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Background: The analysis of twin data presents a unique challenge. Second-born twins on average weigh less than
first-born twins and have an elevated risk of perinatal mortality. It is not clear whether the risk difference depends
on birth order or their relative birth weight. This study evaluates the association between birth order and perinatal
mortality by birth order-specific weight difference in twin pregnancies.

Methods: We adopt generalized additive mixed models (GAMMs) which are a flexible version of generalized linear
mixed models (GLMMs), to model the association. Estimation of such models for correlated binary data is challenging.
We compare both Bayesian and likelihood-based approaches for estimating GAMMs via simulation. We apply the
methods to the US matched multiple birth data to evaluate the association between twins' birth order and perinatal

Results: Perinatal mortality depends on both birth order and relative birthweight. Simulation results suggest that the
Bayesian method with half-Cauchy priors for variance components performs well in estimating all components of the
GAMM. The Bayesian results were sensitive to prior specifications.

Conclusion: We adopted a flexible statistical model, GAMM, to precisely estimate the perinatal mortality risk
differences between first- and second-born twins whereby birthweight and gestational age are nonparametrically
modelled to explicitly adjust for their effects. The risk of perinatal mortality in twins was found to depend on both birth
order and relative birthweight. We demonstrated that the Bayesian method estimated the GAMM model components

Keywords: Penalized splines, Generalized linear mixed models, Penalized quasi-likelihood, Laplace approximation,

Background

Twins are 2—4 times more likely to die in the perinatal
period compared to singletons [1]. Second-born twins,
however, are known to be at higher risk of perinatal mortal-
ity than first-born twins [2—4]. While birthweight and ges-
tational age are both well-known determinants of perinatal
mortality [5], birthweight is more likely to be a major com-
ponent of the risk difference between first- and second-
born twins because co-twins are usually delivered at the
same gestational age. Moreover, second twins, on average,
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weigh less than first twins [6]. It is unclear if the mortality
risk differences between second and first twins depend on
birth order or birthweight.

Luo et al. [5] showed that perinatal mortality risk differ-
ences in second vs first twins depended on their relative
birth size: risks were similar when birthweights were simi-
lar, increasingly higher as second twins weighed less, and
progressively lower as second twins weighed more. How-
ever, in the conditional logistic regression model used, they
controlled for the effect of small for gestational age (SGA)
via a binary indicator (1 = yes; 0 = no) based on gestational
age and birthweight. Controlling for a binary version of
continuous confounder(s) may lead to residual confounding
[7]. In this analysis, we evaluated the association of birth
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order with perinatal mortality after adjusting for both birth-
weight and gestational age, among others.

Because birthweight and gestational age may have nonlin-
ear associations with mortality, we used generalized additive
mixed models (GAMMs) [8] that employ unknown smooth
functions to model nonlinear covariate effects, and random
effects to account for correlation in twin-pairs. Smooth
functions can be estimated in various ways [8—10]; here, we
used penalized regression splines represented as mixed
model components [11]. This allows the use of mixed
model methodology and software to make systematic infer-
ence on all model components for the GAMMs.

Although several methods are available for estimating
GAMMs, in practice results may vary widely depending
on the method used. Motivated by the difficulties we en-
countered when analyzing the perinatal twin mortality,
we investigate the performance of different methods via
simulation in a setting similar to the twin data situation.

In this paper, we systematically compare the performance
of the Bayesian and likelihood-based estimation techniques
for inference in the GAMMs via a simulation study. We
also apply these methods to the US matched multiple birth
data to study the association between birth order and peri-
natal mortality by birth-order specific weight difference in
twins.

Methods

Generalized additive mixed models (GAMM:s)

Generalized additive mixed models (GAMMs) [8] extend
generalized linear mixed models (GLMMs) [12] to allow
nonlinear functional forms between independent variables
and the response. They provide a flexible modeling frame-
work to use additive nonparametric functions to model
the effects of continuous covariate(s) while using random
effects to model correlation between responses. Estimating
the nonparametric smooth function by penalized regres-
sion splines, the GAMM can be expressed as a GLMM.
Details on the GAMM and its mixed model representa-
tion are provided in the Additional file 1: Supplementary
Material.

