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Abstract

Background: Attrition due to death and non-attendance are common sources of bias in studies of age-related
diseases. A simulation study is presented to compare two methods for estimating the survivor average causal effect
(SACE) of a binary exposure (sex-specific dietary iron intake) on a binary outcome (age-related macular degeneration,
AMD) in this setting.

Methods: A dataset of 10,000 participants was simulated 1200 times under each scenario with outcome data missing
dependent on measured and unmeasured covariates and survival. Scenarios differed by the magnitude and direction
of effect of an unmeasured confounder on both survival and the outcome, and whether participants who died
following a protective exposure would also die if they had not received the exposure (validity of the monotonicity
assumption). The performance of a marginal structural model (MSM, weighting for exposure, survival and missing data)
was compared to a sensitivity approach for estimating the SACE. As an illustrative example, the SACE of iron intake on
AMD was estimated using data from 39,918 participants of the Melbourne Collaborative Cohort Study.

Results: The MSM approach tended to underestimate the true magnitude of effect when the unmeasured confounder
had opposing directions of effect on survival and the outcome. Overestimation was observed when the unmeasured
confounder had the same direction of effect on survival and the outcome. Violation of the monotonicity assumption
did not increase bias. The estimates were similar between the MSM approach and the sensitivity approach assessed at
the sensitivity parameter of 1 (assuming no survival bias). In the illustrative example, high iron intake was found to be
protective of AMD (adjusted OR 0.57, 95% Cl 0.40-0.82) using complete case analysis via traditional logistic regression.
The adjusted SACE odds ratio did not differ substantially from the complete case estimate, ranging from 0.54 to 0.58
for each of the SACE methods.

Conclusions: On average, MSMs with weighting for exposure, missing data and survival produced biased estimates of
the SACE in the presence of an unmeasured survival-outcome confounder. The direction and magnitude of effect of
unmeasured survival-outcome confounders should be considered when assessing exposure-outcome associations in
the presence of attrition due to death.
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Background

Attrition due to death and loss to follow-up are two
major potential sources of bias in observational studies
which investigate diseases of ageing. Statistical methods
have been proposed to estimate exposure-outcome ef-
fects in the presence of each attrition scenario separ-
ately, however little is known about how the methods
compare when both sources of attrition are present.

As an illustrative example, we examine the causal ef-
fect of dietary iron intake on age-related macular degen-
eration (AMD). Intracellular iron has been implicated in
the pathogenesis of several chronic diseases of ageing,
including AMD [1-3]. AMD is a chronic eye disorder
responsible for severe and irreversible visual impairment
in older adults. Despite evidence of elevated levels of
iron in the retinal tissue of individuals with AMD, there
is little evidence to suggest a link between dietary iron
intake levels and the development of AMD [4].

As observed when investigating associations between
other lifestyle factors and AMD, quantification of the effect
of iron intake on AMD is susceptible to survival bias [5].
Individuals at risk of AMD also face the competing risk of
death, and loss to follow-up is also common among elderly
cohorts for whom ill-health and poor mobility can hinder
attendance at study visits. When survival is associated with
the exposure of interest and only participants who survive
until the outcome wave are included in an analysis, expos-
ure groups may lose exchangeability. Exchangeability im-
plies that, conditional on the observed characteristics of
individuals, an estimate of the causal relationship between
the exposure and the outcome can be obtained. That is,
balance of confounding variables is achieved across each
category of the exposure. A loss of exchangeability can
occur when there are shared predictors of survival and the
outcome; in this case bias may be observed regardless of
statistical adjustment for all direct exposure-outcome
confounders.

The survivor average causal effect (SACE) has been pro-
posed as a parameter to assess exposure-outcome rela-
tionships in analyses that are susceptible to survival bias.
The SACE exists within the potential outcomes frame-
work, which requires us to consider all participants’ po-
tential outcomes under each level of the exposure, and
uses principal strata categorising the potential survival of
each subject under each level of exposure to define the
relevant causal effect [6]. The SACE is a measure of the
average causal effect of the exposure on the outcome
among participants who would survive regardless of their
exposure status, commonly referred to as always-survivors
[7]. Over the last two decades several methods have been
developed to estimate the SACE, each requiring various
assumptions to ensure identifiability [7-10].

Marginal structural models (MSMs) have been employed
by several authors to estimate causal effects (including the
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SACE) and have been extended to account for participants
with missing outcome data due to non-attendance [11-15].
Shardell and co-authors have shown that inverse probability
weighting for survival can produce unbiased estimates for
the SACE when survival has been correctly modelled and
there are no unmeasured survival-outcome confounders
[13]. Another MSM approach proposed by Tchetgen
Tchetgen involves weighting for the probability of being an
always-survivor [14]. Other methods to estimate the SACE
make assumptions regarding the potential outcomes of sur-
viving participants, including those with missing outcome
data, without explicitly modelling the distribution of miss-
ing outcome data. For these methods, missing outcome
data for surviving participants are considered to be missing
at random and potential outcomes can be generated for all
baseline participants regardless of their attendance at the
follow-up [16]. An example of this is a sensitivity analysis
approach proposed by Egleston and co-authors [17].

In this paper we present a simulation study to compare
the performance of two methods employed to estimate
the SACE in the presence of missing binary outcome data
due to death and loss to follow-up. One method involves
a MSM (employing inverse probability weights for expos-
ure, survival and loss to follow-up) and the other method
employs the sensitivity analysis approach described above.
These approaches have been chosen as they have previ-
ously been demonstrated in studies with binary outcomes.

