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Abstract

Background: We recently introduced a system of partial differential equations (PDEs) to model the prevalence of
chronic diseases with a possibly prolonged state of asymptomatic, undiagnosed disease preceding a diagnosis.
Common examples for such diseases include coronary heart disease, type 2 diabetes or cancer. Widespread
application of the new method depends upon mathematical treatment of the system of PDEs.

Methods: In this article, we study the existence and the uniqueness of the solution of the system of PDEs. To
demonstrate the usefulness and importance of the system, we model the age-specific prevalence of hypertension in
the US 1999–2010.

Results: The examinations of mathematical properties provide a way to solve the systems of PDEs by the method of
characteristics. In the application to hypertension, we obtain a good agreement between modeled and surveyed
age-specific prevalences.

Conclusions: The described system of PDEs provides a practical way to examine the epidemiology of chronic
diseases with a state of undiagnosed disease preceding a diagnosis.
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Background
Chronic non-communicable diseases (NCDs) have
emerged as a major global burden, accounting for 40
million of the 56 million global deaths in 2016. About 18
million of those deaths were due to cardiovascular disease
[1]. Although hypertension is an NCD by itself, it is also
an important risk factor for cardiovascular disease, stroke
and other chronic diseases like, e.g., kidney disease [2].
As hypertension is without symptoms at an early stage of
the disease, an enormous number of people suffer from
undiagnosed hypertension, delaying effective preventive
treatment. For example, in a nationally representative
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survey in China Gao et al reported that more than
70 percent of men and women aged 20-44 years with
hypertension did not have a diagnosis [3]. With a view
to hypertension as a risk factor for chronic diseases, the
World Health Organization has identified “detection,
treatment and control of hypertension” as one of the
objectives in the Global Action Plan For the Prevention
and Control of NCDs [4].
Recently, we developed a four-state model to systemat-

ically examine how incidence and prevalence of undiag-
nosed chronic diseases and possible subsequent diagnosis
are related [5]. The four-statemodel is an extended illness-
deathmodel, which additionally comprises a state of being
undiagnosed before possibly transiting to the diagnosed
state. The four-state model is related to a two-dimensional
system of partial differential equations (PDEs). However,
no rigorous analysis of the mathematical properties, e.g.,
classification of the type, existence and uniqueness of the
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solution of the system of PDEs to facilitate application and
use has been published.
In this paper, we prove the existence and uniqueness of

the solution of the two-dimensional system of PDEs and
then apply the system of PDEs to model the age-specific
prevalence of undiagnosed and diagnosed hypertension in
the US.

Methods
After a short derivation of the system of PDEs based on
the four-state model, we use the method of character-
istics to prove existence and uniqueness of the solution
of the PDE. The method of characteristics is a classical
tool in order to prove well-posedness of PDEs. It also
opens a way to calculate this unique solution. Readers
who are not familiar with PDEs may find introductory
texts by Zachmanoglou & Thoe [6] and DuChateau &
Zachmann [7].
We demonstrate usefulness of the four-state model in

modelling the prevalence of undiagnosed (p1) and diag-
nosed (p2) hypertension for different age-groups in the
period from 1999 to 2010. With reasonable assumptions
about the incidence of hypertension and mortality data
from the US, we show that the four-state model can
achieve a good agreement with the observed prevalence
data about hypertension from the nationally representa-
tive National Health and Nutrition Examination Survey
(NHANES) in the US. The assumptions about the inci-
dence and mortality rates are detailed in the next section.
The reason why we have to make (reasonable) assump-
tions – instead of using published data – is that the
required data are not available. Especially, the mortality
of people with undiagnosed hypertension is difficult to
survey.
In NHANES, hypertension was defined as systolic blood

pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90
mm Hg, or being on antihypertensive medication. Age-
specific prevalence of hypertension (p1 + p2) has been
reported for the years 1999 to 2010. Awareness of hyper-
tension has also been surveyed. Awareness was defined

as the fraction of the population who has been informed
of a hypertension diagnosis. Thus, awareness corresponds
to the fraction p2

p1+p2 . This information allows calculation
of age-specific prevalence of undiagnosed and diagnosed
hypertension. It is not our aim tomake the best possible fit
between the modelled and the observed prevalences, but
rather to show that a reasonable fit is easily possible. As we
do not intend the best fit, which indeed could be the sub-
ject of a paper on its own, readers should not be tempted
to make inferences about the underlying epidemiological
rates.

