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Abstract

Background: The recent progress in medical research generates an increasing interest in the use of longitudinal
biomarkers for characterizing the occurrence of an outcome. The present work is motivated by a study, where the
objective was to explore the potential of the long pentraxin 3 (PTX3) as a prognostic marker of Acute Graft-versus-Host
Disease (GvHD) after haematopoietic stem cell transplantation. Time-varying covariate Cox model was commonly
used, despite its limiting assumptions that marker values are constant in time and measured without error. A joint
model has been developed as a viable alternative; however, the approach is computationally intensive and requires
additional strong assumptions, in which the impacts of their misspecification were not sufficiently studied.

Methods: We conduct an extensive simulation to clarify relevant assumptions for the understanding of joint models
and assessment of its robustness under key model misspecifications. Further, we characterize the extent of bias
introduced by the limiting assumptions of the time-varying covariate Cox model and compare its performance with a
joint model in various contexts. We then present results of the two approaches to evaluate the potential of PTX3 as a
prognostic marker of GvHD after haematopoietic stem cell transplantation.

Results: Overall, we illustrate that a joint model provides an unbiased estimate of the association between a
longitudinal marker and the hazard of an event in the presence of measurement error, showing improvement over
the time-varying Cox model. However, a joint model is severely biased when the baseline hazard or the shape of the
longitudinal trajectories are misspecified. Both the Cox model and the joint model correctly specified indicated PTX3
as a potential prognostic marker of GvHD, with the joint model providing a higher hazard ratio estimate.

Conclusions: Joint models are beneficial to investigate the capability of the longitudinal marker to characterize
time-to-event endpoint. However, the benefits are strictly linked to the correct specification of the longitudinal marker
trajectory and the baseline hazard function, indicating a careful consideration of assumptions to avoid biased
estimates.
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Background
The recent progress in molecular biology and genetics
generates an increasing interest in investigating genomic
ormolecular biomarkers, asmarkers of diagnosis, progno-
sis or response to treatment. The longitudinal measure of
biomarkers is useful for characterizing the occurrence of
an outcome of interest, as they can be predictive of treat-
ment results or related to the event process and prognosis.
For example, the present work is motivated by a study,
where the objective was to explore the potential of the
long pentraxin 3 (PTX3) as a prognostic marker of Acute
Graft-versus-Host Disease (GvHD) after haematopoietic
stem cell transplantation [1].
The time-varying covariate Cox model (TVCM)

[2, 3] has been used to study the association between
an observed longitudinal measure of biomarkers and
the hazard of an event [1, 4]. This approach uses the
last-observation-carried-forward (LOCF), since marker’s
observations are only available at discrete times (i.e. time
of measurement), leading to the pitfall of introducing bias
given the continuous nature of the biomarker [5]. Further,
the TVCM fails to account for the so called “measurement
error” in the biomarker. As evidenced by various studies
(e.g., [6, 7]), failure to adjust for such measurement error
introduces further bias into model estimates.
Shared frailty joint models address these issues by mod-

eling simultaneously the profile of the marker and the
time-to-event data [8, 9]. Within such approaches, a linear
mixed model for the underlying longitudinal trajecto-
ries of the marker is linked to the survival model using
shared random effects [10]. This approach allows infer-
ence on the association between the hazards of an event
and the longitudinal biomarkers, by avoiding the LOCF
assumption and accounting for the random measurement
error [11]. However, joint models are parametric and
thus require additional strong assumptions over the semi-
parametric Cox model with time-varying covariate [12].
Assumptions are needed on both the distribution of the
marker and its trajectory, and on the shape of the hazard
function of the event of interest.
The literature that evaluates the impacts of misspecifi-

cation of joint models for their applications in biomedical
research has been particularly rare, while methodolog-
ical efforts rapidly increasing (e.g., [13]). This causes a
lack of clarity on practical issues, which in turn discour-
ages applied researchers to improve the understanding of
such models [14, 15]. Few simulation studies have been
performed in the joint modeling framework. [16] investi-
gated the use of joint models to adjust for measurement
error only at the baseline measurement value. Simula-
tion by [11] evaluated the performance of the joint model
and the TVCM focusing on treatment effect on the time-
to-event outcome, while [17] focused on the association
between marker and event under few specific scenarios.

A broader simulation study that evaluates the impact
of model misspecifications and that could be useful for
applied statisticians in order to understand advantages
and disadvantages of a joint model as compared with a
Cox model in different contexts is lacking. Moreover, the
distinctive role of the bias due to LOCF and measurement
error in the TVCM has not received attention in the pre-
vious studies. In this paper, we conduct a comprehensive
simulation study with the following goals: (a) disentan-
gle the bias introduced by LOCF and measurement error
when assessing the association between a marker and a
time-to-event endpoint by the TVCM and to compare
its performance with a joint model, (b) clarify relevant
assumptions of the jointmodel and assess its robustness in
the presence of key model misspecifications, in particular
considering the misspecifications of the marker distribu-
tion, of the marker trajectory, and of the shape of the
hazard function. Additionally, these theoretical consider-
ations will be used to evaluate the potential of PTX3 as
a prognostic marker of GvHD after haematopoietic stem
cell transplantation.
In “Method” section below, we describe the TVCM and

the joint model approaches. In “Simulation study” section
we present the simulation studies: simulation protocol, key
model misspecification scenarios and discussion of asso-
ciated results. In “Motivating context” section, we present
an application to illustrate the use of PTX3 as a marker of
GvHD using both the TVCMand joint model. Concluding
discussion is presented in “Discussion” section.