As an illustrative example we use data from the Mel-
bourne Collaborative Cohort Study to estimate the associ-
ation between iron intake (for simplicity expressed as
binary exposure measured at baseline; low vs high sex-
specific iron intake) and the presence of the late stage of
AMD at a follow-up study wave.

Methods

Notation and framework for potential outcomes

For each participant, i, let an indicator of the observed
exposure at baseline, A; equal 0 for low iron intake and 1
for high iron intake. Let Z; =1 if participant i is alive at the
start of the follow-up wave, and Z; =0 otherwise. Let the
outcome, Y, equal 1 in the presence of AMD at the follow-
up wave and O otherwise. For participants who have died
before the start of the follow-up wave, Y; is undefined. R; is
an indicator of attendance at the follow-up wave for
participant j; again it is undefined for participants who die
before that wave. Participant characteristics, (such as age
and sex, represented by the vector V) are collected at base-
line. U; is an indicator of a genotype which is associated
with both general health (and, therefore, survival) and the
outcome, AMD. In the simulation study below U; repre-
sents an unmeasured variable. D; is an indicator for loca-
tion of residence; with participants living in lower socio-
economic status areas less likely to attend the follow-up
wave. In the simulation study below, D; also represents an
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unmeasured variable. There are N participants at the base-
line wave with 7, _  participants observed to have low iron
intake, 4 | participants observed to have high iron intake
(N=ng_g+na-1). nz_ participants are observed to sur-
vive until the follow-up study wave.

As seen in the causal diagram presented in Fig. 1a, sur-
vival (Z) is a collider variable on the pathway between the
exposure (A) and the outcome (Y) since it is a “child” of the
exposure and genotype (U) [18]. Participant inclusion in
the analysis is dependent on survival until the follow-up
wave. Conditioning on survival unblocks the backdoor
pathway between the exposure and the outcome through U
(as seen in Fig. 1b) which introduces confounding bias [19].

Under the framework of potential outcomes we can con-
sider an individual’s outcomes if we were to set the expos-
ure (iron intake) to a, where a can take on the values 0
(low iron intake) or 1 (high iron intake) [6]. When the
value of the potential exposure for individual i (a;) is con-
trary to their observed exposure (4;) the potential outcome
under that potential exposure is often referred to as the
counterfactual outcome [20]. Z{a) is the potential survival
status and Yy(a) is the potential AMD status for participant
i when iron intake is set to a.

Principal stratification refers to categorization of in-
dividuals according to their potential survival outcome
for each level of iron intake [21]. The first stratum
consists of always-survivors, the individuals who are
the most robust and will be alive at follow-up regard-
less of iron intake level (Z;(a=0)=Z(a=1)=1). The
next stratum is comprised of never-survivors, those
who are the most fragile and will not survive irre-
spective of exposure level (Z;(a=0)=Z(a=1)=0).
Compliant-survivors will survive only if they have
high iron intake (Zj(a=0)=0, Z{a=1)=1), whereas
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defiant-survivors will survive only if they have low
iron intake (Z;(a=0)=1, Z(a=1)=0).

Principal stratum does not change after a partici-
pant has been exposed and therefore is considered to
be a pre-exposure variable. A person’s principal
stratum will depend on complex interactions between
genetics, past behaviour and environmental factors,
many of which are unlikely to be measureable. In the
simulation study below, these factors are represented
by the variable U which is also a predictor of the out-
come. Predictors of survival determine which partici-
pants are compliant-survivors. After conditioning on
survival (by including data from surviving participants
only), the distribution of these variables become un-
balanced between principal strata and, therefore, ex-
posure groups; surviving participants with higher
levels of the exposure, iron intake, (who include
always-survivors and compliant-survivors) will have
differing levels of U compared to surviving partici-
pants with lower levels of iron intake (who are all
always-survivors). To obtain an unbiased estimate of
the exposure-outcome effect, predictors of the out-
come which are not evenly distributed between ex-
posure groups (high vs low iron intake) must be
accounted for in the analysis. However, traditional
statistical methods cannot adjust for variables, such as
U, that have not been measured. Therefore, survival
bias exists when confounding of the relationship be-
tween exposure (iron intake) and the outcome (AMD)
by U is induced after conditioning on survival.

One assumption commonly required to identify the
SACE is monotonicity. The monotonicity assumption
states that iron intake will have a non-negative effect
on survival. That is, participants who survive with low

Fig. 1 Causal diagram for the effect of iron intake on age-related macular degeneration. V represents the vector of participant demographics (e.g.
age and sex) recorded at baseline. Exposure, A, is also recorded at baseline. Z is an indicator of survival until the start of the follow-up wave. R is
an indicator of attendance at the follow-up study wave when outcome (Y, age-related macular degeneration) was ascertained. An indicator genotype,
U, is unmeasured, as is D, an indicator for area of residence. a A scenario where missing outcome data are missing at random. b Conditioning on Z (a
collider between the exposure and U) will unblock the backdoor pathway (dashed line) from the exposure to the outcome through U
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iron intake will also survive with high iron intake,
and participants who die with high iron intake will
not survive with low iron intake (Z;(a =0) < Z,(a =1)).
Under the assumption of monotonicity, there will be
no defiant-survivors. Survivors who have low iron in-
take must be always-survivors; whereas survivors with
high iron intake could be either always-survivors or
compliant-survivors (as seen in Fig. 2). Consequently,
individuals with low iron intake are not directly com-
parable to (or exchangeable with) those with high
iron intake at the outcome study wave.

