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Abstract

Background: Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality. However,
therapeutic benefit of ART is often limited by delayed drug-associated toxicity. Nucleoside reverse transcriptase
inhibitors (NRTIs) are the backbone of ART regimens. NRTls compete with endogenous deoxyribonucleotide
triphosphates (ANTPs) in incorporation into elongating DNA chain resulting in their cytotoxic or antiviral effect.
Thus, the efficacy of NRTIs could be affected by direct competition with endogenous dNTPs and/or feedback
inhibition of their metabolic enzymes. In this paper, we assessed whether the levels of ribonucleotides (RN) and
dNTP pool sizes can be used as biomarkers in distinguishing between HIV-infected patients with ART-induced
mitochondrial toxicity and HIV-infected patients without toxicity.

Methods: We used data collected through a case-control study from 50 subjects. Cases were defined as HIV-infected
individuals with clinical and/or laboratory evidence of mitochondrial toxicity. Each case was age, gender, and race
matched with an HIV-positive without evidence of toxicity. We used a range of machine learning procedures to
distinguish between patients with and without toxicity. Using resampling methods like Monte Carlo k-fold cross
validation, we compared the accuracy of several machine learning algorithms applied to our data. We used the
algorithm with highest classification accuracy rate in evaluating the diagnostic performance of 12 RN and 14 dNTP
pool sizes as biomarkers of mitochondrial toxicity.

Results: We used eight classification algorithms to assess the diagnostic performance of RN and dNTP pool sizes
distinguishing HIV patients with and without NRTI-associated mitochondrial toxicity. The algorithms resulted in cross-
validated classification rates of 0.65-0.76 for dNTP and 0.72-0.83 for RN, following reduction of the dimensionality of
the input data. The reduction of input variables improved the classification performance of the algorithms, with the
most pronounced improvement for RN. Complex tree-based methods worked the best for both the deoxyribose
dataset (Random Forest) and the ribose dataset (Classification Tree and AdaBoost), but it is worth noting that simple
methods such as Linear Discriminant Analysis and Logistic Regression were very competitive in terms of classification
performance.
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Conclusions: Our finding of changes in RN and dNTP pools in participants with mitochondrial toxicity validates the
importance of dNTP pools in mitochondrial function. Hence, levels of RN and dNTP pools can be used as biomarkers of

ART-induced mitochondrial toxicity.
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Background

Although significant progress has been made to contain
the AIDS epidemic, the Joint United Nations Program on
HIV/AIDS (UNAIDS) estimates that there are currently
over 36.9 [34.3-41.4] million people globally living with
HIV [UNAIDS, 2015]. According to UNAIDS, 1.20 [0.98—
1.60] million people died from AIDS-related causes world-
wide in 2014. Antiretroviral therapy (ART) has signifi-
cantly reduced HIV-related morbidity and mortality
worldwide, however, its therapeutic benefit is compro-
mised by delayed drug-associated toxicity [1]. A recent up-
date from the Italian of Cohort Naive Antiretrovirals
(ICONA) Foundation study showed the 1-year probability
of discontinuation of ART due to toxicity was 19% for pa-
tients who initiated ART between 2008 and 2014 [2]. Nu-
cleoside reverse transcriptase inhibitors (NRTIs), the first
class of ART used in the treatment of individuals with
HIV, have been associated with toxicities that mirror
symptoms in individuals with mitochondrial disorders.
The presentation of NRTI-induced mitochondrial toxicity
includes lactic acidosis, lipodystrophy, peripheral neuropa-
thies, cardiomyopathies, and pancytopenia [1, 3—-6]. These
manifestations have been ascribed to the inhibitory effect
of NRTIs on polymerase gamma (Pol-y), the enzyme that
replicates mitochondrial DNA (mtDNA). Inhibition of
Pol-y leads to depletion of mtDNA content and subse-
quent mitochondrial dysfunction. However, there are
emerging reports that other classes of ART such as non-
nucleoside reverse transcriptase inhibitors (NNRTIs) and
protease inhibitors (PIs) can cause mitochondrial dysfunc-
tion through Pol-y-independent mechanisms [7, 8].