Estimation of GAMMs
The GAMM model parameters may be estimated via
frequentist or Bayesian approaches. The frequentist ap-
proaches rely on approximation methods while Bayesian
methods use Markov Chain Monte Carlo (MCMC). We
investigate two approximation methods: double penal-
ized quasi-likelihood (DPQL) [8, 13] and the Laplace ap-
proximation [14], as well as a Bayesian approach [15].
The Bayesian methods require specification of prior
distributions, a non-trivial task for variance components
[16]. For the GAMM, an appropriate choice for the prior
distributions of variance components is crucial because
curve estimation depends on the variance components;
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over (under) estimation of the variance components cor-
responds to undersmoothing (oversmoothing).

Analysis of twins perinatal mortality data

Methods

Data and models

To study the relationship between perinatal mortality
and birth order, we used the matched multiple birth
dataset from the United States National Centre for
Health Statistic’s (NCHS) 1995-1998. For all multiple
births in years 1995-1998, the NCHS data contained
information on perinatal and infant mortality, and
maternal and pregnancy characteristics. An extended
version (1995-2000) of this dataset was used by Luo
et al. [5].

There were a total of 446,570 matched births. We ex-
cluded (15.6% of the total) matched births with the fol-
lowing criteria due to missing or implausible data: (i)
triplet and higher order multiple birth (n =23,672); (ii)
unknown breech presentation (n = 5041); (iii) unmatched
twins (n = 3650; see, Martin et al. [17] for details); (iv)
twins with unknown birth order (n = 3507); (v) extreme
gestational ages (<23 weeks or>42 weeks, n=17,475);
(vi) extreme birthweights (<500 g or > 6000 g, n = 4589);
(vii) twins not delivered at the same gestational week
(n=9918); and (viii) birthweight difference between sec-
ond and first twins greater than 100% (n =1758). The
final study cohort included 376,960 twin births in 188,
480 twin pregnancies.

To assess perinatal mortality risk differences between
second- and firstborn twins by birth order-specific
weight difference, we conducted a stratified analysis fol-
lowing Luo et al. [5]. Based on the birthweight difference
between twins, we divided the dataset into 7 strata as
follows: (i) within +5% (similar); (ii) first twins heavier
by 5-15%; (iii) first twins heavier by 15-25%; (iv) first
twins heavier by > 25%; (v) second twins heavier by 5—
15%; (vi) second twins heavier by 15-25%; and (vii) sec-
ond twins heavier by > 25%.

In order to estimate the odds ratio (OR) and 95% confi-
dence interval (Cls) of perinatal death comparing second
vs first twins in each stratum, we used GAMMs. This ap-
proach is broadly similar to the conditional logistic regres-
sion approach of Luo et al. [5]. We adjusted for potential
confounders including fetal sex, presentation, birthweight,
gestational age, and mode of delivery. Birthweight and
gestational age effects were modelled nonparametrically.
We did not adjust for maternal characteristics or any
other factors common to a twin pair as these were per-
fectly matched for twins.

More specifically, conditional on twin-pair-specific
random intercepts b;; ~ N(0, 0%,), the binary outcomes
Yy,; (perinatal death: 0 = no, 1 =yes) in K™ stratum (1 =
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1, ..., 7) were assumed to be independent and follow a
semiparametric logistic mixed model

logit{ Pr(Yy; = 1|by)} = th,jﬁ +f1 (birthweighthij>
+f, (gestational agehij)

+bhi7

(1)

where i = 1, .., my, indexes the twin pair in #™ stratum
and j = I, 2 twins within pairs, the fixed effects covariates
Xp; included an intercept, birth order, fetal sex, presenta-
tion, and mode of delivery; f; (birthweight,;;) and f, (ges-
tational age;) are centred twice-differentiable smooth
functions of birthweight and gestational age, respectively.
The random intercept variance and all other model pa-
rameters are stratum-specific and m, denotes the num-
ber of twin-pairs in the 4™ stratum. Note that, in our
analysis, birthweight and gestational age were linearly
correlated (r=0.72). The correlations between all other
covariates were negligible.

