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Abstract

Background: Regression analyses of time series of disease counts on environmental determinants are a prominent
component of environmental epidemiology. For planning such studies, it can be useful to predict the precision of
estimated coefficients and power to detect associations of given magnitude. Existing generic approaches for this
have been found somewhat complex to apply and do not easily extend to multiple series studies analysed in two
stages. We have sought a simpler approximate approach which can easily extend to multiple series and give
insight into factors determining precision.

Methods: We derive approximate expressions for precision and hence power in single and multiple time series studies
of counts from basic statistical theory, compare the precision predicted by these with that estimated by analysis in real
data from 51 cities of varying size, and illustrate the use of these estimators in a realistic planning scenario.

Results: In single series studies with Poisson outcome distribution, precision and power depend only on the usable
variation of exposure (i.e. that conditional on covariates) and the total number of disease events, regardless of how
many days those are spread over. In multiple time series (eg multi-city) studies focusing on the meta-analytic mean
coefficient, the usable exposure variation and the total number of events (in all series) are again the sole determinants
if there is no between-series heterogeneity or within-series overdispersion. With heterogeneity, its extent and the
number of series becomes important. For all but the crudest approximation the estimates of standard errors were on
average within + 20% of those estimated in full analysis of actual data.

Conclusions: Predicting precision in coefficients from a planned time series study is possible simply and given limited
information. The total number of disease events and usable exposure variation are the dominant factors when
overdispersion and between-series heterogeneity are low.
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Background
Regression analyses of time series of disease counts on
putative environmental determinants, especially air pol-
lution and weather, have been a prominent component
of environmental epidemiology of the past quarter cen-
tury, with no sign of diminishing [1–5]. The units (tem-
poral resolution) are often days, but sometimes weeks,
months, or years, and duration can be from a year or
less to many decades. For planning such studies, it may
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be useful to predict the precision of coefficients that will
be estimated, or predict power to identify non-null asso-
ciations. Sometimes, available data is fixed, so that the
question (for example for research funders) is whether
the new information obtainable from analysing them is
worth the cost of doing so, or gives adequate protection
against false positives [6]. Sometimes, new data can be
obtained at a cost, and a choice needs to be made as to
the number of years or the number of locations to col-
lect data from.
Most epidemiologists will understand, as we confirm

below, that precision and power will depend on the
number of observations (eg days), the total number of
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disease events or mean events/day, and, for multi-series
(eg multi-city) studies, the number of series. The nature
of that dependence and whether there are other factors
is not generally known and little addressed in the time
series regression literature.
The only published method we have found addressing

these questions specifically for time series regression of
counts focused on power estimation and used simula-
tions [7]. There have in addition been long-published
methods for sample size determination and power
estimation more generally in generalised linear models
[8–10], with some focused on Poisson regression [11].
At least two computer packages have implemented some
of these: G*Power, which is free [12], and NCSS:PASS,
which is commercially available [13]. However, it has
been noted that application to the count time series con-
text was not straightforward [7]. Calculations need to be
tailored to the specifics of each study, and the algorith-
mic nature of the approaches does not facilitate insight
into primary determinants of precision and power in
typical time series regression contexts. It is also not clear
that existing generic methods can extend to multi-series
studies analysed in the typical two-stage approach, com-
prising series-specific regressions then meta-analysis of
coefficient estimates.
In this paper we propose some simple approximate

formulae for standard error (SE) of the coefficient of inter-
est (and thus precision) requiring only quantities likely to
be estimable at the planning stage of a study. This SE
formula also allows estimation of width of confidence
interval (CI), power to detect an association of specified
size, and number of days or number of disease events re-
quired for given precision or power. We do not however
consider our focus exclusively to be prediction of power,
as has been traditionally the case in sample size discus-
sions, following the current trends in epidemiology to
reduce emphasis on significance testing [14]. After consid-
ering single-series studies we extend the approach to esti-
mate precision in a multi-series study that aim to estimate
the mean association (or effect) in a two-stage analysis.
We illustrate use of the approximations in a worked plan-
ning scenario, and finally evaluate the accuracy of the
approximations with existing data sets.
Methods
Approximate expressions for precision – single series
Basic model and terminology
At time period (usually day) i (1 … n) we have data
Yi = outcome count (for simplicity we will refer to

deaths),
xi = exposure of interest; without an explicit distrib-

uted lag structure other than possibly using a mean over
a lag interval as exposure
zi = vector of additional potentially confounding ex-
planatory variables including those for control of tem-
poral patterns such as spline functions of date. Although
many applications use daily series, nothing in our ap-
proach requires this. Precision and power for any other
temporal resolution (weeks, months, years) can be
approached using the same expressions. For simplicity
we assume a linear association between the exposure of
interest and the logarithm of the outcome counts