Method
Notation
Let T∗

i be the failure time of subject i (i = 1, . . . , n)

in a cohort of size n. Suppose that we want to estimate
the association between a biomarker wi(t), that is varying
in time, and the hazard of failure. In practice, the longi-
tudinal biomarker is measured at discrete times tij, j =
1, . . . , ni. Thus, biomarker information coming from the
i-th subject is a vector of observed discrete values, pos-
sibly subjected to the measurement error εi(t), {yi(tij) =
wi(tij)+εi(tij), j = 1, . . . , ni}. Since survival times are com-
monly affected by right censoring, the observed survival
time is Ti = min(T∗

i ,Ci) , where Ci is the right censoring
time and δi = I(T∗

i ≤ Ci) is the event indicator, indi-
cating whether the survival time or the censoring time is
observed. T∗

i and Ci are assumed to be independent con-
ditional on the biomarker trajectory wi(t), as commonly
done in survival analysis (e.g., [18]).

The time-varying covariate Cox model
The TVCM is a generalization of the Cox model [2]
accounting for covariates that can change value during the
observation time. The proportional hazardsmodel has the
form
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hi(t) = h0(t) exp{αyi(t)} (1)

where h0(t) denotes an unspecified baseline hazard, α

is a parameter measuring the association between the
observed longitudinal measure yi(t) and the hazard at
time t (hi(t)). A vector of fixed baseline covariates can
also be included in the model (1). The hazard ratio HR =
exp(α) is interpreted as the relative increase in the hazard
at any time t for a unit increase in the observed value of
the biomarker at the same time point. The HR is assumed
to be constant in time, thus we assume that the rela-
tive increase in the hazard for each unit increase in the
biomarker is the same for all the observation time. Infer-
ence is based on maximizing the partial likelihood [3].
Of note, when yi(t) is not observed at time t, the most
updated value is used: yi(tij), tij ≤ t < tij+1, using the
LOCF principle [8].

Joint models
A joint model of longitudinal and survival data comprises
two linked submodels: the longitudinal and the survival
submodels [10, 19]. The longitudinal submodel specifies
the trajectory of a biomarker over time. This is typically
achieved using a linear mixed effects model [20] of the
form:

yi(t) = wi(t) + εi(t) = βT f i(t) + bTi gi(t) + εi(t) (2)

in which f i(t) and gi(t) are vectors of functions of
time t for the fixed effect parameters β and the ran-
dom effect parameters bi, respectively. The component
εi(t) denotes mutually independent normally distributed
error terms with variance σ 2

ε . For the random effects,
one assumes bi ∼ MVN(0,�), where � is inter-subject
variance-covariance matrix. Further, the random effects
are assumed to be independent of the error terms. In
model (2) the observed marker value yi(t) at time point t
is decomposed into the underlying truemarker valuewi(t)
and a random error term. The survival submodel attempts
to associate the marker value with the hazard of an event
at the same time point t using the proportional hazards
model:

hi(t) = h0(t) exp{αwi(t)} (3)

Similarly to (1), the parameter α measures the associ-
ation between the longitudinal biomarker and the time-
to-event and the hazard ratio HR = exp(α) is assumed
constant in time. A vector of fixed baseline covariates
can be included in this model as well. The basic differ-
ence with (1) is that model (3) does not use the observed
value of the biomarker yi(t), but an estimate of the true
value wi(t), which is continuously updated in time and
obtained by maximizing the joint likelihood of the time-
to-event and longitudinal marker outcomes. As a note,
an appropriate estimate of the subject trajectory wi(t)

requires correct specification of the design vectors f i(t)
and gi(t). The optimization procedure involves a hybrid
of expectation maximization (EM) and direct maximiza-
tion as discussed in [10]. Unlike in the TVCM of (1),
the baseline hazard must be specified parametrically or
approximated by spline-based approaches. In fact, leav-
ing the baseline hazard completely unspecified within the
joint modeling framework severely underestimates the
standard errors of the parameter estimates [21]. While the
association parameter in both (3) and (1) is denoted by α,
the corresponding estimates from the two models would
be different.

Simulation study
In this section, we conduct a simulation study under
various scenarios in order to address the two aims, (a)
disentangling the bias introduced by LOCF and mea-
surement error when assessing the association between
a marker and a time-to-event by the TVCM and com-
pare its performance with that of the joint model. The
second aim (b) focuses on clarifying relevant assump-
tions of the joint model and assess its robustness in the
presence of model misspecifications. In fact, in the joint
modeling framework, the association between the longi-
tudinal marker and the hazard of an event relies on several
assumptions on the longitudinal and survival submodels,
including the marker distribution, the marker trajectory
and the shape of the hazard function. The impacts of mis-
specifying these assumptions are illustrated, respectively,
in the sections b1, b2 and b3. Table 1 summarizes the
main parameter values used for the simulation scenarios,
which are described below. All simulations and analyses
were performed using the R package JM version 1.4.7.

Simulations protocol
We considered a sample size of n = 300 subjects with reg-
ularmeasures of the biomarker for 14 weeks, including the
baseline measurement (t = 0, ...14). The simulation set-
ting was inspired by the motivating context of the data in
“Motivating context” section. Data were generated by the
following steps:

1 The general formula to obtain the true marker value
wi(t) was given as

wi(t) = β0 + β1t + β2t2 + bi0 + bi1t + bi2t2

bi = (bi0, bi1, bi2)T ∼ N3(0,�),
(4)

where � denotes 3 by 3 inter-subject
variance-covariance matrix. When a linear
decreasing trajectory was considered, as for the
majority of the scenarios reported in Table 1, the
fixed effect parameters were chosen to be β0 = 3.2,
β1 = −0.07 and β2 = 0. A basic scenario of
biomarker with constant value in time was also
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Table 1 Summary of the simulation protocol comprising main parameter values, marker and survival time distributions used for each
of the simulation scenarios