Data analysis

We fitted model (1) in each stratum in which each
smooth term was represented by a penalized thin plate
regression spline [18, 19]. Following Ruppert [20], we
considered a large number of knots (K= 20) and knot
positions were evenly spaced sample quantiles of unique
covariate values. Representing the penalized regression
smoothers as mixed model components, and imposing
the centering constraint on each smoother, we estimated
the model parameters via the following methods:

1. DPQL under maximum likelihood (ML) estimation.

2. Laplace approximation. For DPQL and Laplace
methods, standard errors of the estimated fixed
effects and smooth functions were obtained from
a posterior covariance matrix as in Lin and
Zhang [8].

3. A Bayesian approach in which noninformative
priors were used for all parameters. Specifically,
N(0, 10°) distributions were used for all fixed effects
(B), while half-Cauchy priors [16] with scale param-
eter set to 25 were considered for each variance
component (e.g., for ?ip). We ran 2 chains with
55,000 iterations after discarding the initial 5000
burn-in iterations. The chains were thinned by
keeping every 50th iteration and estimates were the
sample medians. Convergence of the chains was
assessed following Gelman and Rubin [21] and also
by visually examining the trace plot, density plot,
and sample autocorrelation function for each
parameter.
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All analyses were carried out in R software employing
glmmPQL [22] and gamm4 [23] functions for DPQL and
Laplace approximate methods, respectively. The Bayes-
ian analysis via MCMC was performed using JAGS [24]
which is a mature and declarative language for Bayesian
model fitting.

Results of the data analysis

Table 1 presents the summaries of selected characteris-
tics of the twins study cohort. Most mothers were white
(79.3%) and aged between 20 and 34 (74.8%). Second-
born twins had slightly lower mean birthweights (23.6 g)
than first-born twins. Malpresentation was more fre-
quent in second twins (27% vs 21%).

The ORs of perinatal death in second versus first twins
from the models fit via Laplace and Bayesian-HC are re-
ported in Table 2. DPQL estimation failed in all strata
and did not converge even for simpler models, e.g., when
the effects of birthweight and gestational age were con-
sidered as linear, or, when some confounders were
dropped. The Laplace method yielded more extreme
ORs (away from 1) with wider Cls than the Bayesian
method for all strata except for one where they were ap-
proximately equal (when second-born twins were heav-
ier by 5 to 15%). From the Bayesian fitting, the risk of
perinatal death was higher for second-born twins (ad-
justed OR 1.27, 95% CI: 1.13, 1.43) when the twins had
similar birthweights (within +5%) and the risk increased
as the second-born twin weighed less. When second
twins were heavier by 5-15% and 15-25%, the adjusted

Table 1 Characteristics of mothers and twin births included in
the twins perinatal mortality study

Characteristic Mothers Twins
First Born Second Born
Mothers, n (%) 188480
Race
White 149459 (79.3)
Black 31912 (16.9)
Other 7109 (3.8)
Age
< 20 13192 (7.0)
20-34 140992 (74.8)
235 34296 (18.2)
Newborns® 188480 188480
Sex, boy 94326 (50.1) 94654 (50.2)
Gestational age, week 35.7 3.2) 35.7 3.2)
Birth weight, gram 24075 (615.5) 23839 (618.5)
Breech/Malpresentation 40832 (21.7) 51661 (274)
Cesarean 100271 (53.2) 108413 (57.5)

®We report mean (SD) for quantitative variables, and count (percentage) for
categorical variables
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Table 2 Stratified comparisons of second and firstborn twins: rates and ORs of perinatal death