E Y ið Þ ¼ exp αþ βxi þ γzið Þ

We will use the term SEðβ̂Þ for standard error of an

estimate of the coefficient of interest β and Vðβ̂Þ for its
sampling variance. We denote approximate estimators of

SE as SE�ðβ̂Þ. SD(x) denotes the standard deviation of x.
In the main text we state the approximators we propose,
and give derivations of them in Additional file 1.

Expressions for standard error
The simplest approximation is:

SE�
Poiss−crude β̂

� �
¼ 1ffiffiffiffiffiffiffiffi

ΣY i
p � SD xð Þ ð1Þ

With covariates z, a more accurate approximation is:

SE�
Poiss β̂

� �
¼ 1ffiffiffiffiffiffiffiffi

ΣY i
p � SD xjzð Þ ð2Þ

Where SD(x|z) is the standard deviation of the residuals
of the exposure of interest in a linear regression of x on z,
which we term the “usable SD of x”. SD(x|z) can also be

written SDðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−R2

xjzÞ
q

, where R2
x|z is the fraction of

variance of x explained by the covariates z. The square of

the ratio SE�
Poiss−crude ðβ̂Þ=SE�

Poiss ðβ̂Þ ¼ SDðxÞ=SDðxjzÞ is
also referred to as the variance inflation ratio [10].
Often residual variance in counts is higher than that of

a Poisson distribution by some multiple φ (i.e. scale
overdispersion). This is called a quasi-Poisson model,
and here the approximation (2) becomes

SE�
Q−Poiss β̂

� �
¼

ffiffiffi
φ

pffiffiffiffiffiffiffiffi
ΣY i

p � SD xjzð Þ ð3Þ

Again this does not depend on number of days n
given ΣYi. In summary, we have proposed a simple

approximate formulae for SEðβ̂Þ , which depends only
on the total number of deaths over the course of the
study, usable variation of x, and overdispersion, not on
the length of the series n other than through its influ-
ence on the total number of deaths ΣYi. We discuss
how these determinants might be estimated prior to
conducting a study later.
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Approximate expressions for precision – multiple series
We now consider J series j = 1,…J, from each of which we

will estimate β̂ j andV ðβ̂ jÞ , and from these estimate an

overall mean β̂m−a andV ðβ̂m−aÞ . For simplicity we will
consider extensions only for the single-series approxima-
tors (2) and (3), so that SD(x|z) is assumed known, and for
tractability we assume that this is constant across studies.
We also assume that the series, and hence estimates of ef-
fect measures, are independent.
With all series wholly Poisson, the variance of the

fixed effects (inverse-variance weighted) meta-analysis
mean coefficient can be approximated:

SE�
F−E β̂m−a

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1;n j; j¼1; J

Y i; j

s
� SD xjzð Þ:

ð4Þ

Thus, the precision again depends only on the total
number of deaths, not additionally on the number of
days in the series or the number of series.
With overdispersion φ in all the series, this is modified

to:
SE�

F−E β̂m−a

� �
¼

ffiffiffi
φ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1;n j; j¼1; J

Y i; j

s
� SD xjzð Þ:

ð5Þ

In practice dispersion is unlikely to be the same in all
series, but we propose the expression as a simple
approximation to series with average dispersion φ.
When there is heterogeneity between series estimates

(variance τ2, comprising a fraction I2 of total variance)
and analysis with a random effects model, our best
approximation is:

