparable to the AUC,
where higher values are better, we report the negative
HLS (-HLS), where higher values also indicate better fit.

For net benefit we used the difference in clinical utility
of referral to biopsy based on a model-computed risk
compared to the strategy of referring all patients to bi-
opsy [16]. For the cross-validation studies we used the
net benefit at risk threshold 15% as it indicated net
benefit for the online PBCG risk tool [7].

Both the AUC and HLS are single number summaries of
curves across the risk prediction range, the latter of which
provide more descriptive information as to which ranges of
risk the predictions perform more poorly. We inspected
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these for the final model but not for the model selection
process described here, because the permutation-based in-
ternal validation strategy summarized hundreds of different
combinations of test sets. Calibration curves for the final
model here are similar to those reported in [7].

Internal validation

We compared the five modeling methods listed in Table
1 by computing differences in AUC, HLS and net benefit
between each pair of methods over an internal validation
over all 252 test sets that could arise from splitting ten
cohorts into five used for training and five for testing.
Similar to a prior multi-cohort study, we chose to split
cross-validation by cohorts rather than by participants
within cohorts because we were interested in the per-
formance of a risk tool built on clustered data from het-
erogeneous centers that would be used by individual
patients and/or validated in different centers [17]. How-
ever, repeated cross-validation at the individual level
returned similar results. Performing the bootstrap, which
samples cohorts with replacement instead of without re-
placement as the permutation strategy here does, also
returned similar results. We favored the exhaustive ap-
proach of permuting over all possible sets of five cohorts
that could be used for testing and training as this was
the easiest manner to explain to partners how estimates
and validation of a risk tool depend on the choice of

80001 39 % 1) UTHealth, n=899
36 % 2) DurhamVA, n=669
34 % 3) SanRaffaele, n=637
60004 32 % 4) MayoClinic, n=323
3
g 32 % 5) Sunnybrook, n=1721
o
2
G
& 40007 31 % 6) SanJuanVA, n=550
Qo
g 31 % 7) UCSF, n=521
=z
29 % 8) MSKCC, n=1010
20004 27 % 9) ClevelandClinic, n=299
18 % 10) Zurich, n=1863
O-
10 20 30 40
Prevalence of high grade cancer in % l
0 20 40 60 80
Fig. 1 Prevalence of high-grade cancer for the ten PBCG cohorts ordered from highest to lowest along with sample size of the cohort
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cohorts selected to train the model as well as to test the
model. We summarized the distribution of the validation
metrics across all splits, referred to as the permutation
distribution, by the median, 2.5 and 97.5% quantiles
[18].

We investigated differences in AUCs and HLSs over the
252 test sets when all cohorts were included versus when
each cohort was excluded to assess whether exclusion of
the cohort resulted in improvement in prediction.

Zurich provided the largest cohort (1863 biopsies) that
diverged the most from the rest in terms of lowest high-
grade cancer prevalence (18% compared to 27% and
higher in all other cohorts), no patients with African an-
cestry, lowest proportion of patients with positive family
history (< 5%), and highest proportion with a prior nega-
tive biopsy (40%). To address whether Zurich should be
included in the model-building cohorts, using each co-
hort sequentially as a sole test set, we inspected the dif-
ference in AUC, HLS and net benefit at 15% threshold
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between using all other cohorts as a training set versus
all others excluding Zurich as a training set. 95% confi-
dence intervals for the AUC were computed analytically,
while the bootstrap was used to calculate 2.5 to 97.5 per-
centile intervals for the HLS and net benefit.

Results

Data summary and visualization

In total, 8492 biopsies from 8247 patients were available
for analysis. Institutional cohorts ranged in size from
299 to 1863, while the prevalence of high-grade prostate
cancer ranged from 18 to 39% (Fig. 1).