Variable Twin births Perinatal death OR? Variance of random intercepts
n(%) n (per 1000) (95% Cl)
Firstborn Secondborn Laplace Fit Bayesian Fit° Laplace Fit Bayesian Fit
Birth weight, heavier in %
Heavier firstborn twin
2> 25% 32,940 (8.74) 358 (21.74) 989 (60.05) 4.15(2.31,6.13) 342 (247,4.70) 104.2 35
15 to < 25% 35,810 (9.50) 295 (16.48) 490 (27.37) 231 (146, 3.65) 1.97 (1.58, 2.49) 74.7 55
510 <15% 72,230 (19.16) 565 (15.64) 723 (20.02) 1.68 (1.33,2.12) 1.39 (1.20, 1.62) 423 44
Similar birth weight
within +5% 109,998 (29.18) 1040 (18.91) 1174 (21.35) 148 (1.28,1.72) 127 (1.13,1.43) 31.8 54
Heavier secondborn twin
510 <15% 69,804 (18.52) 617 (17.68) 608 (17.42) 1.16 (0.90, 1.50) 1.19 (0.97, 1.40) 69.9 4.7
15 to < 25% 32,118 (852) 354 (22.04) 334 (20.80) 0.86 (0.67, 1.12) 0.91 (0.71, 1.20) 739 56
> 25% 24,060 (6.38) 506 (42.06) 351 (29.18) 0.14 (0.07, 0.26) 033 (0.25, 045) 1075 33

?Adjusted ORs comparing second vs first twin from logistic additive mixed effects models adjusting for fetal sex, birth weight, gestational age, presentation
(breech/malpresentation: YES/NO), and mode of delivery (cesarean: YES/NO). Given the death rate is very low, the ORs are good approximation of rate ratios (RRs)
PBayesian estimation with half-Cauchy prior for the variance component (Bayesian-HC method)

“Birthweight difference in percentage comparing the heavier vs lighter twins

ORs were not significantly different from 1. Second-born
twins were found to be at significantly lower risk of peri-
natal death (adjusted OR 0.33, 95% CI: 0.25, 0.45) when
they weighed > 25% more than the first-born twin.

The variance estimates of the random intercepts are
shown in the last two columns of Table 2. Estimates ob-
tained from the Laplace method were implausibly large (up
to thirty times bigger than those of the Bayesian method),
possibly because the Laplace approximation performs
poorly for binary data with small cluster size (n;=2) and
very low event probability, or, because the method did not
converge well without reporting any warning. The Bayesian
estimates of the variance of random effects indicated large
heterogeneity between twin pairs (nearly 5 in most strata).

Figure 1 shows the estimated nonparametric functions
of birthweight and gestational age for the Laplace and
Bayesian-HC methods when birthweights for first- and
second-born twins were similar. The 95% pointwise
credible intervals of the curves are displayed only for the
Bayesian method. The estimated curves suggested differ-
ent trends especially for birthweight. The Bayesian-
estimated curve indicated an increased risk of perinatal
mortality at extreme birth weights (< 1000 g and > 5000
g). The Laplacian fit showed a decreasing trend for
(mortality) risk as birthweight increased. The risk of
perinatal death estimated by the Bayesian method de-
clined sharply up until 28 weeks of gestational age and
declined gradually thereafter although there was a slight
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Fig. 1 Bayesian and Laplace estimates of f; (birthweight) at the left panel, and f, (gestational age) at the right panel for the twins mortality data.
The shaded regions are the pointwise 95% credible sets obtained from the fully Bayesian fit
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increase in risk after 40 weeks. The Laplacian fit did not
closely reproduce the behaviour of the Bayesian fit. The
fitted curves obtained from other strata were similar to
those shown in Fig. 1.

In summary, the estimated ORs by different methods
disagreed by a noticeable margin; the shape of the nonlin-
ear associations varied widely, one method failed to con-
verge, and the variance component estimates differed
markedly. Because it was unclear which estimates should
be reported, we conducted a simulation study to investi-
gate the performance of the Bayesian and frequentist ap-
proaches for estimating GAMMs under twin data setting.