SE�
R−E β̂m−a

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1X

j¼1; J

τ2 þ V � β̂ j

� �n o−1
� �vuuuut ð6Þ

where V � ðβ̂ jÞ is the estimated variance of β̂ j in location
j using one of the single-series estimates (1)–(3)
discussed above, and τ is the underlying heterogeneity
SD. However, this requires estimation variance to be
predicted separately for each series, as well as τ. For a
simpler though more approximate formula we further

assume SE ðβ̂ jÞ and hence V ðβ̂ jÞ is constant over loca-

tions j. In this case the approximation simplifies to

SE�
R−E;approx2 β̂m−a

� �
¼

SE�
F−E β̂m−a

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−I2
� �q ð7Þ

This has the form of a “heterogeneity corrected”
version of one of the approximations of the fixed effects
mean, SE�
F−Eðβ̂m−aÞ . Other approximators are noted in

Additional file 1. It gives insight to consider the unusual

case of extreme heterogeneity τ >> SEðβ̂ jÞ, as this allows
a particularly simple approximation:

SE�
extreme het;RE β̂m−a

� �
¼ τffiffiffi

J
p ; ð8Þ

essentially the same as for a simple sample mean. Thus
in this case precision depends only on the number of
series, and the heterogeneity variance. More generally,
we can say qualitatively that as heterogeneity increases
relative to expected series-specific coefficient sample
variances, the standard error of the overall mean coeffi-
cient will depend more on the number of series included
and less on the number of deaths, overall or per city.

Implications for study power
Power of studies to find associations, given a true popu-
lation hypothesized value βH1 for β depends on the
standard error, so can be deduced from any of the ap-
proximations discussed above:

Power≅ϕ jβH1j=SE β̂
� �

−za=2
h i

; ð9Þ

where α here is the significance level of the test, zα/2 is
the standard normal deviate defining a right tail prob-
ability of α/2 (generally 0.05, with zα/2 = 1.96) and ϕ( ),
is the Gaussian CDF. From this we can also derive the
smallest true value of β that can be detected at a given
significance level and power:

βsmallest detectable≅ zα=2 þ z1−power
� �

SE β̂
� �

ð10Þ

For example, the smallest detectable value of a coef-
ficient at α = 0.05 and power 0.8 is (z0.025 + z0.2)

=(1.96 + 0.84) = 2.8 times SEðβ̂Þ.
And finally, from expression (9)–(10), once one of the

approximate expressions for SE(β) is chosen, we can es-
timate number of deaths required for a given precision

or power. In particular using SE�
Poiss ðβ̂Þ (expression 2):

ΣY i≅
zα=2 þ z1−power
� �
j βH1 j �SD xjzð Þ

� �2
ð11Þ

Results
Graphical presentation of application of the expression
for power in a range of scenarios
Figure 1 shows some examples of how power depends on
number of deaths for a range of values of true underlying
coefficients of (log(RR) per unit x) and dispersion. For a
condensed presentation we show curves for coefficients
per one unit of usable exposure standard deviation. The



Fig. 1 Approximate power as a function of number of cases, size of
risk to be detected in relation to usable exposure spread, and
overdispersion. Blue lines (left cluster): coefficient (log(RR) per
useable SD(x|z)) = 5%. Green lines (middle-left cluster): coefficient =
2% per SD(x|z). Red lines (middle right cluster): coefficient = 1% per
SD(x|z). Black lines (right cluster): coefficient = 0.05% per SD(x|z).
Within clusters, from left (top): Solid (left): dispersion = 1.0. Dashed
(middle): dispersion = 1.2. Dotted (right): dispersion = 1.5
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figure applies to single series studies and also to multi-
series studies if a fixed effect analysis is performed and if
SD(x|z) and overdispersion is similar across series, as
shown above (expressions (4) and (5)). The R-code used
to produce this figure, including a general-purpose func-
tion for estimating standard error and power (using ex-
pressions 3 and 9 above), is included in Additional file 2.
The figure shows that apart from number of deaths

power depends most on the strength of the underlying
association, the coefficient of log(RR) per SD(x|z). In
particular the figure suggests that only if dispersion is
substantial (say > 1.2) would consideration of it be
important. For a coefficient of 2% per SD(x|z), not un-
usually a target in environmental studies, about 20,000
deaths would be required to give power of around 80%
without overdispersion. That would not change whether
it were a 1-year series of about 60 deaths/day or a 10-
year series of about 6 deaths/day unless dispersion
differed radically. It would also apply to a 10-series study
each of 1 year with 6 deaths a day if the series estimates
were homogeneous.