To provide insight into sources of the observed hetero-
geneity in high-grade disease prevalence across cohorts,
Fig. 2 maps the cohort-specific prevalence to the cohort-
specific risk factor prevalence for each of the six risk
factors used in the analysis. For example, for all six risk
factors, the large Zurich cohort, which had the lowest
prevalence of high-grade cancer, had the highest or

PSA DRE
8000{ 1 =4 4-10 >10 1 No NA Yes
2 =4 4-10 >10 2 No NA Yes
? 3 =4 410 >10 3 No NA Yes
2 gooo| 4 =4 4-10 >10 4 No NA Yes
.E 5 <4 4-10 >10 5 No NA Yes
B 4000 6 =4 4-10 >10 6 No NA Yes
8 7 4-10 >10 7 No NA Yes
E 8 =4 4-10 >10 8 No NA Yes
Z 20004 9 =<4 4-10 >10 9 No NA Yes
10 |<4 4-10 >10 10 No NA  Yes
o4
0 20 40 60 80 100 0 20 40 60 80 100
Age African ancestry
8000{ 1 <55  55-65 >65 1 No NA Yes
2 <55 5565 >65 2 No NA Yes
? 3 55 5565 >65 3 No
2 gooo{ 4 85 55-65 >65 4 No Yes
.fgl 5 <55  56.65 65 5 No NA Yes
S 4000 6 5555465 >65 6 No Yes
2 7 <55 5565 >65 7 No NA  Yes
E 8 <565 55-65 >65 8 No NA Yes
Z 20004 9 56 55-65 >65 9 No NA Yes
10 <55 5565 >65 10 No
o4
0 20 40 60 80 100 0 20 40 60 80 100
Family history Prior negative biopsy
80001 1 No NA  Yes 1 Yes No
2 No Yes 2 Yes No
3 3 No NA  Yes 3 Yes NA No
‘% 60004 4 No NA Yes 4 Yes NA No
Q
2 5 No NA Yes 5  Yes No
O 40004 6 No NA Yes 6 [Yes No
g 7 NA 7 Yes NA No
€ 8 No Yes 8 Yes No
2 2000{ 9 No NA Yes 9 Yes NA No
10 No Yes 10 | Yes No
o4
(’) 2’0 4‘0 6‘0 8‘0 1 (I)O (’J 2‘0 4‘ 0 6‘0 8‘0 1 (’)O
Risk factor distribution in % Risk factor distribution in %
Prevalence of high grade cancer in % .
0 20 40 60 80
Fig. 2 Stacked risk factor distributions on the x-axis and number of biopsies on the y-axis with cohorts ordered from top to bottom by overall
prevalence of high-grade cancer as in Fig. 1: 1) UTHealth, 2) DurhamVA, 3) SanRaffaele, 4) MayoClinic, 5) Sunnybrook, 6) SanJuanVA, 7) UCSF, 8)
MSKCC, 9) ClevelandClinic, 10) Zurich; NA denotes missing values
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second highest proportion of patients with features associ-
ated with reduced prostate cancer risk: PSA <4 ng/ml,
normal DRE, age < 65 years, non-African ancestry, nega-
tive family history and a prior negative biopsy. In contrast,
the two cohorts with highest prevalence of high-grade dis-
ease, UT Health and Durham VA, had a higher percentage
of patients receiving a biopsy for the first time, and Dur-
ham VA had a higher proportion of patients with African
ancestry (> 60%) compared to all other cohorts.

Figure 3 identifies potential outliers in terms of preva-
lence of risk factors and relationship to odds ratios for
high-grade disease. For example, Durham VA had an
unusually high percentage of patients of African descent,
exceeding 60%, compared to less than 20% in the other
cohorts. However, its estimated association with high-
grade disease fell in line with that of two other southern
US cohorts, San Juan VA and UT Health, both with ORs
less than 1.3. The large Zurich cohort had the lowest
prevalence of family history (2.8%, compared to over
15% for all other cohorts), but the largest odds ratio for
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association to high-grade disease (3.2 compared to 1.8
for San Juan VA and less for all others), leveraging the
overall estimate towards Zurich (Fig. 3, family history
panel).

We compared the five model-based prediction
methods of Table 1 across 252 ways to split ten cohorts
into five for training and five for testing. The 95% inter-
vals between all pairwise comparisons of two different
prediction methods and across all three validation met-
rics covered zero (Fig. 4). We repeated the cross-
validation study leaving out one cohort at a time to see
if any of the modeling methods improved upon deletion
of a cohort and similarly found no differences (data not
shown). Therefore we chose the simplest fixed pooled
logistic regression for all further analyses.