Simulation study

Methods

Data generation: mimicking twin-pairs data setting

The simulation study was broadly designed to mimic the
twin-pairs data setting where the cluster size was 2. For all
settings, data were generated following Lin and Zhang [8].
Each dataset was generated with m=1000 clusters of
homogeneous size n; = 2. We considered a random inter-
cepts model with four variables: a binary outcome (Y), a
dichotomous variable (D) such as birth order, and two
continuous covariates (X; , X5) such as birthweight and
gestational age. The dichotomous variable, D was gener-
ated from a Bernoulli distribution with probability equal
to 50%. Two linearly correlated standard uniform U(0, 1)
covariates (X; and X,) were generated from the Gaussian
Copula such that the point-biserial correlations between
the dichotomous variable and continuous covariates were
Pax1 = Pax2=0.30. The empirical correlation between the
continuous covariates was considered as py; x2=0.7,
which is similar to the observed correlation between birth-
weight and gestational age observed in the twin-pairs data.
Conditional on the cluster-specific random intercepts b; ~
N(0, 0.75), the binary responses Yj; within each cluster
were generated with conditional probabilities:

logit (plj) =po+BD+f, (xuj) +f> (x%i) + bi,

(2)
where p; = E[Y|b;], 1 = 0.7 (which gives OR = 2)

1 6I(37) L 4T (14) . 1
5100 = o] rgmam 0"+ pga O o5
(3)

e = {rz(ggll,?;)xz(l—xzf i r(rs()lro()f») xz<1_x2)4}__7

(4)

and I'(.) is a gamma function. The overall prevalence of
a positive (Y= 1) outcome was kept at either 0.05 or 0.5
by setting S, to either — 1.28 or - 0.35. Here f; (x;) and
fo (x3) were bimodal and unimodal functions,
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respectively. We centered the functions so that the
means of f; and f, were 0 over the distinct values of X;
and X,.

Analysis of the simulated data

For each setting, 1000 simulated datasets were gener-
ated. Each dataset was analysed by fitting a logistic addi-
tive mixed effects model of the form (2) in which each
smooth term was represented by penalized thin plate re-
gression spline similar to twin data analysis. The model
parameters were estimated using the following methods:

1. DPQL under maximum likelihood (ML) or
restricted ML (REML) estimation.

2. Laplace approximation. For DPQL and Laplace
methods, standard errors of the estimated fixed
effects and smooth functions were obtained
following the same procedure as for the twin data
analysis.

3. A Bayesian approach similar to those used for
perinatal mortality data analysis with 8 ~ N(0, 10°)
but considering three alternative independent prior
specifications for each variance component: (i)
Uniform (0, 100); (ii) Half-Cauchy with scale par-
ameter set to 25; and (iii) Inverse Gamma (0.001,
0.001). Using priors (i)-(iii), Bayesian methods are
referred to later as, respectively: Bayesian-UNIF,
Bayesian-HC, and Bayesian-IG. The Bayesian esti-
mates were medians from 55,000 iterations of the
MCMC algorithm after discarding the first 5000 it-
erations as burn-in. We ran a single chain and
thinned it by keeping every 50th iteration.

Performance indicators
We computed percentage relative biases (PRBs) of the
fixed and random effects estimators defined as

Bias

PRB % 100.

~ True Value
For the estimated smooth functions, we computed
pointwise mean average squared distance/error (MASE)
from the true curves, the 95% pointwise mean average
coverage probabilities (MACPs), and 95% pointwise
mean average confidence interval lengths (MACLs). The
pointwise MASE was defined as the mean over the 1000
replicated datasets of the average squared error,

ASE = (Zml: ni) Zm:i: {f(xlij)—f(xlij)}2§l: 1,2.