Scenario β0 β1 β2 bi �11 �22 �33 h0(t)

a) LOCF and measurement error impact

1 3.2 0 0 N(0,�11) 0 0 0 Weibull(0.1, 1.4)

2 3.2 −0.07 0 N2(0,�) 1.44 0.04 0 Weibull(0.1, 1.4)

b1) Marker distribution

3 3.2 −0.07 0 BM∗ 1.44 0 0 Weibull(0.1, 1.4)

4 3.2 −0.07 0 χ2(0.72) 1.44 0 0 Weibull(0.1, 1.4)

5 3.2 −0.07 0 	(0.5, 1.7) 1.44 0 0 Weibull(0.1, 1.4)

6 3.2 −0.07 0 N(0,�11) 1.44 0 0 Weibull(0.1, 1.4)

b2) Marker profile

7 3.2 −0.07 0.004 N3(0,�) 1.44 0.6 0.09 Weibull(0.1, 1.4)

8 3.2 −0.16 0.01 N3(0,�) 1.44 0.6 0.09 Weibull(0.1, 1.4)

b3) Baseline hazard

9 3.2 −0.07 0 N2(0, 1.44) 1.44 0.04 0 h0(t)nonm

BM∗ denotes a bimodal mixture distribution 0.65 ∗ N(8, 1.44) + 0.35 ∗ N(15, 1.44)
h0(t)nonm = νκtκ−1/(c + tκ ), where ν = 1, κ = 2, c = 10

considered by setting β1 = β2 = 0 (scenario 1,
Table 1). To assess the misspecification of the marker
distribution (b1), a random intercept model was
considered with bi0 generated from four different
probability distributions: a Bimodal mixture of two
normal distributions (hereafter called Bimodal),
Chisquare, Gamma and Normal (scenarios 3 to 6).
The parameter values of these distributions were
chosen such that their corresponding variances
equaled the random intercept variance �11 = 1.44.
Model (4) was used to investigate misspecification of
marker trajectory (b2) by generating biomarker
values with a quadratic profile in scenarios 7 and 8, as
depicted in Fig. 2a.

2 The observed marker value yi(t) at time t was
obtained as yi(t) = wi(t) + ε, where ε represents a
normally distributed measurement error
ε ∼ N(0, σ 2

ε ), with increasing variability
σε ∈ (0.1, 0.3, 0.5), corresponding to a coefficient of
variation (CV), defined as the standard deviation of
measurement error divided by the mean (e.g.,[22]), of
3.1%, 9.4%, 15.6% respectively. Regular measures of
wi(t) were obtained with increasing frequency, from
one measurement per week (t = 0, 1, . . . , 14) to 4
measurements per week (t = 0, 0.25, . . . , 14), in
order to examine the effect of LOCF in TVCM.

3 The survival time T∗
i was obtained by a Weibull

proportional hazard model:
hi(t) = λρtρ−1 exp{αwi(t)}, where ρ = 1.4, λ = 0.1.
The association parameter was set at α ∈ (0, 0.3, 0.6),
corresponding to no, moderate and strong
association between wi(t) and hi(t), respectively. The

survival time was generated by evaluating the inverse
of a cumulative hazard (see, [23]). Since this does not
lead to a closed form expression, we used the R root
finder function uniroot to generate T∗

i
numerically. To investigate the impact of
misspecifying the distribution of the hazard function
on the association parameter α (b3), in the scenario
9, the survival times were generated from a
non-monotonic baseline hazard function
h0(t) = νκtκ−1/(c + tκ), where ν = 1, κ = 2 and
c = 10. The shape of this function, along with the
Weibull curve previously described, were shown in
Fig. 2b.

4 The censoring time Ci was generated according to a
uniform distribution in (0,14), leading to around 20%
of censoring proportion before week 14.

5 The observed survival time Ti = min(T∗
i ,Ci) was

then calculated.
6 Marker values yi(t) with t > Ti were disregarded.

We drew B = 1000 simulations for each scenario, B was
chosen in order to get at least a 2% level of accuracy in the
estimate of the association parameter α in about 95% of
the samples, assuming a true association parameter of 0.6
with standard error 0.14 [24]. To each generated dataset,
we fitted the following models: i) basic Cox model consid-
ering only the baseline measurement of a marker, yi(t =
0); ii) the TVCM considering the observed updated value
of the marker; iii) the joint model considering the updated
value of the marker. We summarized the results using: the
mean of the simulation estimates (Est), empirical Monte
Carlo standard error (ESE), asymptotic standard error
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(ASE), percentage bias (%Bias= bias/α) and 95% coverage
probabilities (CP) of the association parameter α. We also
used bias and the mean-squared error (MSE) as necessary.
The ASE was computed as the average of the estimated
standard errors, and the ESE as the standard deviation of
the estimates of α.

Results
a)Measurement error and last observation carried forward
impact
Table 2 shows the results of the constant biomarker case
(scenario 1 of Table 1). The TVCM and the baseline Cox
model show a very similar performance, with increas-
ing bias as the measurement error is increasing. This is
expected given that the biomarker mean value does not
change over time. In the presence of small measurement
error (σε = 0.1), the joint model estimate showed a higher
bias, indicating that a joint model is less beneficial in
the presence of small measurement error and a constant
biomarker. However, when σε was increased to 0.3 and 0.5,
the bias in the estimates of the joint model was smaller
than the one in the TVCM, suggesting the ability of the
joint model to account for measurement error.
Table 3 shows the results under scenario 2 (linearly

decreasing marker), with α ∈ (0, 0.3, 0.6). The ESE (not
reported) were always in close agreement with the ASE.
When α was set at 0, a similar good performance of the
three models was visible regardless of the size of σε . In
the other scenarios, we can observe increasing bias, and
decreasing coverage probabilities, for the TVCM (every
week) as the magnitude of σε increases. With σε = 0.1
and α = 0.3, the percentage bias was −2.3% and the cov-
erage 95%. This percentage bias raised to −19%, and the
coverage dropped to 80%, when σε increased to 0.5, while
it reduced to −0.7% when the number of measurements
taken was increased to four times per week, thus the