Results
The chronic disease model with four states
To analyse a population with respect to the chronic dis-
ease, we consider the compartment model from our pre-
vious work [5] as shown in Fig. 1. The model is the
well-known illness-death model [8] with an additional
state that comprises people with undiagnosed disease.
The numbers Nj, j = 0, 1, 2, as well as the transition rates
shown in Fig. 1 depend on the calendar time t ∈ R and
on the age a, a ∈[ 0,∞). Nj(t, a) denotes the number of
people in state j, j = 0, 1, 2, aged a at time t.
With the assumption that there is no migration, we have

shown in [5] that the numbers Nj are solutions of the
following system of partial differential equations (PDEs):

(∂t + ∂a)N0(t, a) = −(μ0(t, a) + λ0(t, a))N0(t, a), (1)
(∂t + ∂a)N1(t, a) = −(μ1(t, a) + λ1(t, a))N1(t, a)

+λ0(t, a)N0(t, a), (2)
(∂t + ∂a)N2(t, a) = −μ2(t, a)N2(t, a)

+λ1(t, a)N1(t, a). (3)

For brevity, we have written ∂t for ∂
∂t and ∂a for ∂

∂a . In
addition, we set N(t, a) := N0(t, a) + N1(t, a) + N2(t, a)
for the overall number of people aged a at time t.

Fig. 1 Illness-death model with a state of undiagnosed disease. The transition rates between the four states (λi ,μj , i = 0, 1, j = 0, 1, 2) depend on
calendar time t and age a
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System of PDEs for the age-specific prevalence
In chronic disease epidemiology, it is common to con-
sider the fractions of people who are in the disease
states instead of their absolute numbers Nj. For this, set
pj(t, a) := Nj(t,a)

N(t,a) for j = 0, 1, 2. By using

(∂t + ∂a)pj(t, a) = (∂t + ∂a)Nj(t, a)
N(t, a)

+ μ(t, a)pj(t, a)

and defining the overall mortality μ = μ0p0 + μ1p1 +
μ2p2 = μ0(1 − p1 − p2) + μ1p1 + μ2p2, we can deduce
the following PDEs from Eqs. (2) and (3).

(∂t + ∂a)p1 = −(λ0 + λ1 + μ1 − μ)p1 − λ0p2 + λ0, (4)
(∂t + ∂a)p2 = λ1p1 − (μ2 − μ)p2. (5)

Instead of the three Eqs. (1) – (3), only two equations are
necessary to describe the model in Fig. 1. The fraction p0
can be obtained from the equation p0 + p1 + p2 = 1.
Eqs. (4) and (5) define a two-dimensional system of linear
PDEs.

Remarks 1 We notice that Eqs. (4) and (5) actually rep-
resent a nonlinear system by the fact that μ = μ0p0 +
μ1p1 +μ2p2. However, in practice the mortality rate μ of a
population can be deduced from empirical data. Thus, we
can assume (4) and (5) to be linear.

With the definitions

p :=
(
p1
p2

)
, I :=

(
1 0
0 1

)
, b :=

(
b1
b2

)

=
( −(λ0 + λ1 + μ1 − μ)p1 − λ0p2 − λ0

λ1p1 − (μ2 − μ)p2

)
,

Eqs. (4) and (5) read as

I ∂tp(t, a) + I ∂ap(t, a) = b(t, a,p). (6)

Since I is the identity matrix, system (6) is hyperbolic
[7].
Now wemimic themethod of characteristics for systems

of PDEs [6, 9]. We consider the initial curve R � t �→
γ (t) := (γ (1)(t), γ (2)(t)) := (t, 0) ∈ R

2 and assume for the
time being that λj,μj, andμ are sufficiently smooth. Then,
we have

(γ (1))′(t) − (γ (2))′(t) = 1 	= 0 (t ∈ R) (7)

which shows that γ is not characteristic.
The characteristic curves y = (y(1), y(2)) in the t-a-plane

along γ are determined by [6, 9]

y(1)(s) = 1, y(1)(0) = γ (1)(t0) = t0,

y(2)(s) = 1, y(2)(0) = γ (2)(t0) = 0.