The survivor average causal effect (SACE)

Under the assumption of no unmeasured confounders
between the exposure and outcome (sometimes re-
ferred to as the strong ignorability assumption) and the
assumption that principal stratum is a pre-exposure
variable, the exposure groups will be exchangeable
when analyses are restricted to the stratum of always-
survivors [22]. Hence, there is no survival bias when
assessing the association between the exposure (iron in-
take) and the outcome (AMD) among this subgroup of
participants. Therefore, the SACE odds ratio (SACEoy)
is defined as the ratio of the odds of AMD when a=1
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(high iron intake) to the odds of AMD when a =0 (low-
iron intake) among always-survivors (AS):

odds[Y (a = 1) = 1]AS]
odds[Y(a = 0) = 1]A4S]

SACEor = (1)

However, as seen in Fig. 2, it is not possible to identify
which participants are always-survivors without add-
itional assumptions such as those described below.

The SACE is a marginal effect, meaning that it aims to
reflect the effect of an exposure on an outcome averaged
over the levels of unmeasured confounders within a speci-
fied population. This is in contrast to the conditional odds
ratio estimated via traditional logistic regression with co-
variate adjustment. The conditional odds ratio will coin-
cide with the SACE when there is no survival bias and the
covariates do not modify the effect of the exposure on sur-
vival. However, it should be noted that, unlike mean dif-
ferences, risk differences or risk ratios, odds ratios are
non-collapsible, meaning that the unadjusted odds ratio
for the entire sample cannot be expressed as a weighted
average of odds ratios from each observed pattern of con-
founders. Therefore, when estimating odds ratios, condi-
tional effects may differ from marginal effects even in the
absence of confounding [23].
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Fig. 2 Identification of principal strata dependant on observed exposure and survival status. Under the assumption of monotonicity, there are no
defiant-survivors; all survivors who had low iron intake at baseline can be identified as always-survivors but survivors who had high iron intake at
baseline could be always-survivors or compliant-survivors. When the monotonicity assumption has been violated, participants who survive
following low iron intake may be always-survivors or defiant-survivors (grey stripes). White boxes represent survivors and grey boxes represent
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Estimation of the survivor average causal effect

Many approaches have been proposed to estimate the
SACE [24-29]. The approaches under comparison in
this study are described below. Example statistical com-
puting code for estimating the SACE via these methods
in Stata is available in the Additional file 1. The ap-
proaches presented below require the assumption that
the outcome data are missing conditional on measured
covariates, and that missingness is independent of the
outcome [30]. In addition, each of the methods invoke
the stable unit treatment value assumption, which states
that the outcome of one participant is not dependent on
the exposure of another, and that there is only one ver-
sion of the exposure (ie. the level of exposure is the
same for everyone who has been categorised as having
high iron intake) [31]. It is also assumed that it is pos-
sible for participants to have been exposed to either ex-
posure level (i.e. low and high iron intake) for every
observed pattern of exposure-outcome confounders; this
is known as the positivity assumption [32].

Estimating marginal structural models (MSMs) with
standardised weights for survival
This approach is similar to that presented by Shardell and
co-authors in 2015 [13]. It uses stabilised inverse probabil-
ity of observed exposure weights to achieve balance of
measured baseline covariates across exposure groups.

The analysis of the exposure-outcome association is
conducted via weighted logistic regression, whereby each
participant, i, is weighted by an estimate of W

W, — SF 44,
" (A + (1-4:) (1-p,) ) q;m;

where i=1, 2, ..., Nand A; =0, 1. Here, p; is the propen-
sity for having high iron intake for the i ™ participant
(Eq. 3). The propensity is estimated via logistic regres-
sion adjusted for all measured exposure-outcome con-
founders and strong predictors of the outcome,
represented by the vector P [33]:.

(2)

PrjA; =1|P =P, = p, (3)

q; is the propensity for survival until the follow-up study
wave for the i ™ participant (Eq. 4). It is estimated via lo-
gistic regression adjusted for the exposure (iron intake),
all measured survival-outcome (AMD) confounders and
strong predictors of the outcome. These covariates are
represented here by the vector Q. Because U represents
an unmeasured variable, it cannot be included as a covari-
ate when estimating the probability of survival:

PriZ; =1|A=A4;,Q=Q] =q;; (4)

m; is the propensity for attendance at the follow-up
wave among the participants who survive (Eq. 5). This
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propensity is estimated via logistic regression adjusting
for iron intake, all measured attendance-outcome con-
founders and strong predictors of the outcome. These
covariates are denoted by the vector M. Information on
area of residence is unmeasured and therefore D is not
included as a model covariate in this example:

PI‘[R,':1|Z,’:1,A :A,',M:M,»]:m,»; (5)

SF, is a stabilising factor used to improve the efficiency
of the weights (Eq. 6) [11]. Here, it is the average of the
propensity for each exposure level. Separate constant
values are used as stabilising factors for participants ob-
served to have low iron intake (SF4_,) and participants
observed to have high iron intake (SF,4 - 1) [34].

! (Z"p,) (6)

Pa=a; \ o

SF, =

W; is undefined for participants who do not survive
until the follow-up study wave because non-missing out-
come status can only be defined for survivors. As with
any method which utilises propensity scores, the balance
of covariates across exposure groups should be assessed
before and after applying weights [33].