impact of LOCF estimate was reduced. The advantage of
using the joint model was observed in the presence of high
measurement error, where the percentage bias of −19%
(TVCM) was reduced to 0.3%. The joint model, fitted
using the parametric Weibull baseline hazard, provided
the most unbiased estimates with coverage probabilities
much closer to 95% across all the scenarios. We note that
the performance of the TVCM falls further in the pres-
ence of a strong association between the marker and the
time-to-event. For instance, with α = 0.6 and σε = 0.5,
a large percentage bias, −21%, and a very small coverage,
35%, were observed for the TVCM (once per week). In the
latter setting, the improvement achieved by increasing the
number of measurements was small.

b) Results undermodel misspecification

b1) Marker distribution In joint modeling, the marker
distribution is typically assumed to be Gaussian (e.g.,
[16]). Violation of this assumption is a key concern as
the random effects play a central role in characterizing
the association between the biomarker and hazard of an
event [10]. The simulation study in this section assesses
the effect of misspecifying the distribution of the random
effects according to the scenarios 3 to 6 of Table 1. A
random intercept model was considered to generate the
random intercept bi0 from three non-normal distributions
and a reference Normal distribution. The joint model was
fitted assuming a normally distributed random intercept
in the longitudinal submodel. Five different sample sizes
of 35, 75, 150, 300 and 600 subjects were considered in
this setting. The measurement error standard deviation
was held fixed σε = 0.3 and the true association param-
eter α = 0.3. The results of the simulation are shown in
Table 4. The joint model failed to converge for a few simu-
lations with small sample size: 6/1000 when the data were
generated using the Bimodal distribution with n = 35

Table 2 Results on the association parameter α obtained from the baseline Cox model, the TVCM and the joint model fitted to data
generated considering a constant biomarker (scenario 1 of Table 1), α ∈ (0, 0.3, 0.6) and σε ∈ (0.1, 0.3, 0.5) with CV
∈ (3.1%, 9.4%, 15.6%). Mean of the maximum likelihood estimates (Est), empirical Monte Carlo standard error (ESE), asymptotic
standard error (ASE), percentage bias (%Bias) and 95% coverage probabilities (CP) are shown

α = 0.3 α = 0.6

σε Model Est ESE ASE %Bias CP Est ESE ASE %Bias CP

Cox.baseline 0.299 0.056 0.056 -0.3 95 0.598 0.060 0.060 -0.3 94

0.1 TVCM(1x/week) 0.299 0.056 0.056 -0.3 95 0.598 0.060 0.060 -0.3 94

joint model 0.302 0.055 0.056 0.7 95 0.605 0.059 0.059 0.8 94

Cox.baseline 0.283 0.054 0.055 -5.7 94 0.557 0.059 0.058 -7.2 87

0.3 TVCM(1x/week) 0.282 0.054 0.055 -6.0 94 0.557 0.057 0.058 -7.2 88

joint model 0.302 0.057 0.057 0.7 95 0.606 0.062 0.061 1.0 95

Cox.baseline 0.254 0.052 0.052 -15 85 0.489 0.056 0.054 -18 45

0.5 TVCM(1x/week) 0.252 0.051 0.052 -16 84 0.489 0.053 0.054 -18 46

joint model 0.302 0.059 0.058 0.7 95 0.607 0.068 0.066 1.2 94
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Table 3 Results of the association parameter α obtained from the baseline Cox model, the TVCM and the joint model fitted to data
generated considering the linear marker trajectory (scenario 2 of Table 1) with α ∈ (0, 0.3, 0.6) and σε ∈ (0.1, 0.3, 0.5) with CV
∈ (3.1%, 9.4%, 15.6%). Mean of the maximum likelihood estimates (Est), asymptotic standard error (ASE), bias, percentage bias (%Bias)
and 95% coverage probabilities (CP) are shown

α = 0 α = 0.3 α = 0.6

σε Model Est ASE Bias CP Est ASE %Bias CP Est ASE %Bias CP

Cox.baseline 0.000 0.060 0.000 95 0.254 0.056 -15 86 0.545 0.059 -9.2 83

0.1 TVCM(1x/week) -0.003 0.060 -0.003 96 0.293 0.058 -2.3 95 0.582 0.061 -3.0 93

TVCM(4x/week) -0.001 0.060 -0.001 95 0.298 0.059 -0.7 94 0.594 0.062 -1.0 94

joint model -0.003 0.059 -0.003 96 0.301 0.058 0.3 95 0.604 0.061 0.7 94

Cox.baseline 0.000 0.058 0.000 96 0.240 0.054 -20 79 0.508 0.057 -15 62

0.3 TVCM(1x/week) -0.003 0.058 -0.003 96 0.275 0.057 -8.3 92 0.541 0.059 -9.8 83

TVCM(4x/week) -0.001 0.058 -0.001 95 0.279 0.057 -7.0 92 0.550 0.059 -8.3 86

joint model -0.003 0.060 -0.003 95 0.301 0.059 0.3 95 0.604 0.064 0.7 94

Cox.baseline 0.000 0.055 0.000 96 0.216 0.051 -28 61 0.449 0.053 -25 23

0.5 TVCM(1x/week) -0.003 0.055 -0.003 96 0.244 0.053 -19 80 0.474 0.055 -21 35

TVCM(4x/week) -0.002 0.055 -0.002 95 0.247 0.054 -18 84 0.480 0.055 -20 40

joint model -0.004 0.062 -0.004 95 0.301 0.062 0.3 95 0.606 0.069 1.0 94

and 1/1000 for n = 75. These non-converging simula-
tions were excluded from the analyses. When the marker
was generated from a non-normal distribution, the joint
model produced a biased estimate of α for n = 35, with
a percentage bias of 22%, 17% and 7.7% when the ran-
dom intercept was generated from Chisquare, Gamma
and Bimodal distributions, respectively. However, the per-
centage bias decreased as the sample size n increased,
reaching a maximum value of 3.7% with n = 600 subjects,
and the coverage probabilities were closer to the optimal
95% across all distributions. Further, both the ESE and
the ASE decreased as the sample size increased. Thus, the
estimate of the association between longitudinal marker
and hazard of an event is not affected substantially by the
misspecification of the random effect distribution as long
as the sample size is large.
The TVCM is relatively less biased and more precise in