We recently reported that HIV-infected patients on
NRTI-based ART with mitochondrial toxicity tended to
have decreased concentrations of both ribonucleotide
(RN) and deoxyribonucleotide (ANTP) pool sizes (precur-
sors of DNA synthesis) in their peripheral blood mono-
nuclear cells (PBMCs) [9]. Interestingly, patients with
mitochondrial toxicity had statistically significant higher
mRNA expression of Pol-y compared to patients without
mitochondrial toxicity. In this paper, we aimed to deter-
mine the effectiveness of RN and dNTP pool sizes as bio-
markers in distinguishing between HIV patients with and
without mitochondrial toxicity. More specifically, the ob-
jective of this paper is two-fold: First, we assessed whether
the levels of RN and dNTP pool sizes can be used as bio-
markers in distinguishing between HIV-infected patients

with ART-induced mitochondrial toxicity and HIV-
infected patients without toxicity. Second, we assessed
whether a range of machine learning procedures could
distinguish between patients with and without toxicity. In
this study, where we have both the limited sample size
and dataset with varying correlation structure, it will be
particularly prudent to consider many different machine
learning algorithms to assess their performances in a
meaningful way. We used previously acquired data on
ART-induced mitochondrial toxicity to evaluate the
relative performance of eight different machine learning
procedures. Using resampling methods like Monte Carlo
k-fold cross validation, we compared the accuracy of the
machine learning algorithms applied to our data. We ran
a large set of simulation studies to evaluate the perform-
ance of the machine learning algorithms for varying sam-
ple sizes and correlation between RN and dNTP pool
sizes. We used the algorithm with highest classification ac-
curacy rate in evaluating the diagnostic performance of
RN and dNTP pool sizes as biomarkers of mitochondrial
toxicity.

Methods

Study participants

The study included 50 HIV-infected individuals on
NRTI-based ART regimens enrolled through a case-
control study from April 2011 to March 2013. Twenty-
five of the HIV-infected individuals were diagnosed by
their providers as having mitochondrial toxicity based
on at least one clinical or laboratory findings associated
with NRTT toxicity (i.e., lactic acidemia, pancreatitis, per-
ipheral neuropathy, lipodystrophy, creatinine, anemia,
renal dysfunction, elevated liver enzymes, hyperlipid-
emia, amylase, and lipase) [1, 3—6]. The study partici-
pants were recruited from the Adults AIDS Care
Programs at Yale-New Haven Hospital. At enrollment
participants answered a brief survey comprised of
questions regarding past medical history and demo-
graphic characteristics. Medical records of participants
were reviewed for date of HIV diagnosis, medication his-
tory, date of diagnosis of toxicity, complete blood count,
serum chemistries, liver function test, lipid profile, urin-
alysis, HIV RNA copy number, and CD4+ T-cell count
at study entry. Blood was collected from all study
participants at the time of enrollment for extraction
and quantification of ribonucleotide (RN) and
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deoxyribonucleotide (dANTP) pool sizes. The study
protocol was approved by the Institutional Review Board
of the Yale University School of Medicine. Informed and
written consents were obtained from study participations
prior to enrollment in the study. The rationale,
organization, and recruitment of the subjects, biological
procedures used for extraction and quantification RN
and ANTP pools have been described previously [9].

Statistical methods

Data classification methods

There are many classification methods, some of which
can be very sophisticated and state-of-the-art [10]. In
this paper, we focused on the most common methods
which are readily available and can easily be imple-
mented in most statistical packages. We briefly described
the classification methods used in the paper below:

A. Linear and quadratic discriminant analysis The
linear discriminant analysis (LDA) and the quadratic dis-
criminant analysis (QDA) are classical statistical classifi-
cation methods [11]. In classifying two groups, both
methods incorporate log likelihood ratio based on nor-
mal distribution, with the main difference that LDA as-
sumes the equal covariance while QDA does not.