Finally a weighted logistic regression is fitted to the
binary outcome (Y) with the covariates, the exposure
variable (A) and baseline confounders (V). In the pres-
ence of stabilised inverse probability weights, further ad-
justment for baseline confounders of the exposure-
outcome relationship in the final weighted logistic re-
gression can reduce bias [35]. The regression coefficient
for the exposure is taken as the estimate of the log-odds
of the SACE for this approach.

By incorporating the probability of attendance at the
follow-up wave in the weight, participants with observed
outcomes represent those with similar characteristics who
were lost to follow-up. Weighting for survival plays a simi-
lar role; the surviving participants with the lowest propen-
sity for survival are given more weight to represent those
participants with similar characteristics who have died.

Estimation for sensitivity analysis approach

Survivors who reported high iron intake at baseline, i.e.
when A =1, could be always-survivors or compliant-
survivors (see Fig. 2); the strata to which they belong is
not directly identifiable from examination of the data. A
sensitivity analysis approach was proposed by Egleston
and co-authors in 2007 to reflect this uncertainty [17].
In this approach, the sensitivity parameter () represents
the ratio of the odds of AMD among the compliant-
survivors (CS) to the odds of AMD among the always-
survivors (AS) when a is set to one:
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_ odds[Y(a = 1) = 1|CS]
~ odds[Y(a = 1) = 1|AS]

(7)

As indicated in the original paper, 7 is a marginal value
and it is assumed to be constant over all values of the base-
line covariates [17]. If individuals with higher values of U
are less likely to survive and have a higher probability of
AMD then it is assumed that always-survivors will be more
robust and less likely to develop AMD than those who are
compliant-survivors. In this scenario, the value of 7 will be
greater than one. However, if higher values of U/ are associ-
ated with a lower probability of both survival and AMD,
then the value of 7 will be less than one. Likewise, when U
is associated with a higher probability of both survival and
AMD, the value of 7 will also be less than one.

As described in the 2007 paper, when 7 is not equal to
one the SACEy is equivalent to [17]:.

(vo +&)(r-1)-vi+q _vo-&
(vo-&1)(r-1) + v1—q &

\/{(vO +6)(1-1) + v} + 48 v0(7-1)
(8)

Here, v, is the marginal probability of survival and &,
is the marginal probability of both surviving and having
AMD when iron intake has been set to a. As the value
of 7 is not identifiable from the data, a sensitivity ana-
lysis can be conducted over a range of values for r. Con-
tent matter experts must decide which values of 7 are
plausible in the context of the analysis.

To estimate the value of ¢, the predicted probability of
the outcome must first be estimated via covariate adjusted
logistic regression, separately for participants observed to
have A =0 (low iron intake) and for participants observed
to have A =1 (high iron intake). All measured predictors
of AMD are included as covariates. The coefficients from
these models are then used to predict the probability of
AMD, hya), for all surviving participants (regardless of
missing outcome data status) under both observed and
counterfactual levels of the exposure:

= hi(a)

nz—ianda =0, 1

SACEOR(Til)

where g =

PV[Yi(ﬂ) =1 |V = Vl',Zl' = 1]
wherei =1,2,...,

©)

The adjusted potential probability of survival under each
exposure, gi{a), is also estimated for each participant:

PriZi(a) =1]Q = Q] = g;(a)

wherei = 1,2,...,Nanda = 0,1 (10)

Under each potential exposure level, the predicted
probability of AMD (k,(a), Eq. 9) is multiplied by the
predicted probability of survival (gi(a), Eq. 10) for each
surviving participant. The average is then taken as the
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estimate for {(a=0) or &(a =1), i.e. the marginal prob-
ability of surviving and having AMD under low or high
iron intake, respectively:

ig, )hi(a)

nZ_1 anda = 0,1

T nza (11)

wherei = 1,2, .

Under the assumption of monotonicity, when 7 is
equal to 1 the SACEy is equivalent to:

&1(vo-&o)
So(vi-€1)

The proof for this equation is given in the Additional file
1. Note that, under monotonicity, when 7 =1 the distribu-
tion of the outcome is equal between always- and
compliant-survivors, and no survival bias is thought to be
present. However, the marginal estimate derived from Eq.
12 may be different to the traditional conditional estimate
if measured covariates modify the effect of the exposure
on survival [36].

SACEor(T =1) = (12)

Simulation study

Data generation

A dataset of 10,000 individuals was generated to allow
substantial proportions of death and missing data while
still observing a relatively rare outcome within sub-
groups of participants. Full details of the data generation
process including model parameters and a flowchart are
provided in the Additional file 1.

Binary variables for sex (V1), genotype (1) and location
of residence (D) were generated randomly. Mean-centred
age (V2) was generated under a uniform distribution. The
exposure of interest, a binary indicator of iron intake (A),
was then generated conditional on sex and age. The pro-
pensity for survival was generated conditional on the ex-
posure, sex, age and genotype. The value of the coefficient
for genotype varied between scenarios (a;;z= In(0.5) or
In(2)). This propensity was then used to generate a binary
indicator for survival under potential exposure to high
iron intake (Z(a =1)) for every participant. For scenarios
generated to be compliant with the monotonicity assump-
tion, potential survival under low iron intake (Z(a =0))
was generated among those who would survive under high
iron intake (i.e. for those with Z,(a = 1) = 1). For scenarios
generated in violation of the monotonicity assumption,
Z(a =0) was generated for all participants regardless of
the value of Z(a = 1). Survival status (Z) was then assigned
deterministically according to exposure (4;) and potential
survival outcome Z;(a = A;). Principal strata (created due
to the presence of the unmeasured confounder which is a
pre-exposure variable) were then identified according to
the potential survival outcome under each exposure level
as described above.
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Potential outcome variables were generated for each ex-
posure level (Y(a = 0) for low iron intake and Y(a = 1) for
high iron intake) dependent on sex, age and genotype for
participants who would survive under that exposure level.
The value of the coefficients for genotype (8 =1n(0.5),
In(1) orIn(2)) varied between scenarios. Because survival
(and therefore principal strata) is also dependent on geno-
type, the distribution of the outcome will differ between
always-survivors and compliant-survivors. The marginal
odds ratio for the difference between Y(a = 1) and Y(a = 0)
was set to 0.6. This is the true value of the SACE and was
chosen to reflect the estimated direction and magnitude
of effect of iron on AMD in the illustrative example.