We investigated the effect of excluding Zurich, the po-
tentially outlying cohort identified by Fig. 3, on predic-
tions for single cohorts when all other cohorts were
used in the training set (Fig. 5). Inclusion of Zurich did
not significantly reduce the performance characteristics

PSA >4 DRE = Abnormal
6.0
] . DurhamVAe | 404 s MSKCC
g:g_ MayoClinic 3.54Zurich .SanRaffaeIe
4.54 3.0 Sunn-ybrook * MayoClinic
4.0 55/ UCSF "Overall .yTHealth
> . SanJuanVA-M,Sch *Sunnybrook DurhamVA
3.01 Zurich Overall 2.0+
2.5
N L UTHealth 1.5 «ClevelandClinic
204 ClevelandClinic M SanRaffaele
UCSFe. SanJuanVA -
65 70 75 80 85 90 20 25 30 35 40 45 50 55 60
Age > 65 African ancestry = Yes
. Zuriche *Sunnybrook . *Sunnybrook
2 5{MSKCC MSKCC
: UCSF 2.0 * ClevelandClinic
o o T SanRaffaele
® vera *Overall
g M lini
ﬁ 2.0 ayoClinic 154
o Saniuania SanJuanVA
anJuanVA- L .
ClevelandClinic BurharmyA
154 UTHealth DurhamVA UTHealth
40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60 65
Family history = Yes Prior negative biopsy = Yes
304 °*Zurich 0.6 «MayoClinic
UTHealth
2.5 0.59 |Sunnybrook ClevelandClinic
2.04 0l4_DurhamVA
SanJuanVA MayoClinic Overall Zuriche
154 Overall, ClevelandClinic 03 SanRaffaele ycsf.
Sunnybrodk * UTHealth MSKCC
DurhamVA «
1.01 SanRaffaele MSKkee 024 SanJuanVA
5 10 15 20 25 30 15 20 25 30 35 40
Proportion with risk factor in %
Fig. 3 Empirical univariate odds ratios for association between risk factors (age and PSA have been converted to binary factors for the sake of
illustration) and high-grade cancer to prevalence of the risk factor in the cohort. Data not shown for African Ancestry for Zurich, San Raffaele,
Mayo Clinic and UCSF, and family history for UCSF because numbers were too low to reliably estimate the odds ratios. Bold indicates significance
at the 0.05 level; records with unknown risk factors have been excluded
J
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Fig. 4 Medians and 95 percentile intervals (2.5 to 97.5 percentile) for comparing the AUC, negative of HLS, and net benefit at the 15% threshold
between the five possible prediction methods (numbering according to Table 1: 1-Pooled data, cohort ignored; 2-Pooled data, cohort as random
effect, median prediction; 3-Pooled data, cohort as random effect, mean prediction; 4-Meta-analysis, fixed effects by center; 5-Meta-analysis,
random effects by center) computed across all 252 choices of five cohorts as test sets with the remaining cohorts as training sets. Positive
differences indicate superiority of prediction method listed first for the respective operating characteristic

1
S
-0.02 -0.01 0.00

for any of the individual cohorts except for a marginal
deterioration of the AUC and —HLS in Sunnybrook, and
its inclusion boosted the net benefit in UT Health. We
therefore left Zurich in the analysis and used all ten
PBCG cohorts for building the final model.

The global risk prediction model

Figure 6 shows results of the final risk model fit to data
from the 8492 prostate biopsies pooled across the 10 co-
horts. Higher PSA and age, abnormal DRE, African an-
cestry and a family history of prostate cancer increased
risk of high-grade prostate cancer, while a history of a
prior negative prostate biopsy decreased risk. According
to our analysis of interaction terms, an abnormal DRE
magnified the effect of high PSA on risk, whereas the ef-
fect of older age on risk was mitigated in the presence of
an abnormal DRE or African ancestry. All p-values for
odds ratios were less than 0.004.

Discussion

In the context of our experience with the PBCG, we de-
veloped an analytic strategy for developing globally ac-
cessible and scalable risk tools. As we are in the modern