=1 j=1

The 95% pointwise MACP and MACL were obtained
as the means of the 1000 average coverage probabilities
(ACP) and average credible intervals lengths (ACL), re-
spectively. We defined
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_fL (xlii)) J

where 1(.) denotes an indicator function; f; and f,; are
the lower and upper limits of the point-wise CI,
respectively.

Results of the simulation study

Table 3 presents simulation results when different
methods of estimating GAMMSs were used. For low (5%)
event probability setting, model components were better
estimated by Bayesian methods than the two frequentist
approaches with lower percent relative bias and MSE,
shorter distance between the true and estimated curves,
and higher coverage probability. Of the Bayesian
methods, Bayesian-HC performed best in estimating
most of the model components. Both DPQL (ML and
REML) and Laplace methods yielded inflated 0 . and
showed poor ability in recapturing the true functlons.
DPQL (ML and REML) failed to converge often (66% of
total datasets) whereas the Laplace method had negli-
gible convergence problems (2% of total datasets), and
results from these datasets were excluded. The Bayesian
methods did not report any convergence problems. The
Bayesian-UNIF method overestimated 07, whereas
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Bayesian-IG underestimated it. The fixed effect B; was
better estimated by Bayesian methods with negligible
bias and lower MSE. The Bayesian-HC appeared to per-
form in between the Bayesian-UNIF and Bayesian-1G
methods in terms of estimating all model components.
Overall, the Bayesian estimates were sensitive to the
prior specifications of the variance component. The
simulation results suggest that the Bayesian-HC is likely
to be the best approach in the twins-pair data, where the
event rate of interest is <5%. Increasing the event rate
from 5 to 50% resulted in better estimates by all
methods without any convergence problems. The super-
iority of the Bayesian methods however prevailed.

Figure 2 illustrates the ability of the GAMMSs estimated
by different methods to recapture the true functions when
the event probability was 0.05. The upper panel of Fig. 2
shows the true curves f; (x;) (j = 1, 2) and the smoothed esti-

mated curves f j(%7). The Bayesian methods recovered the

true curves well with slightly negative biases when curva-
ture was high and also in the flat areas. The fitted curves
obtained by Bayesian methods using three different priors
for variance components were similar. However, around
the peak area the Bayesian-HC method performed better
than others. Bayesian-UNIF and Bayesian-1G yielded almost
identical curves and hence the curves obtained by
Bayesian-IG have not been displayed. The frequentist
methods, in contrast, could not adequately recapture the
true curves throughout the range. DPQL (ML) performed
worse than the Laplace approximation method.

Table 3 Estimate, 95% confidence/credible interval (Cl), mean average squared distance (MASE), mean average 95% coverage
probability (MACP), and mean average coverage length (MACL) for model parameters estimated via various approaches when

number of clusters m = 1000, cluster size n;=2, and p,, ,, = 0.7
Method o2, =0.75 Bie=0.7 fi(x1) f(x2)
6ivr PRB 95% Cl [}m PRB 95% Cl MASE  MACP  MACL MASE  MACP MACL
Event probability = 0.05
DPQL (ML) 1583 201060 (456, 27.10) 124 7644 (023,224) 7510 032 1.71 11784 033 172
DPQL (REML) 3045 395966 (1639,4456) 107 5238 (00 6472 034 1.79 12.584 034 1.70
Laplace ML 5602 736966 (5.71,10634) 079 1321 (007,151) 0763 070 1.76 0.907 0.73 1.82
Bayesian (Uniform Prior) 0.96 2742 (0.06, 2.88) 075 654 (028,125 0.148 094 1.39 0.112 0.94 1.24
Bayesian (Half-Cauchy Prior)  0.87 1540 (0.06, 2.71) 072 325 (029,1.22) 0142 094 1.27 0.103 0.94 1.15
Bayesian (IG Prior) 0.39 -48.40 (0.01, 2.20) 071 11 (027,1.18)  0.149 093 1.25 0.103 0.93 1.13
Event Probability = 0.5
DPQL (ML) 0.87 15.70 (040, 1.34) 064 855 (042,086 0032 089 0.57 0.023 0.88 048
DPQL (REML) 0.98 30.92 (0.52, 1.44) 066 —-586 (042,090) 0028 091 0.58 0.024 0.90 047
Laplace ML 0.36 -5249 (0.12, 0.60) 066 =577 (043,089 0037 087 0.58 0.024 087 049
Bayesian (Uniform Prior) 0.82 8.99 (0.33, 1.40) 071 135 (047,097) 0032 095 0.70 0024 095 061
Bayesian (Half-Cauchy Prior)  0.80 6.04 (0.34, 1.36) 071 076 (047,096) 0032 095 0.67 0.023 0.95 0.58
Bayesian (IG Prior) 0.72 —6.50 (0.19, 1.30) 069 —-092 (047,095 0033 094 0.68 0.023 0.95 0.58