An indicator of attendance at follow-up (R) was gener-
ated conditional on V1, V2, A and D among surviving
participants (i.e. when Z =1).

The observed value of Y (AMD) was then assigned the
value of Y(a =0) or Y(a =1) deterministically depending
on the allocated exposure (A =0 or A =1 respectively),
survival status (Z) and attendance status (R). A total of
1200 datasets were generated for each scenario. The
combinations of parameters for each of the 12 scenarios
are given in of the Additional file 1: Table S2 .

Simulation study analysis methods

Four estimates were recorded for each of the generated
datasets: (1) the log-odds of the SACE estimated via a
MSM using standardised inverse probability weights for the
probability of observed exposure, survival and non-
attendance; the sensitivity analysis approach, (2) evaluated
using a sensitivity parameter of 1 (Eq. 12); (3) a sensitivity
parameter of 0.5 and (4) a sensitivity parameter of 2 (Eq. 8).

The SACE and value of 7 were estimated for each
dataset using the known values of the potential out-
comes (Y(a=0) and Y(a=1)) and principal strata. The
empirical value of these parameters for each scenario
was then determined by averaging the estimates derived
from the 1200 generated datasets.

The absolute bias for each method was calculated within
each scenario as the difference between the true SACE
(odds ratio =0.6) and the average parameter estimate (on
the log-odds ratio scale) calculated across 1200 simulated
datasets. The empirical standard error for each method was
calculated as the standard deviation of the estimates from
all simulations in each scenario [37]. To assess accuracy,
the absolute bias and the empirical standard error were
used to calculate the mean square error (MSE) for each es-
timation method under each scenario. Standardised bias
was calculated as a percentage of the absolute bias relative
to the empirical standard error. Bias-corrected 95% confi-
dence intervals were generated via 1000 bootstrap samples
for the MSM estimate of each dataset generated and cover-
age was estimated as the percentage of datasets in which
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the confidence interval included the true value of the SACE
within each scenario [38].

Example dataset

The Melbourne Collaborative Cohort Study is a prospect-
ive community-based study of 41,514 people living in
Melbourne, Australia. Details of the study have been pub-
lished elsewhere [39, 40]. In brief, participants attended
baseline clinics (1990-1994) where information on demo-
graphics, lifestyle and diet was collected. Colour digital
fundus photography was performed a median of 11.8 years
after baseline attendance, between 2003 and 2007.

The study protocol was approved by the Human Re-
search and Ethics Committees of The Cancer Council
Victoria and the Royal Victorian Eye and Ear Hospital,
and was conducted in accordance with the Declaration of
Helsinki. Written informed consent was obtained from all
participants after explanation of the nature of the study.

Iron intake over the year prior to attendance at the base-
line study wave was estimated using a 121-item food fre-
quency questionnaire. Iron content in food and beverages
(excluding supplements) was derived from Australian food
composition tables (NUTTAB 1995) [41]. Participants
were considered to have high iron intake if their intake
was above the median for their sex. Participants with iron
intake below the 1st and above the 99th sex-specific cen-
tiles of the baseline population were considered to have
potential measurement error and were excluded.

Sex, age, country of birth, smoking status, education,
and recreational physical activity were recorded at the
baseline wave. Education was categorised as less than
technical or high school, completed technical or high
school, or completed a trade or tertiary degree or diploma.
Smoking status was categorised as never-smoker, former-
smoker, currently smoking 1-14 cigarettes per day and
currently smoking 15 or more cigarettes per day at the
time of the baseline exam. Country of birth was dichoto-
mised into Northern European descent (Australia, New
Zealand, England, Ireland, Scotland, Wales or Latvia) and
Southern European Descent (Italy, Greece or Malta). Rec-
reational physical activity during the 6 months prior to the
baseline exam was categorised into quartile groupings.

Late AMD was defined as the presence of choroidal neo-
vascularization or geographic atrophy in either eye [42]. If
only one eye was graded, that participant was omitted from
the analysis, unless late AMD was detected in that eye.

Vital status was obtained through probabilistic match-
ing with the Australian National Death Index. Partici-
pants were considered to have missing data at follow-up
if they survived until the start of the wave but had miss-
ing outcome data. The later stages of AMD are rarely
seen in people less than 50 years of age, therefore partic-
ipants who were projected to be less than 50 years of age
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at the start of the follow-up wave were excluded from
this analysis.