the estimate of α for small sample sizes, indicating it could
provide a good accuracy even though the marker was con-
taminated with a measurement error (σε = 0.3). Figure 1
shows the MSE for the joint and TVCMmodels under the
four distributions. The MSE reflects the accuracy of each
model taking into account both the bias and variability
[24]. For the small sample size, the TVCM has lowerMSE,
except for the Normal case where MSE from both models
are the same. As the sample size increases, the MSE from
both models coincide.

b2) Marker trajectory In order to appropriately charac-
terize the association between the marker and the hazard
of an event, estimation of the subject-specific trajectory

wi(t) from (2) must capture the underlying shape. To eval-
uate the impact of misspecification of the marker profile
on the estimate of α, we generated longitudinal trajec-
tories which were quadratic in nature and fitted a joint
model assuming linear trajectories with random intercept
and random slope. We considered a slight and a gross
departure from linearity, with parameters specified in sce-
narios 7 and 8 of Table 1, respectively. Figure 2a illustrates
the mean longitudinal profile under both scenarios.
Table 5 reports the results of the simulation study under

marker trajectory misspecification. The table includes
the TVCM fitted to the generated observed longitu-
dinal marker based on four times per week. A lack
of convergence was encountered for the joint model
under gross misspecification: the frequencies of non-
convergence were 16/1000 and 13/1000 for σε = 0.3 and
σε = 0.5, respectively. Further, one extreme outlier esti-
mate for each of the two σε values was obtained. The two
outliers were excluded from the results shown in Table 5.
The impact of the marker trajectory misspecification is
clearly observed in the estimates of the joint model. For
σε = 0.3, we observe a percentage bias of −5.3% for
the joint model under slight misspecification. This corre-
sponds to an extra 5% bias as compared with the same
scenario when the marker shape was correctly specified
(see, Table 3). The extra bias could be as large as 8.7%
under gross misspecification. These indicate that the lon-
gitudinal trajectory of amarkermust be carefully specified
when a jointmodel is considered for estimating the associ-
ation between longitudinal biomarker and time-to-event.
In the event of gross misspecification, the TVCMprovides
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Table 4 Results of the association parameter α obtained from joint model and TVCM fitted to data generated considering the sample
size n ∈ (35, 75, 150, 300, 600) and different probability distributions (scenarios 3:6 of Table 1) for the random effect bi0 with variance
�11 = 1.44, α = 0.3 and σε = 0.3 with CV= 9.4%

Joint model TVCM(1x/week)

Distribution n Est ESE ASE %Bias CP Est ESE ASE %Bias CP

35 0.315 0.191 0.179 5.0 95 0.287 0.182 0.176 -4.3 95

75 0.308 0.123 0.116 2.7 94 0.286 0.117 0.114 -4.7 95

Normal 150 0.306 0.085 0.081 2.0 94 0.285 0.081 0.079 -5.0 94

300 0.302 0.057 0.056 0.7 95 0.282 0.055 0.055 -6.0 94

600 0.304 0.040 0.040 1.3 95 0.284 0.038 0.039 -5.3 93

35 0.323 0.054 0.051 7.7 95 0.315 0.066 0.062 5.0 96

75 0.309 0.033 0.033 3.0 95 0.303 0.038 0.038 1.0 95

Bimodal 150 0.305 0.023 0.023 1.7 95 0.301 0.025 0.025 0.3 96

300 0.302 0.016 0.016 0.7 96 0.299 0.017 0.018 -0.3 96

600 0.302 0.011 0.011 0.7 96 0.299 0.012 0.012 -0.3 95

35 0.366 0.256 0.211 22 93 0.309 0.215 0.195 3.0 95

75 0.334 0.134 0.125 11 94 0.297 0.121 0.118 -1.0 96

Chisquare 150 0.316 0.088 0.083 5.3 94 0.287 0.079 0.079 -4.3 95

300 0.318 0.059 0.057 6.0 94 0.289 0.054 0.054 -3.7 95

600 0.309 0.040 0.039 3.0 95 0.283 0.036 0.037 -5.7 94

35 0.352 0.232 0.200 17 93 0.305 0.197 0.187 1.7 96

75 0.327 0.135 0.122 9.0 93 0.291 0.120 0.116 -3.0 96

Gamma 150 0.316 0.079 0.081 5.3 96 0.287 0.073 0.077 -4.3 96

300 0.316 0.061 0.056 5.3 94 0.289 0.056 0.054 -3.7 94

600 0.311 0.041 0.039 3.7 94 0.286 0.037 0.037 -4.7 95

Mean of the maximum likelihood estimates (Est), empirical Monte Carlo standard error (ESE), asymptotic standard error (ASE), percentage bias (%Bias) and 95% coverage
probabilities (CP) are shown

less biased estimates even in the presence of moderate
measurement error in the biomarker.