B. K-nearest neighbor The k-nearest neighbor (KNN) is
a simple classification method, using the k nearest points
of the input to predict the response [12]. Here, we first
predict the value Y based on x, by

Yw=r 3w

x,€N(x)

where Ni(x) is the neighborhood of x defined by the k
closest input points x; to x (using Euclidean distance in
most cases), and k values of y; corresponding to x;
where y;=0 or y;=1, at each neighborhood N(x).
Hence, Y (x) is the proportion of time that y;=1 in the
neighborhood Ni(x) for the point x, and we make the
final decision as 1 if Y(x) >0.5 and as O otherwise, at
each point x. We may use different values of k for the k-
neighbor. As k decreases, the model can be more accur-
ate on the training data, however it runs the risk of
overfitting.

C. Logistic regression Logistic regression is a simple
method that can be used to predict the outcome of the
input variables [13]. We denote x = (xy, .., X,) as the in-
put variables and y as the response (y can be any two
values). If we let y=0 denote failure and y=1 denote
success, we have that
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(Py=1)
1(Pr<y=0|x>) *htbo
or

Pr(y = 1jx) !

T 1+ exp(-(x"B+AB,))

which we interpret as the probability of success (y=1)
given the data (x). The betas 8= (1, ..., 8,) and j3, are the
coefficient values estimated from the model. Given input
data, many statistical packages fit a logistic regression
model and return the coefficient values. Then, given new
data values x, we can use the above equation to estimate
Pr(y = 1| x), which will be between zero and one, inclusive.
Given the input x of an individual, we classify the individual
as success if Pr(y = 1| x) > ¢ where c is a cutoff, usually set at
¢ =0.5. Note that this method is linear in terms of parame-
ters and will have difficulty fitting any data with a large
number of input variables (p), even if p is smaller than the
number of observations (). In addition, if the input data
follow exactly the pattern of the outcome variable, we have
the so-called “complete separation” problem, which is again
pronounced if we have large p. However, some of these
shortcomings can easily be overcome with Firth’s bias ad-
justment [14].

D. Support vector machine A support vector machine
(SVM) is a machine learning method for binary classifi-
cation. It uses a linear separating hyperplane flx) = x” +
Bo to split the p-dimensional sample space into two
groups. The SVM transforms nonlinear classification
into a simpler linear classification problem, using a ker-
nel function K(x, x;), with the separating hyperplane

flx) = Z“i)’zK(xaxi) + B
=1

and the classification criteria, sign[fix)]. The
optimization criterion is that we maximize the margin
(support vector) of the separating hyperplane to obtain the

optimal separation, where margin is defined as M = W,

where ||B||, = +/B} + - —i—ﬁ;. The typical choice for the

kernel is a radial basis (Gaussian) kernel, K(x,x;) =
exp(y||x - x;||*) which is the default for most SVM soft-
ware. Other kernels such as the polynomial kernel K(x,
x;) = (1+ (x,x,))% or the neural network (hyperbolic tan-
gent) kernel K{(x, x;) = tanh(x; (x, x;) + k2) may be used, but
the Gaussian kernel is the most popular because it derives
many desirable properties from its association with the
Gaussian distribution. As the SVM method involves non-
linear kernel and optimization, it can be very computa-
tionally intensive as compared to logistic regression, but
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the SVM is designed for a large number of input variables
(p > n), which logistic regression cannot handle.

E. Classification trees The classification tree method looks
for the best classification of data by splitting each variable
recursively and finding the optimal combination [15]. In
other words, if we are given the data y and x = (xy, .., Xp)
the classification tree looks for the best split points (ty, ..., t,)
that gives us the decision rule. For example, if we have
three input variables x = (x1, %, x3) %1, %, %3 each taking
values between 0 and 10, then the classification tree algo-
rithm may provide the split points ¢, =5, t,,=8, t3=45
such that we declare an input (xy, x5, x3) as success if x; > 5,
x5 < 8, X3 > 4.5, and failure otherwise. The determination of
split points largely depends on the algorithm used, for
which we have many choices. Nevertheless, we see that it is
easy to understand conceptually and is a popular method
for classification. On the other hand, since any tree-based
algorithm will involve recursively partitioning all variables
to find optimal splits, generating the classification tree will
also be time consuming,