For the Bayesian method, the three alternative priors used for the variance components were: uniform (0, 100), half-Cauchy (25), and inverse gamma,

1G(0.001, 0.001)
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Fig. 2 True and estimated curves of the estimated nonparametric functions based on 1000 replications (Aﬂ (x1) and ?z (x2) in the upper panel) and
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results are for the data generation scenario with m= 1000, n;=2, 02, = 0.75, 0Oy, x, = 0.7 and event probability = 0.05. The curves estimated by
Bayesian-IG were almost similar to those obtained by Bayesian-HC and have not been displayed here to make other fits more visible

Bayesian—UNIF fit

The lower panel of Fig. 2 compares the empirical point-
wise coverage probabilities of the 95% credible intervals of
fi (x) and f; (x5) obtained using different estimation
methods. The coverage probabilities (CP) of the Cls from
all Bayesian methods were close to the nominal value
(95%), except when biases in the estimated nonparametric
functions were noticeable. In contrast, CIs from DPQL
(ML) and Laplace methods yielded very low coverage
probabilities, and DPQL (ML) had relatively poor coverage
probabilities (mean CP 33%) compared to the Laplace
method (mean 73%). Around the peak areas, Cls from
DPQL (ML) and Laplace methods yielded very low cover-
age probabilities. In such cases, coverage probabilities
from the fully Bayesian methods were also low, but none-
theless much better than frequentist methods.

Discussion

We re-analyzed twins perinatal mortality data to study the
association between birth order and perinatal mortality by
adopting the flexible GAMMSs in which continuous

covariates (birthweight and gestational age) were nonpara-
metrically modelled to adjust for their effects more com-
pletely. Overall, how best to estimate flexible regression
curves when the outcomes are correlated and binary is
unclear, especially when cluster sizes are small. Thus, we
analyzed twins data estimating GAMMSs by different
frequentist and Bayesian methods, and used simulated
data to compare the performance of these estimation
techniques for a setting similar to the twin-data.

Using the multiple matched data from the US National
Centre for Health Statistic’s (NCHS) 1995-1998, we ob-
tained results that varied with respect to the estimation
methods. Our simulation results for small cluster size
(n; =2) with low event probability (similar to the NCHS
data) suggested the superiority of the Bayesian method
in estimating all model components, especially using the
Half-Cauchy (HC) priors for the variance components.
We thus rely on the results from the Bayesian-HC fit for
our data analysis. These results suggest that the risk of
perinatal mortality depended on the twins’ birth order
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and the risk differences in second vs first twins
depended on their relative birthweight. Second twins
were more likely to die than first-born co-twins when
they had similar (within +5%) birthweights (adjusted
OR=1.27, 95% CI: 1.13, 1.43). The risks of perinatal
death for second-born twins were progressively higher
as they weighed less than first-born twins (adjusted ORs:
1.39, 1.97 and 3.42 when weighed 5-15%, 15-25% and >
25% less, respectively) and increasingly lower as they
weighed more (adjusted ORs: 1.19, 0.91 and 0.33 when
weighed 5-15%, 15-25% and >25% more, respectively;
most of the ORs were significantly different from 1).
Similar to the simulation results, the Bayesian analysis
using uniform priors for variance components (Bayes-
ian-UNIF) yielded slightly larger ORs whereas using in-
verse gamma priors (Bayesian-IG) vyielded slightly
smaller ORs as compared to the Bayesian-HC method
(see Additional file 1: Table S1 for the results).