data science era, we focused first on transparent
visualization of center-specific effects to enhance com-
munication among the partners providing data and iso-
late identifying effects. A center only has the chance to
become informed it is an outlier through comparison to
other centers, and in some instances such knowledge
could improve practice. For example, through the risk
factor prevalence versus odds ratio graphs of Fig. 3, the
San Juan VA was able visualize its high rate of abnormal
DREs (near 60%) compared to other institutions, com-
bined with its low and non-statistically significant associ-
ation with prostate cancer. In contrast, all other
institutions except the Cleveland Clinic had abnormal
DRE rates nearly half the size and large significant asso-
ciations with prostate cancer. The figure also indicated
that the outlying San Juan VA effect had no impact on
the pooled association, which was later confirmed
through the leave-one-cohort-out analyses. We showed
univariate associations in Fig. 3, but associations from
multivariable models could similarly be displayed.
Internal repeated cross-validation found no differences
in performance between five widely used modeling ap-
proaches for clustered data: pooling center data while
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ignoring the effect of center, pooling the data and
adjusting for a center effect using random effects with
median versus mean prediction, and fixed versus
random-effect meta-analysis. All things being equal, the
2-stage meta-analysis methods offer the advantage going
forward in that they do not require the transport of data
outside of local institutions. Only aggregated study
summaries of model coefficients and standard errors are
used, thus bypassing the need for ethics board approvals.
If local expertise for processing the models is lacking,
remote assistance could be provided via R programming
scripts on simulated data. Models built on study-
summaries are easier to update as well as to scale up for
inclusion of more study centers as they do not require
re-analysis of the entire data set. So while the current
PBCG risk tool is based on pooling the individual-level
patient data, going forward the more scalable two-stage
meta-analysis method will be used.

As increasingly institutions are capitalizing on and
sharing their data, more multi-cohort modeling strat-
egies are being proposed in the literature. Many strat-
egies are possible and the selection of which to adopt
should be tightly connected to the goal. Debray et al.

focused on the case where individual patient level data
were available and where the goal was to calibrate a
model to a specific new population, rather than optimiz-
ing for global use as the intent here [17]. They proposed
a leave-one-cohort-out internal validation because their
goal was to optimize validation on specific populations.

Because our goal was to optimize over global popula-
tions as those who would access an online tool and to
have a balanced sample for testing and training, we se-
lected a 5 cohort train: 5 cohort test set in Fig. 4. This
choice is somewhat arbitrary. To investigate the impact
on specific cohorts, which can be more interpretable to
the data partners, we additionally performed leave-one-
cohort out analyses as in Fig. 5. Ahmed et al. published
a review of existing individual patient data studies to
assess how many incorporated intercept variation,
through random effects as considered here or via fixed
effects, and Debray et al. recommended guidelines for
performing such analyses [19, 20]. They did not compare
their models to study-level meta-analysis methods as
was performed here.

It seems reasonable to suppose that the more cohorts
providing data, the better. However, in a recent online
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Fig. 6 Odds ratios and 95% confidence intervals for the final model fit to the 8492 prostate biopsies from the ten PBCG cohorts. Log2PSA means
PSA in ng/ml on the log-base-2 scale, age is in years, DRE is digital rectal exam (0 normal, 1 abnormal), African is African ancestry (1 =yes, 0=no),
Family history is first-degree family history (1 =yes, 0= no), Prior neg. biopsy is Prior negative biopsy (1 =yes, ever, 0 = never) and colons

Dream challenge in prostate cancer prediction, the win-
ning team eliminated altogether one of the three large
clinical trials provided for training following calibration
runs that showed it least matched the held-out test clin-
ical trial used for evaluation [21]. When the goal is to
provide a risk tool for ubiquitous use, such as by posting
on the internet as for the PBCG model, the intended tar-
get is not uniquely defined for calibration purposes. In
this case the cohort-level-validation strategy outlined
here can be used to determine whether individual co-
horts distinguish themselves enough from the rest to
warrant elimination.

Despite some strong differences across cohorts in
prevalence of the outcome and the risk factor — outcome
associations observed in this study, the single cohort ex-
clusion analyses found no cohort outlying to the extent
that validation was compromised. If one cohort had sub-
stantially differed from the rest, statistical recalibration
methods could be applied to tailor the global tool for
that population [5, 17]. Recalibration methods are easy
to implement as long as individual patient-level data are
available from the local institution. Since locally tailored
tools can only improve accuracy and hence benefit to

the patient, they should be entertained for feasibility and
potential impact at any institution that plans to imple-
ment a global risk tool for patient counseling.

Conclusions

We have provided a model-building strategy for devel-
oping global risk tools based on multiple heterogeneous
cohorts and illustrated it through application to data
from a large prostate cancer consortium. We hope the
proposed strategy can provide a template for future de-
velopment of multi-cohort risk prediction tools.
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