b3) Hazard shape function Within the joint model
framework, leaving the baseline hazard unspecified
severely underestimates the standard errors of the param-
eter estimates [21]. Thus the hazard function for the sur-
vival submodel is often assumed to be Weibull (e.g., [25]),
but the evolution of the hazard rate over time can easily be
non-monotonic (e.g., [26, 27]). To investigate the impact
of misspecifying the distribution of the hazard function on
the association parameter α, we generated data following
a non-monotonic hazard (scenario 9 in Table 1) and fitted
the joint model assuming three baseline hazard shapes:
constant, Weibull and splines. For the case of splines, the
baseline hazard was defined using B-splines (e.g., [28])
with 5 internal knots placed at equally-spaced percentiles
of the observed survival time Ti. Table 6 reports the
results considering α ∈ (0.3, 0.6) and σε ∈ (0.1, 0.3, 0.5).
The performance of the TVCM was comparable to the
previous scenarios (see Table 3), while the accuracy of

the joint model was strictly dependent on the assump-
tions on the hazard shape. The joint model with constant
hazard produced severely biased estimates: for example
when σε = 0.1, α = 0.3 was underestimated by 39%,
with a coverage of 39%, and none of the confidence inter-
vals contained the true value, when α was set at 0.6.
Thus, even if the constant hazard can be appealing for
ease of computation, it often does not represent a real-
istic assumption. When the joint model was fitted to the
generated data assuming a Weibull hazard, the estimate
of α was also biased for all the scenarios. For α = 0.3
and σε = 0.1, α was overestimated by 12%. Joint mod-
els based on spline functions provided the most unbiased
estimates of α with coverage probability closer to 95% in
most scenarios. The flexibility of spline functions allowed
to capture the underlying non-linear shape of the baseline
hazard.

Motivating context
The example is coming from a study where patients with
haemato-oncological diseases who underwent stem cell
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Fig. 1Mean-squared error (MSE) of the association parameter α obtained from the joint model and TVCM to the data generated considering
different sample sizes (n) and different probability distributions for the random effect bi0

Fig. 2 aMean biomarker trajectory for the different scenarios: linearly decreasing (scenarios 2-6 and 9) and quadratic shape with slight (scenario 7)
and gross (scenario 8) misspecifications with respect to the linear trend. b Baseline hazard function for the scenarios 1-8 (Weibull) and 9
(non-monotonic shape)
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Table 5 Results of the association parameter α estimated from the TVCM and joint model fitted to data generated considering slight
and gross misspecifications of the longitudinal trajectories (scenarios 7 and 8 of Table 1), σε ∈ (0.1, 0.3, 0.5) with CV
∈ (3.1%, 9.4%, 15.6%) and the true α = 0.3

Slight misspecification Gross misspecification

σε Model Est ESE ASE %Bias CP Est ESE ASE %Bias CP

0.1 TVCM(1x/week) 0.295 0.056 0.056 -1.7 95 0.297 0.055 0.056 -1.0 95

TVCM(4x/week) 0.309 0.054 0.055 3.0 96 0.310 0.053 0.054 3.3 96

joint model 0.297 0.209 0.060 -1.0 92 0.280 0.222 0.059 -6.7 91

0.3 TVCM(1x/week) 0.277 0.054 0.054 -7.7 93 0.280 0.053 0.054 -6.7 93

TVCM(4x/week) 0.292 0.051 0.053 -2.7 95 0.294 0.051 0.052 -2.0 95

joint model 0.284 0.291 0.067 -5.3 91 0.273* 0.290 0.059 -9.0 91

0.5 TVCM(1x/week) 0.249 0.050 0.051 -17 83 0.252 0.050 0.051 -16 84

TVCM(4x/week) 0.264 0.047 0.050 -12 89 0.266 0.047 0.049 -11 90

joint model 0.265 0.192 0.071 -12 91 0.265* 0.167 0.065 -12 91

Mean of the maximum likelihood estimates (Est), empirical Monte Carlo standard error (ESE), asymptotic standard error (ASE), percentage bias (%Bias) and 95% coverage
probabilities (CP) are shown. The star (*) indicates that one extreme outlier estimate was removed

transplantation (HSCT) were evaluated to explore the
potential of the long pentraxin 3 (PTX3) as a prognos-
tic marker of Acute Graft-versus-Host Disease (GvHD)
[1]. Acute graft-versus-host disease is one of the major
causes of morbidity and mortality associated with allo-
geneic stem cell transplants [29]. Currently, the diag-
nosis of GvHD is based on clinical signs and symp-
toms and requires invasive biopsies of disease target
organs in uncertain cases, which are sometimes unfeasi-
ble. To improve diagnosis and prognosis of GvHD, recent
researches focus on specific biomarkers measured in the
plasma or serum of HSCT patients as a new tool for
detecting GvHD prior to clinical manifestation and for

GvHD management. PTX3 is an acute-phase protein,
rapidly produced by vascular endothelial cells, mesenchy-
mal cells and fibroblasts, as well as by innate immune
response cells upon stimulation with pro-inflammatory
cytokines, damaged tissue-derived signals and microbial
antigens. Differently from other acute phase proteins,
such as the C-Reactive Protein, PTX3 is considered a
rapid marker for primary local activation of innate immu-
nity and inflammation due to its peculiar pattern of
production.
In this section, we compare the use of the TVCM

and joint model for the evaluation of PTX3 as a marker
of GvHD. Peripheral blood samples were collected in a

Table 6 Results of the association parameter α obtained from joint model and TVCM fitted to data generated considering a
non-monotonic baseline hazard function (scenario 9 of Table 1), α ∈ (0.3, 0.6) and σε ∈ (0.1, 0.3, 0.5) with CV ∈ (3.1%, 9.4%, 15.6%)