Covariate balance was assessed among participants
with non-missing outcome data before and after apply-
ing MSM weights by calculating the standardised differ-
ence between high and low iron take groupings [33].
Bias-corrected 95% confidence intervals were generated
via 1500 bootstrap samples for each of the estimates
[38]. Because it is assumed that the unmeasured con-
founders will have an opposing net effect on the prob-
ability of survival and the probability of AMD (ie.
variables that decrease the probability of survival will in-
crease the probability of AMD), the sensitivity analysis
was restricted to values of the sensitivity parameter
equal to or greater than one.

Data generation and all statistical analyses were per-
formed using Stata/SE version 14.2 (StataCorp LP, Col-
lege Station, TX, USA) [43].

Results
Simulation study results
A total of 12 scenarios and 14,400 datasets were analysed.

Covariate balance

The predictors of exposure, sex and age, were unbalanced
between iron intake levels (average standardised difference
> 21% and > 26% for each scenario, respectively) for attend-
ing survivors, as seen in Additional file 1: Table S2. Balance
was achieved after applying the MSM weight. However, a
small difference after weighting remained among scenarios
which were compliant with the monotonicity assumption
(£2.2% and < 3.0%, respectively). Location of residence was
a predictor of missingness (but not exposure) and was well
balanced between iron intake levels across scenarios before
and after weighting (< 0.8%). The distribution of genotype
was not balanced across iron intake levels despite the ex-
posure being generated independently of genotype. This
imbalance was largest for scenarios generated with a nega-
tive effect of genotype on both survival and outcome (i.e.,
when OR;;z = OR;;y = 0.50) and no violation of the mono-
tonicity assumption. The standardised difference for geno-
type between exposure levels increased after applying the
MSM weight for the majority of scenarios.

Empirical value of T
The empirical value of 7 (i.e. the ratio of the odds of AMD
among the compliant-survivors to the odds of AMD
among the always-survivors when a is set to one) was in-
fluenced by the values of a;;z and Sy and varied accord-
ing to random sampling between simulated datasets.

The presence of defiant-survivors (in scenarios with vio-
lation of the monotonicity assumption) did not alter the
value of 7 which describes the difference in outcome
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distribution between always-survivors and compliant-
survivors only.

In scenarios with a null effect of the unmeasured vari-
able (U) on the outcome (meaning there is no survival
bias), the average value of 7 was 1.00 (see Additional file
1: Table S3).

Across the remaining scenarios the average value of r
ranged between 0.89 and 1.12 (see Table 1) and were
much less extreme than the sensitivity parameters of 0.5
and 2 chosen as proxies for r when estimating the SACE
via the sensitivity approach. Hence, the MSM estimates
were more accurate than the sensitivity approach
assessed at sensitivity parameters other than one in all
scenarios (see Fig. 3).

Bias

Survival bias does not exist in the absence of an unmeas-
ured confounder which acts as a shared predictor of sur-
vival and the outcome. When genotype was a predictor
of survival but not the outcome, the estimated magni-
tude of bias was <0.005 (on the log odd ratio scale) for
the MSM and < 0.015 for the sensitivity analysis assessed
at a sensitivity parameter of 1 (see Additional file 1:
Table S3 and Figure S2).

For scenarios with an opposing direction of effect of
genotype between survival and outcome, true value of 7
was greater than one, meaning that always-survivors with
high iron intake had lower odds of AMD than compliant-
survivors with high iron intake. When it was assumed in
the statistical analysis that there was no difference in out-
come between principal strata (i.e. when the sensitivity
parameter was set to 1 or the MSM approach was
employed) the estimated effect of high iron intake com-
pared to low iron intake among always-survivors was
therefore diluted towards the null and the true value of
the SACE was underestimated (bias <0.042 and < 0.054 for
sensitivity analysis and MSM respectively).

For scenarios with the same direction of effect of
genotype between survival and outcome, the true value
of 7 was less than one. In these scenarios, the always-
survivors with high iron intake had greater odds of
AMD than compliant-survivors with high iron intake.
Therefore, when the odds of the outcome was assumed
to be equal between principal strata in the analysis, the
true effect of the exposure on the outcome amongst
always-survivors was overestimated (magnitude of bias
<0.028 and <0.033 for the sensitivity approach assessed
at the sensitivity parameter of 1 and for the MSM ap-
proach, respectively).

When estimating the effect of the exposure on the
outcome via the MSM approach, survival is modelled
equally among those with each level of the exposure.
This reflects the data generating process of scenarios
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Table 1 Log odds ratio estimates from simulation study
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ORyy  ORyy  Estimation method Monotonicity
Valid Violated
Estimate®  SE SB MSE  Coverage®  Estimate®  SE SB MSE  Coverage®
05 0.5 Average T 0.92 0.09 092 0.09
Marginal structural model ~ —-0.54 012 -29 0.01 916 -053 011 -14 0.01 94.6
Sensitivity analysis
SP=05 -0.34 011 164 0.04 —042 010 92 0.02
SP=1 -0.54 0.1 -26 0.01 -0.52 010 -4 0.01
SP=2 -0.84 0.1 —305 0.12 -0.67 010 =159 004
05 20 Average T 1.10 0.1 1.10 0.1
Marginal structural model ~ —0.48 011 27 0.01 936 —-0.50 010 11 0.01 924
Sensitivity analysis
SP=05 -033 010 176 0.04 —042 010 95 0.02
SP=1 -048 010 30 0.01 -049 010 20 0.01
SP=2 -0.71 010 =197 005 -0.61 010 =106 002
20 0.5 Average T 1.12 0.09 1.12 0.09
Marginal structural model ~ —-0.46 010 54 0.01 904 -049 009 23 0.01 926
Sensitivity analysis
SP=05 -0.26 009 266 0.07 -0.38 009 143 0.02
SP=1 -047 009 46 0.01 -048 009 33 0.01
SP=2 -0.76 009 =271 0.07 -0.64 009 —-140 002
20 20 Average T 0.90 0.08 0.89 0.07
Marginal structural model ~ —0.53 009 -25 0.01 929 -0.52 008 -9 0.01 943
Sensitivity analysis
SP=05 -036 008 183 0.03 -043 008 104 0.01
SP=1 -052 008 -7 0.01 -0.50 008 9 0.01
SP=2 -0.75 008 =290 006 -0.62 008 —-144 002