This system is solved by yt0(s) = (t0 + s, s). Setting
ψ(t0, s) := yt0(s), we obtain for its inverse ψ−1(t, a) =

(t−a, a). The solution of Eqs. (4) and (5) hence is given as

p(t, a) = V (ψ−1(t, a)), (8)

where V (t0, ·) represents the solution of the ordinary
differential equation (ODE)
dV (t0, s)

ds
= b(yt0(s),V (t0, s)), V (t0, 0) = p0(t0) (9)

where p0(t0) = p(t0, 0) ∈ R
2 is a given initial value.

Before we utilize the outcome on existence and unique-
ness of the solution of the PDE system (6) obtained so far,
we describe the geometrical meaning of (9). Note that the
calculation above motivates to identify a = s. Then, for
t0 ∈ R the line segment given by yt0(a) = (t0 + a, a), a ∈
[ 0,∞), is a characteristic curve for (6). One of these line
segments in the t-a-plane is shown in Fig. 2. The line seg-
ment starts at (t, a) = (t0, 0) and has slope 1. The line
segment can be seen as the trajectory of a group of per-
sons born at the same point in time t0 (birth cohort) which
gradually grows older. In demography and less frequently
also in epidemiology, such a representation of the t-a-
plane is called a Lexis diagram [10]. Line segments with
slope 1 starting on the abscissa like the one depicted in
Fig. 2 are called life lines [11]. Now, we notice that the
system of ODEs (9) can be written in terms of p as

dp(yt0(a))
da

= b(yt0(a),p(yt0(a))), p(yt0(0)) = p0(t0).

(10)

With this terminology, we see that system (10) describes
the change of the prevalence p along the life lines in the
Lexis diagram.
Next, we state the existence and uniqueness of the solu-

tion of the PDE system (6) as a theorem. We consider two

Fig. 2 Lexis diagram with a life line. The life line (oblique) represents a
birth cohort born at t = t0 in the Lexis diagram (t-a-plane). The life
lines are the characteristic curves of system (6)
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kinds of initial curves depending on the domain S where
the right hand side of Eq (6) is defined.

1. The domain S is the upper half-plane, i.e.,
S = R×[ 0,∞). Then, the initial condition is given
on the real line defined by a = 0, i.e., for all
(t, a) ∈ δS := R×{0}. Here the initial condition reads

p(t, 0) = p0(t) (t ∈ R). (11)

2. The domain S is the first quadrant, i.e., S =[ 0,∞)2.
Then, the initial condition is given on the union of
two orthogonal half-lines, i.e., for all
(t, a) ∈ δS := (

[ 0,∞) × {0}) ∪ ({0}×[ 0,∞)
)
. In this

case the initial conditions are given as

p(t, 0) = p0(t) (t > 0) and p(0, a) = p1(a) (a > 0).
(12)

Theorem 1 Let the rates λi,μj,μ : S̄ →[ 0,∞) be con-
tinuously differentiable for i = 0, 1 and j = 1, 2, where
S̄ denotes the closure of S. Furthermore, let p0 :[ 0,∞) →
[ 0, 1]2 be continuously differentiable. In case that S is the
first quadrant also assume that p1 :[ 0,∞) →[ 0, 1]2 is
continuously differentiable and that the compatibility con-
ditions p0(0) = p1(0) and p′

0(0) = p′
1(0) are satisfied.

Then the system (6) with initial condition (11), if S is the

upper half-plane, or with initial condition (12), if S is the
first quadrant, has a unique continuously differentiable
solution p : S̄ → R

2.

Proof In the same way as in (7) it can be seen that also
the initial hyper plane δS is not characteristic in case that
S is the first quadrant. Due to the given assumptions on
the data, by the Picard-Lindelöf Theorem the system (9)
is uniquely solvable. Thus, the solution of (6) can be con-
structed as demonstated above, that is, it is given by (8)
and has the claimed regularity.

The equivalence between the systems (6) and (10) point
out a possible way to calculate the unique solution of sys-
tem (6) with initial condition (11) or (12), respectively. For
this purpose, classical numerical methods for systems of
ODEs like, e.g., the Runge-Kuttamethod, can be used [12].
This will be demonstrated in the next section.