Comparing our approximate power estimate with that
estimated by standard power software
We compared the power estimates from our expression
the power expression (9) with those obtained from the
general purpose program G*Power (Poisson option:
details in Additional file 3). For this we used within
expression (9) the simple precision approximator in
expression (2). We found excellent agreement with the
G*Power estimate based on an assumed normally-
distributed exposure. For example G*Power estimated
80% power for the example we noted in the previous
paragraph, when we input a sample size (number of
days) and event rate such that there were 20,000 deaths
and a coefficient of 2% per (SD(x|z)). Assuming a uni-
form distribution of exposure with the same standard
deviation also gave power = 80%. Lognormal and expo-
nential distributions showed a very slightly higher power
(80.4 and 80.1%), presumably because of their skewness.

Worked example of using the formulae in planning a
study
Here we illustrate how these expressions might help in a
planning scenario. Suppose we plan to investigate the
association of airborne particulate matter, measured as
PM2.5 with daily counts of infant deaths in England, con-
sidering in the first place London. PM2.5 has been mea-
sured consistently in England since about 2009. Daily
mean PM2.5 is available for most major metropolitan
areas since about 2009 [15]. To get a rough estimate of
the between-day variation (required to predict precision
and power) we obtained daily data for one of the
London background sites (Bloomsbury), at which from
2009 to 2016 the standard deviation was 9.7 μg/m3.
To estimate the variation “usable” in an epidemiological

study in which a date spline of 7 degrees of freedom per
year would be included to control for seasonality and time
trends and indicators for day-of-week, we calculated the
standard deviation of residuals (SDres) after regressing
PM2.5 on these terms, which was 8.5 μg/m3. A final ana-
lysis of the study would likely control also for temperature,
and possibly one or more other pollutants, say ozone. This
can be done using the same approach as used for season-
ality etc., at the cost of the time taken to assemble the
data, if available. We did this using public domain data,
using a spline of 4 degrees of freedom for temperature
(now SDres = 8.1) and linear term for ozone (SDres = 7.6).
The number of infant deaths in London in 2013,

approximately in the middle of a likely study period, was
486 [16]. Assuming that at the time the study was con-
ducted data would be available until the end of 2016,
total infant deaths over the 8 years 2009–2016 would be
about 486X8 = 3888.
By using expression (2), we can then estimate the

standard error of regression coefficient (increment in log
RR per 10 μg/m3 PM2.5). If we use the last “fully ad-
justed” estimate of usable SD (7.6 μg/m3), this gives:

SE�
Poiss β̂

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣY if gp � SD xjzð Þ ¼
1ffiffiffiffiffiffiffiffiffiffi

3888
p � 0:76

¼ 0:021

This estimate assumes no overdispersion, an assump-
tion we will argue later (see Discussion) is reasonable
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for this context.. In this case, using the simple uncondi-
tional standard deviation of PM2.5 (9.7 μg/m3) would

only slightly exaggerate precision (SE�
Poiss−crude ðβ̂Þ ¼ 0:0

16 ), reflecting the modest seasonality and trend in

PM2.5. From SE�
Poiss ðβ̂Þ we can deduce the width of CI

(2X1.96*0.021 = 0.082). A coefficient of 0.06 was found
in one recent study) (Yorifuji et al. 2016). Power (using
expression (9)) would be good (82%) to detect an
underlying coefficient of this size, but would be lower
to detect the smaller coefficients found in some other
studies [17]. The smallest positive coefficient detectable
with 80% power would be 2.8X0.021 = 0.059.
To answer questions such as “what length of series in

London would be required to obtain a specific power?”
we could use expression (11). For example for 90%
power (hence z(1–0.9) = 1.28) this estimates the require

number of deaths to detect a coefficient of 0.06 as ΣY i≅

½ð1:96þ1:28Þ
0:06�0:76 �

2 ¼ 5048. If we continue to assume 486 deaths
per year, the series would thus need to have 5048/486 =
10.4, i.e., about 10 years.
Alternatively we might seek to improve precision,

power, or detectable effect by using multiple series. In-
cluding nine other English major metropolitan areas was
found in a previous study to increase the number of in-
fant deaths by 2.5 fold [18], so such a study might have
2.5 X 3888 = 9720 deaths, which in the absence of
between-area heterogeneity and if the usable variation in
PM2.5 was similar in other areas would reduce the stand-
ard error to 0.013, and the smallest detectable value to
0.037. If heterogeneity was expected the task is more
complex and the prediction less certain. With predicted