Estimates of the log odds ratio have been averaged over 1200 simulated datasets from each scenario
bCoverage indicates the percentage of datasets in each scenario where the true value of the SACE was within the bias-corrected bootstrap confidence interval of

the marginal structural model

MSE Mean square error, SACE Survivor average causal effect, SB Standardized bias as a percentage, SE Empirical standard error, SP Sensitivity parameter.
ORyy is the odds ratio effect of U on the outcome. ORy; is the odds ratio effect of U on survival. 7 is the ratio of the odds of the outcome following high iron
intake between compliant-survivors and always-survivors. True SACE log odds ratio = In(0.6) =—0.511.

created with a violation of monotonicity and explains
why bias was lower among these scenarios.

Distribution of estimates

The standard error was fairly consistent across estima-
tion methods and scenarios, although standard errors
were slightly greater, on average, for scenarios generated
under the monotonicity assumption compared to sce-
narios with a violation of the monotonicity assumption.
Among scenarios with a non-null effect of genotype on
the outcome, the majority of estimates had high values
of standardised bias due to the relatively small value of
the standard error compared to the absolute bias and
coverage was lower than the nominal 95% confidence
interval for the MSM estimates (Table 1).

Results from example dataset
Participants, survival and outcome
Of the 39918 participants recruited at baseline with
complete data on the exposure and potential confounders,
37,511 (94%) survived until the start of the follow-up wave.
Of those 20,321 (54%) had complete data on the outcome at
the follow-up wave (Fig. 4). The covariate distribution was
unbalanced between individuals with high and low iron in-
take (Table 2). The standardised difference decreased across
all covariates after applying the MSM weighting scheme.
The marginal probability of survival following high
and low iron intake after adjusting for baseline covari-
ates was 94.1% (95% CI 94.1-94.2) and 93.8% (95% CI
93.7-93.8), respectively with an adjusted OR of 1.07
(95% CI 0.98-1.17).
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Fig. 3 Estimates from the simulation study. Estimated using 10,000 observations simulated 1200 times for each scenario. The odds ratio effect of
the unmeasured variable (U) on the outcome (Y), ORyy, was set to 0.5 in (a) and to 2 in (b). The black line represents the true exposure effect (on
the log odds ratio scale) of —0.51. OR is the odds ratio of the unmeasured variable, U, on survival, Z

Late AMD was detected in 121 (0.6%) of the partici-
pants who had data at the follow-up wave.

Survivor average causal effect

The estimated ORs and 95% Cls for the relationship
between iron intake and late AMD are presented in Table
3, with all estimates suggesting a protective association

between high dietary iron intake and the later stages of
AMD. The estimates were similar for each of the five
approaches, suggesting only minimal survival bias in
this analysis.

The SACE OR estimated via the sensitivity analysis ap-
proach was 0.58 (95% CI 0.37, 0.78) when evaluated at
both values of the sensitivity parameter (1 and 2). This is

Baseline
n=39,918

Low iron intake at baseline
n = 20,001 (50%)

High iron intake at baseline
n=19,917 (50%)

Not alive
n=1,291 (6.5%)

Alive
n=18,710 (93.5%)

Not alive
n=1,116 (5.6%)

Alive
n = 18,801 (94.4%)

No missing data
n = 9,240 (49%)

Missing data
n=9,470 (51%)

No missing data Missing data
n=11,081 (59%) n=7,720 (41%)

Late AMD
n =72 (0.8%)

No late AMD
n=9,168 (99.2%)

No late AMD Late AMD
n=11,032 (99.6%) n =49 (0.4%)

Fig. 4 Flow chart of participants in the Melbourne Collaborative Cohort Study, 1990 to 2007. Participants who were alive at the start of the follow-up
study wave but did not attend or had missing data on age-related macular degeneration (AMD) at follow-up were regarded to have missing data
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Table 2 Standardised difference between exposure groups for 20,321 participants of the Melbourne Collaborative Cohort Study

with non-missing data on age-related macular degeneration status

Iron Intake Standardised difference
High Low Unweighted Weighted

Mean age at follow-up (years) 64.1 64.0 —0.02 —-0.01
Sex

Male 39.7 40.0 0.01 0.01

Female 60.3 60.0 —-0.01 0.00
Smoking status (baseline)

Never-smoker 57.1 634 0.13 0.00

Former-smoker 333 293 -0.09 -0.02
Current smoker

Smoker 1-14 cigarettes/day 36 29 -0.04 -0.01

Smoker > 14 cigarettes/day 59 44 -0.07 0.03
Education (baseline)

Less than high/technical school 521 444 -0.16 0.01

High/technical school 14.0 14.7 0.02 -0.01

Trade, tertiary degree or diploma 340 410 0.15 0.00
Country of birth

Northern European 80.6 912 0.31 0.04

Southern European 194 8.8 -0.31 -0.04
Physical activity quartile (baseline)

1 (Least active) 225 16.5 —0.15 -0.04

2 224 22.3 0.00 0.03

3 249 255 0.01 0.01

4 (Most active) 30.2 357 0.12 0.00

due to the difference in the marginal probability of sur-
vival between iron intake levels being small.