Undiagnosed and diagnosed hypertension
Figure 3 shows the prevalence of undiagnosed (left) and
diagnosed hypertension (right) in the age range 18-70
years during the years 1999-2010 as surveyed in NHANES
[13].
Similar to the Lexis diagram, the abscissa and ordi-

nate represent the calendar time (t) and the age (a),

Fig. 3 Prevalence of undiagnosed (left) and diagnosed hypertension (right). The prevalence of undiagnosed and diagnosed hypertension (in
percent) is shown as color and contour lines for different ages (a) and times (t)
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respectively. The colour and the contour lines indicate the
prevalence (in percent). For instance, the prevalence of
undiagnosed hypertension for 60 year old people in the
year 2000 was about 14%. In 2006, the prevalence of undi-
agnosed hypertension decreased to about 10% for people
aged 60. During the same period, the prevalence of diag-
nosed hypertension for 60 year old people has increased
from slightly less then 35% to about 40%.
Now, we calculate the unique solution of the system

(6) for (t, a) ∈[ 1999, 2010]×[ 0, 70]. As initial condi-
tion, we chose p(t, 0) = (0, 0) for all t ≥ 1999 and
p(1999, a) = p0(a) for all a ≥ 0. Here, p0(a) is the
age-specific prevalence as surveyed in 1999 [13]. We have
an initial condition given on two half-lines. The mortal-
ity rate μ of the US general population for the period
1999–2010 has been taken from the Human Mortality
Database [14]. For the mortality rates in the states Undi-
agnosed Hypertension (μ1) and Diagnosed Hypertension
(μ2), we assume μj = Rj μ, j = 1, 2, where R1 = 1.1
and R2 = 1.2, respectively. Currently, there are no data
about mortality of people with undiagnosed and diag-
nosed hypertension compared to the general population.
Based on NHANES data, values between 1.09-1.49 have
been reported for untreated hypertension compared to
controlled hypertension [15]. Thus, the magnitude of our
choice seems reasonable. However, the exposition states

in [15] are differently defined from our model (see Fig. 1).
Moreover, we believe that these values are slightly over-
estimated because the study design of [15] cannot not
take into account possible changes fromUntreated Hyper-
tension to Controlled Hypertension after baseline. Hence,
people untreated at baseline may later be treated and
may thus have a reduced mortality with this treatment.
The incidence rates λ0 and λ1 have been determined by
decomposing these rates into a time-dependent factor
λ

(T)
j and an age-dependent factor λ

(A)
j [16]:

λj(t, a) = λ
(T)
j (t) × λ

(A)
j (a), j = 0, 1.

Although there are systematic ways to estimate the rates
λj, j = 0, 1, as described in [5], we only made coarse
guesses for λ

(A)
j and λ

(T)
j , j = 0, 1, such that the mod-

elled prevalence approximates the surveyed prevalence
(see Fig. 3). The source code for running the calculations
to be run with the freely available statistical software R
(The R Foundation for Statistical Computing) is given as
Additional file 1.
Figure 4 shows the modelled prevalence that has been

obtained by solving the initial value problem described
above. After transforming the two dimensional PDE (6)
with initial condition into the corresponding initial value
problem of the ODE (10), the classical Runge-Kutta me-

Fig. 4Modelled prevalence of undiagnosed (left) and diagnosed hypertension (right). The modelled prevalence of undiagnosed and diagnosed
hypertension is shown as the corresponding surveyed prevalence in Fig. 3
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thod of fourth order has been applied to calculate p(t, a)
for (t, a) ∈[ 1999, 2010]×[ 0, 70].
Overall we see a good agreement between the surveyed

and the modelled prevalence. For a direct comparison we
plot the surveyed and the modelled age-specific preva-
lence for the year t = 2010 in Fig. 5.

Discussion
In this article, we have proven the existence and unique-
ness of the solution of a recently published system of
PDEs that describes the prevalence of undiagnosed and
diagnosed chronic diseases. The proof uses the method
of characteristics to transform the initial value problem
of the PDE into an associated initial value problem of
an ODE. Apart from the theoretical considerations, the
method of characteristics provides a practical way to cal-
culate the unique solution of the initial value problem.
We have demonstrated this method in an example about
hypertension in the US. The solution of the initial value
problem agrees well with the observed prevalence data of
hypertension obtained from a representative sample of the
US population. Undiagnosed hypertension is a problem in
the US and many other populations, because it is a risk
factor for several severe health conditions such as stroke,
cardiovascular disease and kidney disease.