The effect of relative birthweight was also confirmed by
Luo et al. [5] but they did not find any significant associ-
ation between birth order and perinatal mortality when
both twins had similar (within +5%) birthweights (OR =
0.97, 95% CI: 0.84, 1.12). Also, the ORs they obtained from
the stratified analyses were closer to 1 in most cases. This
may be due to using different models, or adjusting for dif-
ferent sets of confounders. They used a binary indicator
‘small for gestational age’ to control for the effect of birth-
weight and gestational age, which might lead to residual
confounding [7].

Similar to the findings from the simulation study, the
Laplace estimate of the variance of the random intercepts
in each stratum was unusually large - indicating an
extreme heterogeneity between twin pairs. The fitted
smooth curves for birthweight and gestational age by the
Laplace method were less likely to capture the true shapes
of association due to the poor estimates of the variance
components. The curve estimation largely depends on the
estimates of the variance components in a GAMM, and
the Laplace method yielded poor estimates of the variance
components as evident from the simulation study. The
DPQL method failed to fit the model in each stratum and
this was in agreement with the findings from the simula-
tion study in which DPQL failed to converge often.

The observed performance of the DPQL and Laplace
approximation in estimating the model components in
the simulation study was not surprising as they are
known to yield biased estimates for small cluster size.
However, we demonstrated the strength of Bayesian
methods when the system was stressed, i.e., when cluster
size and event probability were small. While using Fre-
quentist methods with more refined likelihood approxi-
mation (e.g. adaptive Gaussian quadrature) may improve
performance but is not feasible as the mixed model rep-
resentation of GAMMs involves a large number of
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random effects and Gaussian quadrature is not compu-
tationally efficient for more than four random effects
[25].

There are some limitations to this study. First, we ana-
lyzed the NCHS 1995-1998 twin matched data that we
had access to. Unfortunately, the updated version of the
data from 1995 to 2000 was not publicly available during
this analysis. We do not believe that the results would
have changed appreciably given two more years of data.
Next, we considered a stratified analysis for twin-data
analysis, although a single model that included an inter-
action term for birth order and relative birth size might
be more appropriate to study their association with peri-
natal mortality by estimating these effects using the
whole dataset at once. Stratification was used to make
our results comparable to Luo et al. [5], and to reduce
the computational resources required for handling a
huge dataset. Finally, we omitted a potential confounder,
zygosity (Monozygotic-MZ/Dizygotic-DZ), because the
data was not available. MZ twins are likely to be more
correlated both for birthweight and for potential mortal-
ity than DZ twins.

Conclusion

We adopted a sophisticated statistical model, GAMM, to
precisely estimate the perinatal mortality risk differences
between first- and second-born twins from a large data-
set in which birthweight and gestational age were non-
parametrically modelled to explicitly adjust for their
effects. Overall, the perinatal mortality risk differences in
second vs first twins were found to depend on both birth
order and relative birthweight. We demonstrated that
the Bayesian method (especially using half-Cauchy prior
for variance component) estimates the GAMM model
components more reliably than the frequentist ap-
proaches for small cluster size.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512874-019-0861-2.

Additional file 1: Supplementary Material: The Mixed Model
Representation of the GAMMs. This file contains an explanation on the
generalized additive mixed models (GAMMs) and their representation as
generalized linear mixed models (GLMMs). In addition, it includes a table
that summarizes additional results from the twin perinatal mortality data
analysis. Table S1. Stratified comparisons of second and firstborn twins:
adjusted ORs of perinatal death obtain from the Bayesian fit of the
logistic additive mixed effects models.
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