F. AdaBoost The classification trees, although simple to
understand and implement, may be too naive, espe-
cially if the input variables have complicated struc-
ture. The AdaBoost algorithm is a refinement of the
classification tree, where the classification trees are fit
recursively to determine the final classifier via a ma-
jority vote [16]. The majority voting is defined as tak-
ing the results of many sub-classifiers (here, the
recursively fit trees) and making the final decision 0
or 1 from the majority of times that the sub-
classifiers vote 0 or 1 [17]. The AdaBoost uses the
weighted majority voting in determining the final de-
cision, where the 0 or 1 votes are weighted based on
the accuracy of sub-classifiers. Here, the weights are
defined as log((err/(1-err)) at each iteration, where err
is defined as weighted error rate [10]. Hence, as an it-
erative procedure that updates the weight at each it-
eration, the AdaBoost will almost always improve
over classification tree. However, the AdaBoost will
be even more computationally intensive than the clas-
sification trees, requiring more time to run.

G. Random Forest The random forest is another
method based on the classification tree [18]. Similar to
AdaBoost, the random forest also involves taking a ma-
jority vote of a sample of trees to determine the final
classifier, but the building of the trees involves a statis-
tical technique known as the bootstrap. The bootstrap
method repeatedly resampling the data with replacement
to obtain an ensemble of trees from the original sample.
To obtain the final classifier, we take a majority vote of
the bootstrapped trees. Hence, the random forest is yet
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another recursive partitioning method that involves re-
sampling of data. As with the AdaBoost, its performance
will improve over classification tree results; however, the
computation burden is greater.

ll. Data dimension reduction methods

Classifiers, such as logistic regression, work best when
the number of input variables (p) is smaller than the
number of observations (n). However, if p>n or if p
is moderately large (as is the case for our problem),
we cannot correctly fit some of the classifier with the
full input. Therefore, reducing the input dimension
sometimes increases the performance of the classifier,
and is a good practice in general for a statistical ana-
lysis. We describe here some of the dimension reduc-
tion techniques.

A. Principal component analysis The most common
method of reducing the dimension of input variable is
the principal component analysis (PCA) [19]. In the
PCA, one transforms the original variables into a set of
uncorrelated orthogonal basis vectors (components),
which explain monotonically decreasing amounts of
variance in the original data. However, the interpretation
of these bases vectors becomes difficult because the bio-
logical meaning of these principle components is not al-
ways clear, so in this paper, we adopted a technique that
simply selects the most important input variables, rather
than transforming them.

B. Shrinkage methods (ridge, LASSO, and elastic net)
Recently, the variable selection methods such as the least
absolute shrinkage and selection operator (LASSO) and
elastic net have gained popularity in high-dimensional
statistical problems [20, 21]. We used the glmnet func-
tion from glmnet package in R, which implements the
elastic net where the LASSO is a special case [22]. In the
glmnet function, it is flexible to implement the ridge re-
gression (a=0) and LASSO (a = 1), and anything in be-
tween (elastic net,0 <« <1). In other words, the elastic
net solves

min | —
BoB

Hence, the a term can be flexible to control how vari-
ables are selected based on the coefficients f5.

For our paper, we focused on LASSO (a=1). In
LASSO, the procedure simply selects variables based on
the L1 hard threshold of the coefficients, lIll; (as op-
posed to ridge regression which only smooths out, or
shrinks, the coefficients [10]). Any other a values smaller
than one will also have the effect of shrinkage, which we
do not want here. Since the (a = 1) is fixed, it remains to

LS 58+ 18)- tog(1 -+l

n

+1

~ 2
%+a\lﬁ\h}>'
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calculate the other parameter, A, to complete the process
of selecting the variables via LASSO. The glmnet func-
tion in R recommends that the users view the entire so-
lution path consisting of results from all possible A
values, but practically this is unfeasible so the program
selects two plausible A values: lambda.min, the value of
lambda that gives minimum mean cross-validated error,
or lambda.lse, the largest value of lambda such that the
error is within one standard-error of the minimum—the
so called “one-standard-error” rule [22]. Hence, we con-
sider two sets of selected variables based on lambda.min
and lambda.1se.