Discussion
This paper compares approaches to explore exposure-
outcome relationships in studies impacted by death and

Table 3 Association between iron intake and late age-related
macular degeneration among 39,918 participants of the
Melbourne Collaborative Cohort Study

Method® OR (95% CI)°
Complete case® 0.572 (0396, 0.818)
SACE OR (95% CI)°
Marginal structural model 0.536 (0.368, 0.789)
Sensitivity analysis
Sensitivity parameter =1 0.583 (0.374, 0.780)
Sensitivity parameter = 2 0.581 (0.374,0.777)

@ Each model adjusted for age, sex, country of birth, smoking status, physical
activity and educational attainment

P Bias corrected confidence intervals estimated via 1500 bootstrap samples

¢ Naive log-odds of AMD associated with iron intake estimated via complete
case multivariable logistic regression analysis among all survivors

OR Odds ratio, SACE Survivor average causal effect, 95% Cl 95%

Confidence Interval.

attrition due to other causes. Unobserved data due to death
is distinct from that due to non-attendance: the predictors
of death and attrition may be different and the outcomes
for the deceased are undefined, rather than missing.
Covariate balance was achieved across exposure levels
for measured covariates in both the simulation study and
illustrative example of this paper. However, balance was
not achieved for an unmeasured and shared predictor of
survival and the outcome in the simulation study. An
example of a potential shared survival-AMD confounder
is the complement factor H gene. The minor allele of the
Y402H single nucleotide polymorphism has been associ-
ated with decreased survival and an increased risk of
AMD [44]. Conversely, the ¢ 4 variant of the apolipopro-
tein E gene is known to be associated with a decreased risk
of both survival and AMD [45]. In reality, there will be
several unmeasured variables that combine to influence
principal strata. Information on participant genotype may
not be available to investigators and the role of epigenetics
in AMD development is not yet fully understood. Investi-
gators should therefore carefully consider whether all
shared predictors of survival and the outcome are likely to
be measured. In settings where data is not available for
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known survival-outcome confounders, a confounding
function approach may be of use [46, 47]. Further work is
required to assess the application of the confounding
function to studies at risk of survival bias.

lllustrative example

A protective association between iron intake and late
AMD is counterintuitive given the previously reported
negative relationship with red meat and previous findings
of increased levels of iron in the retinas of individuals with
AMD [48-50]. Iron intake is likely to be highly correlated
with the intake of other nutrients which are likely to be
confounders of the iron-AMD relationship. It is possible
that the decreased rates of mortality and AMD observed
among participants with high dietary iron intake may be
reflective of a diet which is generally high in essential
nutrients. Given that iron intake was dichotomised and
other nutrients were not adjusted for, additional in-depth
analyses should be carried out to explore the relationship
between iron intake and AMD further. Only a small differ-
ence in survival was observed between those with high and
low iron intake and therefore survival bias did not seem to
be influential in this example.

Limitations of these methods

Although the problem of missing data can be addressed in a
number of ways, only MSMs were assessed in this simula-
tion study as they have previously been applied to estimate
the magnitude of exposure-outcome associations in the pres-
ence of survival bias. MSMs can only adjust for measured
confounders [51]. These models cannot mitigate the bias at-
tributable to associations between the outcome and the
probability of non-attendance which is likely to be present in
large scale epidemiological studies if all underlying reasons
of non-attendance have not been captured [30].

The use of inverse-probability weighting in the pres-
ence of attrition due to death has been criticized in the
past because it requires the outcomes of the deceased to
be considered as missing, rather than undefined [52]. In
turn, a pseudo-population of survivors is created (via
upweighting of survivors to represent the deceased) from
which inferences are drawn. These methods rely on the
assumptions that survival can be manipulated, and that
living participants are suitable representatives of the
dead. However, in the illustrative example the estimates
from the MSM were similar to those from the sensitivity
analysis. In addition, MSMs provide a point estimate,
which may be viewed more favourably by content matter
experts than the range of plausible values produced by
the sensitivity approach, especially when assumptions
about principal stratification are questionable. Neverthe-
less, in the presence of unmeasured survival-outcome
confounders, that point estimate may be biased. For this
reason, it is important to highlight the potential for bias
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and speculate on the direction of this bias if these
methods are applied.

Even when working closely with content experts, it
can be difficult to ascertain which values of the sensitiv-
ity parameter to employ. While advice on eliciting infor-
mation from subject matter experts for sensitivity
parameters for handling missing not at random data is
available, further work is required to guide the elicitation
of plausible values for the sensitivity parameter used to
deal with survival bias [53, 54].

The sensitivity approach is slightly more complex to
compute than the MSM approaches. However, methods
presented in this paper can be executed using standard
statistical software.

Conclusions

The direction and magnitude of survival bias are directly
related to the direction and magnitude of effect of
shared survival-outcome confounders. Therefore, it is es-
sential that content experts and data analysts together
prepare causal diagrams that include nodes for survival
and hypothesised measured and unmeasured survival-
outcome confounders to guide the selection of the ana-
lysis method. The SACE will be most useful when the
exposure of interest is strongly associated with survival.
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