τ and individual series SE( β̂ j ) values one could use ex-

pression (6). An I2 value might more usually be reported
in comparable published studies than a τ value which if

we also ignore variation in SE(β̂ j) values would allow us

to use expression (7) to find how much the fixed effect
meta-analytic mean SE of 0.013 would be increased. For
example, for I2 values of 10,25,50, and 75% would in-
crease the fixed effect SE by 0.5,3,15, and 51% respect-
ively (multiple = 1/√((1-I2)).
Comparison of the above approximations with
conventional (quasi) Poisson estimates from real data
We tested the accuracy of the approximations (1)–(8)

for SEðβ̂Þ with the actual values estimated from daily
temperature and mortality data from 51 provincial
capitals of Spain 1990–2010, previously used in sev-
eral published studies [19, 20] and summarised in
Additional file 4. Specifically we considered a simple
model with all natural deaths as the outcome and as
explanatory term of interest (x) a linear model for
“heat” defined as (lag 0) temperature above the 75th
centile of daily mean temperature in that city. The
covariates considered were a natural spline function
of time with 7df per year, and indicators for day of
week.
When true values for the expression “input” parame-

ters SD(x), SD(x|z) and overdispersion were assumed
known, thus evaluating approximations in the expres-
sions themselves, only the crudest approximation (1; ig-
noring covariate impact on exposure variation) gave
error that is non-negligible in this context (Table 1A
and detail in Additional file 4A). This is due to its ignor-
ing the strong seasonality of the exposure considered
(heat) (R2

x|z = 0.4 on average). For other exposures with
less strong association with covariates this approxima-
tion would perform better. Allowing for overdispersion
(3) gave little improvement in general in these data,
where dispersion was on average 1.03 and never
exceeded 1.15. However, the poorest performance of the

basic Poisson approximation (2) (underestimating SEðβ̂Þ
by 11 and 10%) was in the cities with relatively large
overdispersion in these cities (1.15 and 1.14). These two
cities had the largest daily mean deaths (48 and 75), and
in general overdispersion was strongly associated with
mean deaths (Additional file 4: Figure A4.2).
We then used first year data alone to approximate

SD(x), SD(x|z) and overdispersion, to mimic the sort of
proxy data that might be used in real study planning
(Table 1B and Additional file 4B). Here error frequently
was more than ±10%, even in the best approximators.
Table 2 shows performance of approximators (4)–(7)

for the standard error of the multi-series meta-analytic
mean of the 51 coefficients. Here there was clear hetero-
geneity (I2 = 65.3%, τ = 0.0055), so all estimates of SE
ignoring this (whether using actual data or a prior ap-
proximation) underestimated the more realistic true ran-
dom effects SE. However, the approximate estimators
estimated the fixed effect SE well. If the extent of hetero-
geneity (τ) could be accurately predicted, the approxi-
mate expressions for the random effects SE performed
well. Estimation of SE when I2 could be predicted,

assuming SE(β̂ j) constant (7) led to moderate underesti-

mation of SE, probably because the actual SE(β̂ j ) varied

considerably. The underestimation of SE by 25% assum-
ing extreme heterogeneity (8) strikes a cautionary note,
that the actual I2 of 65% is not extreme enough for this
estimate to be for this approximation to be close.

Discussion
We have provided simple approximate estimators for
precision of estimates of coefficients of interest and
hence power that can be helpful in advance of undertak-
ing a study. The simplicity of the estimators allow some



Table 1 Performance of approximations of precision of approximations to SEðβ̂Þ in 51 cities

Estimator (text
expression number)

Distribution of % error in estimators of SEðβ̂Þ over the 51 cities

Mean (bias) Mean absolute Lowest Highest

A: Using known exposure distribution

Poisson crude (1) − 39.3 39.3 − 58.0 −19.7

Poisson (2) −3.8 3.9 −11.5 2.6

Q-Poisson (3) −2.3 2.5 −5.0 4.0

B: Using exposure distribution from year 1

Poisson_crude (1) −37.1 37.1 −58.6 −18.3

Poisson (2) 7.1 15.7 −28.9 44.5

Q-Poisson (3) 9.1 17.1 − 32.4 46.7

The table summarises the distribution of errors in three approximations to the standard error of the coefficient of heat (SEðβ̂Þ) in the 51 Spanish provincial capitals
% error = 100*[approximation-(true value)]/(true value)]