Normally, one assigns test and validation sets within
sample to perform classifications. However, since we
have a limited sample size, we employ the k-fold cross
validation (CV) [10]. For the k-fold CV, the sample is
randomly divided into k roughly equal sized sets, and
one of the K sets is left out. A classifier is fit with the K
-1 sets (training set) and validated using the remaining
(left out) set. We repeat this for each of the K sets; the
k-fold CV classification rate is obtained by averaging the
k individual classification rates. Now, we repeat the
process M times (Monte Carlo simulation of the k-fold
CV), because the partition of the k-fold is random so
that each time it gives us a different result. Hence, we
obtain a more reliable estimate of the k-fold CV by re-
peating the procedure M times and also obtain the dis-
tribution of the k-fold CV classification rates, including
the mean and the standard deviation (standard error).
We set M =1,000 and report the 1000 Monte Carlo
mean of the k-fold CV classification rates. The computa-
tion times for the eight classifiers range 2—3 s for all al-
gorithms except for AdaBoost (177 s), random forest (9
s) and KNN (< 15).

Results

In this section, we present results from our simulation
studies and analyses of the mitochondrial toxicity data.
To obtain the classification rates, we fit the models using
each of the machine learning algorithms described in the
methods section and predict the outcome using simu-
lated as well as the original mitochondrial toxicity data.

Simulation studies

Simulation procedures

We ran a large set of simulation studies to assess the im-
pact of sample size and correlation on the performance
of the machine learning algorithms. We considered vari-
ous sample sizes (n;=ny,=25 ny=n,=50, ny=n,=
100). In each simulation, the outcome variable D € {0, 1}
(without toxicity or with toxicity) was created (for ex-
ample, 7, =25 were assigned O while n,=25 were
assigned 1). For subjects with and without toxicity, we
generated 12 (p=12) correlated predictors from a
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multivariate distribution with mean vectors 1 and 0,
respectively. Three distributions were considered: (1)
multivariate normal, (2) multivariate-t with 3 degrees of
freedom, and (3) multivariate Cauchy (t with 1 degree of
freedom). We considered other distributions besides the
normal distribution as some classifiers (such as LDA and
SVM) perform overwhelmingly well under normality be-
cause of their algorithm structures. Due to the autore-
gressive nature of the mitochondrial toxicity data, we
considered First Order Autoregressive AR(1) in addition
to compound symmetry when specifying the covariance
structure in our simulation. That is, for subjects with
and without toxicity the predictors were generated from
the aforementioned multivariate distributions with the
following correlation matrices: (1) compound symmetry
with off-diagonal correlation (p) values ranging from 0
to 0.9; and (2) AR(1) with p=0.4 and p =0.8. We have
considered the following classifiers: Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis
(QDA), K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Classification Tree (CART), AdaBoost
(ADA), Random Forest (RF), and Logistic Regression
(LOGIT). Depending on the study, one may need to
fine-tune the parameter values of the classifiers to obtain
desirable results. We have tried many ways of carefully
tuning the parameter values, but the tuning led to either
overfitting or inaccuracy; the default values yielded a
good balance between the two trade-offs and performed
well in our setting. Thus, we used default parameter
values with the exception of KNN (we used k = 3 instead
of the default k = 1).

Simulation results

The average classification rates of our simulation studies
are presented in Fig. 1 and the corresponding standard
errors were all less than 0.05. The classification rates
were obtained using 5-fold CV and 1000 Monte Carlo
runs. As shown in the figure, the main findings of our
simulation results were: (1) all the classification algo-
rithms work better when data were least correlated, and
the sample sizes were large, (2) classifiers perform better
when data were normally distributed, and (3) although
no single algorithm clearly out performed the others,
LDA, SVM and logistic regression methods worked well
under normality. KNN and tree-based methods, particu-
larly random forest, also worked well under non-normal
distributions.