α = 0.3 α = 0.6

σε Model Est ESE ASE %Bias CP Est ESE ASE %Bias CP

0.1 TVCM(1x/week) 0.292 0.058 0.058 -2.7 94 0.579 0.062 0.061 -3.5 93

joint-constant 0.183 0.041 0.054 -39 39 0.336 0.035 0.052 -44 0

joint-weibull 0.337 0.066 0.058 12 86 0.638 0.065 0.061 6.3 89

joint-spline 0.303 0.060 0.059 1.0 95 0.608 0.064 0.063 1.3 94

0.3 TVCM(1x/week) 0.274 0.056 0.056 -8.7 92 0.538 0.059 0.058 -10.3 80

joint-constant 0.180 0.043 0.055 -40 39 0.328 0.037 0.053 -45 0

joint-weibull 0.340 0.068 0.059 13 87 0.642 0.070 0.065 7.0 89

joint-spline 0.304 0.062 0.061 1.3 95 0.608 0.077 0.067 1.3 94

0.5 TVCM(1x/week) 0.244 0.053 0.053 -18 81 0.471 0.055 0.055 -21 36

joint-constant 0.174 0.046 0.052 -42 39 0.312 0.04 0.055 -48 0

joint-weibull 0.344 0.071 0.062 15 85 0.643 0.164 0.071 7.2 89

joint-spline 0.304 0.065 0.064 1.3 95 0.615 0.197 0.073 2.5 94

Mean of the maximum likelihood estimates (Est), empirical Monte Carlo standard error (ESE), asymptotic standard error (ASE), percentage bias (%Bias) and 95% coverage
probabilities (CP) are shown
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cohort of 116 patients before the beginning of condition-
ing regimen, on day 0 (HSCT), weekly after HSCT until
the 14th week and at the development of symptoms con-
sistent with GvHD. Plasma was obtained after centrifug-
ing whole blood and PTX3 was evaluated by Sandwich
ELISA assay, with a measurement precision declared as
an intra-assay CV lower than 10%. The median follow-up
time was 5 weeks. Time was measured from HSCT up to
the occurrence of GvHD, censoring occurred if a subject
died before GvHD or was lost to follow-up. The follow-up
ended at the 14th week.
Figure 3a displays the distribution of the PTX3 marker

over time, showing a decreasing trend and departure of
the distribution from normality. The average PTX3 at
week 0 for all subjects was 29.46 ng/ml (nanograms per
milliliter) with a standard deviation of 31.5. The GvHD
hazard was estimated using the bshazard package [30],
and plotted in Fig. 3b, which showed a highly non-
monotonic shape of the GvHD event. We fitted a TVCM
and a joint model to evaluate the association between the
marker and the hazard of GvHD. Consistently with the
simulation study, we also considered the basic Cox model
that uses only the baseline information, observed at t = 0,
as a covariate. For the joint model the longitudinal PTX3
was specified using a linear mixed model with random
intercept and random slope, which was chosen as the best
model according to AIC selection criterion when com-
pared to a mixed model that involves a quadratic time.
The baseline hazard within the joint model was specified
as constant, Weibull and B-splines with 6 internal knots
placed at equally-spaced percentiles of the event time.
Each model was fitted considering both the original PTX3
and the logarithmic transformation of PTX3 to satisfy the
normality assumption of the linear mixed model.
The results are shown in Table 7, which reports the esti-

mated association between PTX3 and GvHD (Est), the
standard error of the estimate (SE), hazard ratio (HR), and

the 95% confidence interval of the HR (95% HR CI). The
baseline marker did not showed a significant association
with the hazard of GvHD event. The updated values of
PTX3 appear to be positively associated with the hazard of
the GvHD as estimated by the TVCM, with both its origi-
nal value and the log transformed version, even though the
HR values are not comparable due to the log transforma-
tion. The TVCM hazard ratio of 1.14 indicates that a unit
increase in the PTX3 marker corresponds to a 1.14-fold
increase in the hazard of developing the GvHD disease.
The joint models using constant and Weibull hazards

estimated a lower non-significant association between
PTX3 and time to GvHD. Interestingly, when the haz-
ard was modeled by splines, the HR point estimate was
equal to the one obtained by the TVCM (1.14), but with
higher variability. When the log of PTX3 was used in
a joint model with spline baseline hazard, a HR(95%CI)
of 3.11(1.05, 9.18) was obtained. It follows that a unit
increase in the log of PTX3 marker was associated to a
3.11-fold increase in the risk of developing the GvHD dis-
ease. This value was greater than the HR of 1.82 estimated
by the TVCM, but with higher variability.
Overall, we notice a great variability among the joint

model estimates of the HR, ranging from 0.76 up to 3.11.
This can be directly linked to the misspecification of the
marker and hazard distribution in some of the applied
models, coherent with the simulation results. The Cox
model was unaffected by the normality of the marker and
from the hazard distribution.
Figure 4 shows the Kaplan-Meier (KM) estimate of

GvHD occurrence and the predicted marginal survival
from each one of the applied joint models. The spline
based survival curve was much closer to the KM curve,
suggesting that splines were able to capture the strong
non-linear hazard function shown in Fig. 3b. The curve
associated to the Weibull was in agreement with the
KM estimate until the 4th week of follow-up, but the

Fig. 3 a The distribution of PTX3 marker in time. b The shape of the distribution of the GvHD hazard estimate
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Table 7 Estimates of the association of PTX3, and log(PTX3), with time to GvHD from the baseline Cox model, TVCM and joint model

PTX3 log(PTX3)

Model Est SE HR 95% HR CI Est SE HR 95% HR CI

Cox.baseline -0.08 0.04 0.92 (0.85,1.00) -0.17 0.14 0.84 (0.64, 1.11)

TVCM 0.13 0.03 1.14 (1.08,1.20) 0.60 0.14 1.82 (1.38, 2.41)

joint-constant 0.05 0.08 1.05 (0.95,1.21) -0.28 0.29 0.76 (0.42, 1.36)

joint-Weibull 0.11 0.01 1.11 (0.84,1.47) 0.79 0.49 2.20 (0.84 ,5.78)

joint-spline 0.13 0.12 1.14 (0.90,1.44) 1.13 0.55 3.11 (1.05, 9.18)

The estimated association between PTX3 and GvHD (Est), the standard error of the estimate (SE), the hazard ratio (HR), and the 95% confidence interval of the HR (95% HR CI)
are reported

difference with the KM estimate increased over time. As
expected, the survival curve associated to the constant
hazard largely deviated from the KM curve.