Armstrong et al. BMC Medical Research Methodology           (2020) 20:15 Page 6 of 9
general guidelines to be identified: For single series, the
total number of deaths and the useable variation (SD) of
exposure are the dominant factors unless overdispersion
is severe. For multiple series from which a meta-analytic
mean is to be estimated, the aggregate of these factors
over series remain dominant if there is little underlying
heterogeneity of coefficients between series, but if there
is such heterogeneity its extent and the number of series
become important.
Our application of the estimators for single series

to examples in which we in fact knew the precision
realised, and comparison of power estimates to those
from algorithms implemented in the package G*power
suggested that the approximations we made were
good to the extent that total number of deaths and
usable exposure variation could be predicted. For
meta-analytic means of multiple series estimates were
less reliable, in particular if heterogeneity was present
and not allowed for.
The finding that precision and power are dominated by

total number of events is consistent with but goes further
than the power simulations published previously [7],
Table 2 Performance of approximations of SEðβ̂m−aÞ SEðdβm−aÞ of m
Estimator (text expression number) Estimated SEðβ̂m−aÞ (%)
Fixed effect model

Actual SE F−E ðβ̂m−aÞ 0.054

Poisson (4) 0.050

Q-Poisson (5) 0.051

Random effects model

Actual SER−E ðβ̂m−aÞ 0.102

τ and SE�Poiss ðβ̂ jÞ known (6) 0.101

I2 and SE�Poiss; F−Eðβ̂m−aÞ known (7) 0.085

extreme heterogeneity assumed (8) 0.076

RE Random effects, FE Fixed effects, w.r.t. With respect to
The first column shows the standard error of the meta-analytic mean, estimated by
of SE(β̂ ) with respect to gold standards actual FE estimate (column 2) and actual R
where it was observed that “increasing time-series length
and average daily outcome counts both increased power
to a similar extent”. This publication also commented: “re-
duction in power […] can accompany use of multipollu-
tant models”. Although we do not address multi-pollutant
models explicitly in this paper, when interest in is effect of
each pollutant adjusting for that of others, those other
pollutants can be considered covariates in our formula-
tion. Because inclusion of such additional covariates re-
duces usable exposure SD of the exposure of interest, this
statement is also consistent with our result.
The conclusion that the length of the series only influ-

ences precision through total event count may seem sur-
prising to some. It does have limitations, but we believe
they are minor ones. Some exposures may have larger
exposure variation in longer series, but because time series
regressions routinely include covariates to model longer-
term variations, such as trend or seasonality, the usable
standard deviation often changes little. For example
SD(x|z) of heat exposure was on average 1.07 over the full
21 years, and 1.06 over just 1 year (for convenience the
first). However, aspects other than precision, such as
eta-analytic mean coefficient over 51 cities (β̂ =2.19%)

% error w.r.t. actual FE % error w.r.t. actual RE

0.0 − 46.7

−7.6 −50.8

−6.2 −50.0

87.6 0.0

NA −1.4

NA −16.4

NA −25.3

each method. The remaining two columns show the % error in each estimate
E estimate (column 3) = 100*[approximation-(true value)]/(true value)]
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robustness against bias, may diminish in short series. For
an extreme example an estimate from a “series” of 10 days
with 1000 deaths/day on average may have the same pre-
cision as one from a series of 1000 days with 10 deaths/
day on average, but would seem more subject to bias, for
example some other risk factor happening to be concur-
rent with the most exposed day or two.
There is an impact of temporal resolution of the series

(days, weeks, etc) on precision of coefficients of interest
that is not directly evident in our expressions. The
usable variability of exposure, which does influence
precision, often changes with temporal resolution. Over-
dispersion of the outcome may also change, in our ex-
perience often increasing with longer durations. And
there may be epidemiological considerations, for ex-
ample fine resolution (eg days) is optimal to estimate
acute exposure effects, whereas coarser resolution (eg
years) has advantages for longer term effects.
There are alternatives to the approach we have pro-