We also performed simulations to assess the impact of
sample size and correlation structure on data dimension
reduction algorithms. More specifically, we assessed how
sample size and correlation structure impacted the num-
ber of components chosen out of the 12 (p =12) simu-
lated variables. Tables 1 presents the number of
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Multivariate Normal

058 053 0381

0.56

0.83

n=25
ADA CART SVM KNN QDA LDA

RF

LOGIT

50
RF ADA CART SVM KNN QDA LDA

n=

LOGIT

100
RF ADA CART SVM KNN QDA LDA

n=

LOGIT

medium, and low rates, respectively

Fig. 1 Heat map of average classification rates obtained using 5-fold CV and 1000 Monte Carlo runs. Rows represent the eight classifiers:

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Classification
Tree (CART), AdaBoost (ADA), Random Forest (RF), and Logistic Regression (LOGIT). Columns represent correlation matrices: compound symmetry
with zero off-diagonal correlation (o = 0); compound symmetry with 0.4 off-diagonal correlation (o = 0.4); compound symmetry with 0.8 off-
diagonal correlation (o =0.8); AR(1) with p=0.4; AR(1) with p = 0.8. Classification rate is color-coded: red, black, and green representing high,

components chosen (out of p =12) by LASSO method.
As expected, as the correlation between the 12 variables
increases, the algorithm selects fewer number of vari-
ables. The AR(1) type correlation structure results in

more selected variables compared to the compound
symmetry correlation structure. The results from t and
Cauchy distributions are unstable for small sample sizes
thereby yielding unexpected results. Increasing in sample
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Table 1 Number of components chosen by LASSO
Sample size p=0 =04 p=08 AR(1), p=04 AR(1), p=038
(ny=ny)
Normal lambda.min 25 10 4 2 8 3
lambda.1se 25 10 4 1 8 3
T lambda.min 25 3 2 7 4 4
lambda.1se 25 3 1 2 4 2
Cauchy lambda.min 25 6 12 3 10 11
lambda.1se 25 5 10 3 8 10
Normal lambda.min 50 12 6 1 10 3
lambda.1se 50 11 5 1 8 3
T lambda.min 50 10 6 4 8 4
lambda.1se 50 10 4 3 8 4
Cauchy lambda.min 50 11 9 4 5 8
lambda.1se 50 11 7 3 4 2
Normal lambda.min 100 12 7 6 10 4
lambda.1se 100 12 6 2 1 4
T lambda.min 100 10 " 5 12 4
lambda.1se 100 10 7 5 8 3
Cauchy lambda.min 100 9 10 2 11 12
lambda.1se 100 7 10 0 9 6

size resulted in an increased number of components
selected.

Data analyses

The study included 25 HIV-infected patients on NRTI-
based ARTs with mitochondrial toxicity (cases), and 25
HIV-infected patients on NRTI-based ART without
mitochondrial toxicity (positive controls). The median
age of participants was 53years (interquartile range
(IQR), 50-57) with 60% of them being males. The race
distribution among participants was 60% African Ameri-
can, 28% White, and 12% Hispanics. The median dur-
ation of mitochondrial toxicity was 2.2 years (IQR, 1.3—
7.0). About 52% of the cases had only one manifestation
of toxicity, while 48% had multiple toxicities.

A total of 12 ribose and 14 deoxyribose variables were
considered in the analyses. Table 2 presents the 5-fold
Monte Carlo average classification rates with corre-
sponding standard deviations in parentheses. As shown
in Table 2, the algorithms resulted in cross-validated
classification rates of 0.54—0.76 for ANTP and 0.59-0.69
for RN. We have also reduced the dimension of the data
using the LASSO method and applied classifiers on the
reduced data. The LASSO method selects 10 deoxyri-
bose and 2-4 ribose variables depending on whether
lambda.min and lambda.lse was used as a selection cri-
terion. For the deoxyribose data, both lambda.min and
lambda.lse selects ten variables (dATP, dADP, dAMP,
dTTP, dTDP, dTMP, dGTP, dGMP, dCDP, dCMP).