Discussion
Investigating biological biomarkers as markers of diag-
nosis/prognosis or response to treatment requires infer-
ential tools for the association between the longitudinal
process of the marker and the progression of the dis-
eases. The TVCM has been the standard approach, but
its partial likelihood assumes constant biomarker values
between follow-up times and ignores measurement error.
There has been some effort to expand the Cox model
to accommodate measurement error, such as regression
calibration (e.g., [33]), that however requires the availabil-
ity of a validation subsample, that is not often available.
The modeling of the longitudinal profile of the biomarker
by a linear mixed model is another approach to obtain
an estimate of the expected value of the biomarker free
frommeasurement error, that can be included as a covari-
ate in the TVCM with a two-stage approach [17]. Joint

models simultaneously analyze the longitudinal marker
profile and the time to an event overcoming both the
issues of LOCF and measurement error. Joint models are,
however, computationally intensive and require additional
assumptions over the TVCM. In this paper, we performed
a comprehensive simulation study with the goal of clarify-
ing relevant assumptions for the understanding of a joint
model and for assessing its robustness under key model
misspecifications. Further, we disentangled the bias intro-
duced by LOCF andmeasurement error in the TVCM and
compared its performance with the joint model. Overall,
we illustrated that the TVCM approach underestimates
the association estimates in the presence of measurement
error.The major source of the TVCM bias was attributable
to measurement error compared with that attributable to
LOCF. On the other hand, the joint model can be severely
biased under model misspecification.
Firstly we considered how estimates from a joint model

may be biased under the misspecification of the normal-
ity assumption for the true marker distribution. Violation
of this assumption for joint models is an issue as the

Fig. 4 Observed Kaplan-Meier (KM) curve and predicted survival curves from the joint model assuming constant, Weibull and spline based hazards.
A logarithmic transformation of PTX3 was used in the joint models
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random effects play a central role for characterizing the
association between the marker and the hazard of an
event [10]. To avoid parametric distributional assumption,
joint models based on a semi-parametric [31] or non-
parametric assumptions [5] have been proposed. Further,
[32] showed that parameter estimates are robust to mis-
specification as the number of measurements per subject
increases. We showed that the misspecification has a neg-
ligible effect on the estimate of the association parameter
as long as the sample size is large, regardless of the para-
metric distribution being adopted. The TVCM was not
affected by the marker distribution. This is expected, but
it is worth to underline it here to discourage unnecessary
log-transformation to account for normality in the Cox
model framework, which is sometimes seen in themedical
literature (e.g., [34]).
Second, we looked into the impact of misspecifying

the longitudinal marker trajectory on the estimate of the
association between the marker and the hazard of an
event. This is motivated by the fact that the true under-
lying marker trajectory is typically unknown, since we
only observe error contaminated and intermittently mea-
sured marker. To effectively characterize the association
estimate, the true marker trajectory must be appropri-
ately estimated [10]. We illustrated that failing to capture
the underlying marker trajectory, at different amounts
of measurement error, leads to substantially biased esti-
mates in the joint model, while the TVCM is unaffected
by the misspecification, since it does not assume any form
of marker shape. [17] similarly found that, at fixed mea-
surement error, estimates from the joint model are biased
under marker trajectory misspecification. However, they
also suggested that the bias is still less than the bias from
the TVCM.
Furthermore, we found that a misspecification of the

baseline hazard in the joint modeling framework has
an important effect on the estimate of the association
between the longitudinal marker and the hazard of an
event. This issue had never been considered in the liter-
ature of joint models, but simulations indicated that the
association estimate was severely biased when the data
generating hazard process was misspecified. This was par-
ticularly evident when we attempted to model a highly
non-linear hazard shape by a constant or Weibull haz-
ard. On the other hand, association estimate using TVCM
was insensitive to the misspecification of the baseline
hazard, as its shape is unspecified. In the joint model-
ing framework leaving the baseline hazard unspecified
severely underestimates the standard error of the param-
eters [21], even if it appears to be the most applied choice
as shown in a recent meta-analysis on joint models [25].
Thus, the baseline hazard in the joint model should be
carefully modeled, also with the use of splines if neces-
sary, to avoid bias on the association estimate. The two

modeling techniques were illustrated using a real data on
HSCT for establishing PTX3 as a marker of GvHD. The
joint model, with the hazard modeled by spline functions,
provided the PTX3 as a potential diagnostic marker of
GvHD. This was corroborated by the TVCM, even if it
indicated a lower association estimate.
In conclusion, joint models are a powerful tool, able

to account for marker measurement error and to model
the marker trajectory in time. However, they require
strong assumptions that need to be properly validated,
and the avoidance of bias due to model misspecification
is crucial in order for a joint model to provide a substan-
tive benefit over the semi-parametric Cox model with a
time-varying covariate. Furthermore, it may be suggested
that the better performance by the joint model is unfair
because the data generating scheme in our simulation uti-
lized a biomarker measurement error whereas the TVCM
does not assume the presence of measurement error. We
showed that the performance of the joint model was
higher than that of a TVCM accounting for measurement
error in the biomarker by a two-stage approach, while
requiring similar hypotheses. The results are provided in
the Additional file 1.
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