In epidemiological applications of the proposed frame-
work, input data usually are subject to statistical uncer-
tainties, e.g., due to possible sampling errors. In order to
solve the system of PDE in the presence of uncertainty, we
suggest to use a multidimensional probabilistic approach,
which randomly samples from the probability distribu-
tions of the input parameters, solves the PDEs (4) and (5)
based on these samples, and then assesses the distribution
of the results. The underlying ideas are detailed by Oakley
and O’Hagan [17] and have been successfully applied in a
public health setting [18].
Our work has several advantages and disadvantages. On

the one hand, the disease model is relatively generic and
can be applied to any chronic disease with a considerable
state of undiagnosed disease. No assumptions about the
form of the involved transition rates in the model have
been made. In this way, the model is non-parametric.
In its current form, the model assumes that there is no

migration from or into the considered population, which
might be seen as a drawback. However, additional rates
representing immigration or emigration can be added to
Eqs. (4) and (5) following the corresponding considera-
tions as in the normal illness-death model (without the
undiagnosed state) [19]. Another drawback is that some
of the epidemiological figures of the disease model are

Fig. 5 Surveyed and modelled age-specific prevalence of undiagnosed (left) and diagnosed hypertension (right) at year t = 2010. The surveyed and
modelled prevalence are shown as solid blue and dashed black lines, respectively
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difficult to estimate in practice. While the age-specific
prevalence of undiagnosed and diagnosed hypertension
can easily be surveyed by cross-sectional studies, estima-
tion of the mortality rates for undiagnosed and diagnosed
hypertension is difficult. The study design of NHANES
includes a linkage with the USmortality register. However,
changes of the hypertension status between the NHANES
examination and death (from no hypertension to undi-
agnosed hypertension, from undiagnosed to diagnosed
hypertension) cannot be taken into account. This possi-
bly leads to a misclassification error where death cases
are attributed to the wrong disease state. A theoretical
alternative might be a cohort study to assess the mortal-
ity of undiagnosed hypertension (μ1). However, keeping
the information of survey-detected hypertension secret
from a study subject without previous diagnosis of hyper-
tension would be unethical. For our purpose of giving a
demonstration about a possible application, we havemade
reasonable assumptions about the mortality rates μ1 and
μ2 from the hypertension states.
The aim of our application to hypertension was to

demonstrate usefulness of the disease model and the asso-
ciated PDEs. Obtaining the highest degree of consistency
between ourmodelled prevalence and the surveyed preva-
lence was not intended. Hence, the results should be
used carefully for drawing conclusions about public health
relevant questions.
The four-state model and the associated PDEs have a

variety of possible applications. For example, the model
may help to understand which age groups should be
taken special care of with respect to detection. When the
model is stratified by subgroups of the considered popula-
tion, e.g., by ethnicity, education, socio-economic position
etc., decision makers may obtain information about espe-
cially vulnerable parts of the population. This may form
the basis for potential screening and intervention pro-
grammes. The impact of a potential screening programme
for hypertension and other chronic diseases with pro-
longed states of undiagnosed disease such as coronary
heart disease or cancer may be analyzed in advance.
Another straightforward application of the four-state

model and the associated PDE would be a prediction of
future prevalence of undiagnosed and diagnosed hyper-
tension using what-if scenarios. For example, it is possible
to predict the consequences of different future time trends
of the incidence of hypertension.
Finally, the model may help to analyse temporal trends

of transition rates λ0 and λ1 between the states, which has
been demonstrated in [5]. This question is important for
assessing the quality of case-finding in the epidemiology
of chronic diseases. Usually, prevalence based measures
have been used for assessing case-finding [20]. However,
we have shown recently that measures based on transition
rates are more reliable [21].

Conclusions
In this article we have shown the existence and uniqueness
of the solution of a system of partial differential equations
that describes an extended illness-death model. Based on
the usual illness-death model, a state of undiagnosed dis-
ease has been added, which can be used to model chronic
diseases with a (possibly) prolonged state of undiagno-
sis preceding a diagnosis. As an example, we applied the
model to hypertension in the US.
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