However, for the Ribose data, lambda.min selects four
variables (ATP, CDP, UTP, UMP) and lambda.lse se-
lects two variables (ATP, UTP). Because the correlations
between the deoxyribose input variables are lower than
those of the ribose input variables, it is no surprise that
LASSO selects most of deoxyribose input variables.
Table 3 presents the 5-fold Monte Carlo average classifi-
cation rates with corresponding standard deviations in
parentheses for the reduced data. In general, the reduc-
tion of input variables indeed seems to improve the clas-
sification performance, particularly for the ribose
dataset. The cross-validate classification rates for the ten
selected dRN variables ranges from 0.65-0.76. However,
cross-validate classification rates using the selected two

Table 2 Average classification rates and the corresponding
standard errors

Deoxyribose Ribose
LDA 0.69 (0.05) 067 (0.05)
QDA 0.64 (0.06) 0.59 (0.06)
KNN 0.54 (0.05) 0.63 (0.04)
SVM 0.58 (0.06) 0.63 (0.05)
CART 0.63 (0.06) 0.60 (0.06)
ADA 0.68 (0.04) 0.66 (0.04)
RF 0.76 (0.04) 0.69 (0.04)
LOGIT 0.67 (0.05) 0.66 (0.05)
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Table 3 Average classification rates and the corresponding
standard errors after data dimension reduction

Deoxyribose [10] Ribose [4] Ribose [2]
LDA 0.73 (0.05) 0.78 (0.03) 0.74 (0.03)
QDA 0.67 (0.04) 0.73 (0.03) 0.74 (0.02)
KNN 0.65 (0.05) 0.76 (0.03) 0.76 (0.04)
SVM 0.66 (0.05) 0.80 (0.02) 0.72 (0.04)
CART 0.65 (0.06) 0.83 (0.03) 0.83 (0.02)
ADA 0.70 (0.04) 0.83 (0.02) 083 (0.02)
RF 0.76 (0.04) 0.77 (0.03) 0.76 (0.04)
LOGIT 0.75 (0.05) 0.76 (0.03) 0.77 (0.03)

(ie., ATP, UTP) or four (ATP, CDP, UTP, UMP) RN
variables ranged from 0.72-0.83.

As for which machine learning method to recommend
in a classification, the tree-based methods work the best
for both the deoxyribose dataset (RF) and the ribose
dataset (CART and AdaBoost). But it is worthwhile not-
ing that the simple methods such as LDA and logistic
regression were very competitive in terms of classifica-
tion performance. Therefore, we recommend the use of
tree-based methods for this application, but if one is not
comfortable with technicalities of such methods, then
the simple methods such as LDA and logistic regression
work as well.

Discussion

Our study aimed to evaluate whether ART-induced
mitochondrial dysfunction assessed by RN and dNTP
pool sizes can be used as biomarkers in distinguishing
HIV patients with mitochondrial toxicity from those
without toxicity. We used eight classification algorithms
to assess the diagnostic performance of RN and dNTP
pool sizes distinguishing HIV patients with and without
NRTI-associated mitochondrial toxicity. The algorithms
resulted in cross-validated classification rates of 0.54—
0.76 for ANTP and 0.59-0.69 for RN. dNTPs can be syn-
thesized via two pathways: salvage and de novo pathways
[23]. In the de novo pathway, RN is reduced to dNTP.
Since there are two main sources of dNTPs, there may
not be one-to-one relationship between RN and dNTP
pools. This could explain the low classification rates ob-
served in our analyses.

The reduction of input variables improved the classifi-
cation performance with most of the classification algo-
rithms. The improvement was more pronounced for RN.
Due to the high correlation among the RN variables, the
data reduction technique results in fewer RN variables
as compared to the 10 selected dNTP variables. The
cross-validate classification rates for the 10 selected ANTP
variables ranges from 0.65-0.76. However, cross-validate
classification rates using the selected two (i.e, ATP,
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UTP) or four (ATP, CDP, UTP, UMP) RN variables
ranged from 0.72-0.83. The concentration of the ANTPs
available during DNA replication is critical for the fidel-
ity of DNA replication [24, 25]. dNTPs are essential pre-
cursors for DNA synthesis and perturbations in the
absolute and relative concentrations of the 4 dNTPs
(dATP, dTTP, dGTP and dCTP) increase mutation rates
by reducing the fidelity of DNA synthesis [23]. Further-
more, imbalance in dANTP pools has been associated
with mitochondrial DNA (mtDNA) mutagenesis in cell
culture and animal models [26, 27]. Maintaining ANTP
pools in the cell is critical not only for DNA replication
but also for cell cycle control, protooncogene function,
mitochondrial function, defense against viral infections,
DNA mismatch repair (MMR), telomere length, mito-
chondrial function [24, 28, 29]. Thus, our finding of
changes in RN and dNTP pools in participants with
mitochondrial toxicity validates the importance of
dNTP pools in mitochondrial function. Hence, RN and
dNTP pools can be used as biomarkers of ART-induced
mitochondrial toxicity.

In cells, the concentration of RN is several folds higher
than the concentration of ANTP [30-32]. Because of the
abundance of RN in the cells, its quantification is much
easier than ANTP. Thus, ATP can be measured easily as
biomarker of ART-induced mitochondrial dysfunction.
ATP production in the cell is predominantly from mito-
chondria through oxidative phosphorylation (OXPHOS).
Thus, ATP concentration could serve as a sensitive
marker of mitochondrial function. Further studies are
needed to validate our finding that ATP concentration
can serve as a biomarker of ART-induced mitochondrial
dysfunction. This could lead to the development of
point-of-care assay for the diagnosis and monitoring of
ART-induced mitochondrial toxicity.

Currently, there is no gold-standard assay for diagnosis
of ART-induced mitochondrial toxicity. ART-induced
mitochondrial toxicity is diagnosed by a combination of
clinical symptoms, laboratory testing, and imaging stud-
ies, and sometime a tissue biopsy to demonstrate mito-
chondrial damage [8, 9]. Tissue biopsy is deemed to be
the most accurate method. However, because it is inva-
sive and cost prohibitive, it is seldom used in clinical
practice. Moreover, not all affected organs or tissues are
easily accessible for biopsy. Therefore, most providers
resort to stopping the perceived offending medication to
see if the clinical manifestations resolve. This practice is
not optimum as it can results in the emergence of drug-
resistant strains of HIV [33] and could lead to inappro-
priate use of second-line medications. There is a need
for a non-invasive, cost-effective biomarker for ART-
induced toxicity to prevent unnecessary interruptions in
ART and to guide use of second-line regimens. Our find-
ing that intracellular concentration of ATP determined by
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Liquid Chromatography with tandem mass spectrometry
(LC/MS/MS) could be a biomarker of mitochondrial tox-
icity is promising. Mitochondria are responsible for ATP
production through oxidative phosphorylation. Therefore,
ART-induced mitochondrial dysfunction is likely to com-
promise ATP synthesis capacity of mitochondria. Argu-
ments against routine use of LC/MS/MS for measuring
ATP as marker of ART-induced mitochondrial toxicity
are cost and labor-intensive nature of the procedure. This
can be circumvented by: (1) using available and easy to
use fluorometric enzyme-linked assay kits for quantifying
intracellular ATP levels; or (2) using ATP concentration
measured LC/MS/MS as gold standard and compare to
available in vitro assays of mitochondrial function to de-
termine which in vitro biomarkers best correlate with the
level ATP measured by LC/MS/MS and, therefore, serve
as the “go-to” assay(s) for diagnosing and monitoring
ART-induced mitochondrial toxicity.

Conclusions

We used a range of machine learning procedures to dis-
tinguish between HIV patients with and without toxicity.
Using resampling methods like Monte Carlo k-fold cross
validation, we compared the accuracy of several machine
learning algorithms applied to our data. We used the al-
gorithm with highest classification accuracy rate in
evaluating the diagnostic performance of RN and dNTP
pool sizes as biomarkers of mitochondrial toxicity. The
algorithms resulted in cross-validated classification rates
of 0.65-0.76 for ANTP and 0.72-0.83 for RN. Our find-
ing of changes in RN and dANTP pools in participants
with mitochondrial toxicity validates the importance of
dNTP pools in mitochondrial function. Hence, levels of
RN and ANTP pools can be used as biomarkers of ART-
induced mitochondrial toxicity. There are none invasive
and cost-effective assays to measure intracellular ATP
concentration that could be used to monitor or diagnose
ART-induced mitochondrial toxicity.
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