posed. If all counts are large enough to assume that they
or their logarithm are normally distributed, and vary
only modestly, simpler methods might be used. Other-
wise, as we have illustrated, programs such as G*Power
can be used for a single series with Poisson deaths to
find power given number of days, baseline death rate per
day, standard deviation of exposure and variance infla-
tion factor. But this misses the insights of the simpler
approximate expressions, in particular that number of
days and baseline deaths rate influence precisions and
power only though the total number of deaths. If actual
linked outcome and exposure data exists, one can simply
run the regression to find the precision and hence de-
duce power. But our approach does not need such detail,
and can with limited estimated summaries be used to
illustrate, for example, how choices of different cities or
length of series lead to different precision and power,
allowing better informed design decisions.
A problem with predicting precision and power with

any method is that these depend on parameters that are
unknown at planning stage, in particular mean counts,
usable exposure variation, and overdispersion. Our
worked example illustrated some approaches to this
such as making estimates from other studies or prelim-
inary data. The Spanish multi-city comparison also
suggested that in similar contexts overdispersion would
be low (< 1.1) if mean counts were below about 40.
Unfortunately few studies report overdispersion quanti-
tatively, but it is our experience that at least for deaths
or hospitalisations due primarily to non-infectious dis-
eases this pattern is common. This was one reason we
considered the estimate we made for the infant deaths
example need not assume overdispersion. However,
there may of course be exceptions, and each context
should be considered on its merits.
The issue of not knowing the parameters needed to
estimate precision and power is particularly acute for
multiple series, where as our Spanish cities example
illustrated, the extent of heterogeneity in effect estimates
over series can be critical. Other simplifying assumptions
also were needed, for example all approximations as-
sumed that the usable exposure variation was constant
across all studies, expression (5) assumed constant over-

dispersion, and expression (7) constant SE( β̂ j ), Uncer-

tainty in approximations will increase with uncertainty
in assumptions. It may be useful if such uncertainty is
great to make estimates of precision of the desired effect
measure under varying assumptions (so possibly using
different approximations) as a sensitivity analysis.
There are several limitations in the approach we

present. First, our estimators of precision are approxi-
mate, and we have not undertaken a comprehensive
evaluation of them by simulation. However, the evalu-
ation from real data suggests that primary source of
error is not in the expressions but in the limited preci-
sion with which input parameters, in particular usable
predictor exposure SD, can be predicted at planning
stage. This is an issue whatever the accuracy of algo-
rithms to find precision and power for given input pa-
rameters. Second, we do not discuss non-linear or
distributed lag models. Both of these could be addressed
to some extent by estimating precision and power for a
simplified model. For example the analysis of Spanish
data above approximated the curved linear temperature-
mortality curve with a linear-threshold model. To ap-
proximate using a distributed lag model to estimate a
cumulative risk of all lags we could estimate the usable
standard deviation of the running mean of temperature
over the most important lags, for example a three-day
running mean for heat.
Also, we have not addressed auto-correlation in resid-

uals. If allowed for in the model this would somewhat di-
minish precision, but since it has usually been found small
if present at all, the impact of this is not generally
expected to be large. Neither have we considered distribu-
tional models other than Poisson with scale overdisper-
sion, for example negative binomial or zero-inflated
Poisson. Finally, we do not discuss case cross-over ana-
lysis. However, given the equivalence between fixed
stratum versions of this approach and time series regres-
sion with stepped time functions [21], there seems no rea-
son to believe that the results presented here would not
apply provided that the “usable exposure SD” is that con-
ditional on time stratum as well as any other covariates.
Conclusions
Predicting precision in coefficients from a planned time
series study and hence power and detectable effect is
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possible simply and given limited information. The total
number of disease events and usable exposure variation
are the dominant factors when overdispersion and for
multiple series between-series heterogeneity are low.
Conducting a study without enough power to detect

coefficients of plausible magnitude compromises its in-
formativeness and increases the chance of false positives
[6]. Coefficients of mortality on air pollution are fre-
quently particularly small in relation to exposure SD,
and studies thus require large numbers of deaths, often
more than available from a single series. Temperature-
mortality coefficients can be somewhat larger, so studies
with fewer deaths can still be informative. These expres-
sions for precision and power can allow researchers to
plan size more confidently.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-019-0894-6.

Additional file 1. Derivations of approximations to standard errors of
coefficients and smallest detectable coefficient.

Additional file 2. R code for power calculation.

Additional file 3. Illustration of the use of G*Power.

Additional file 4. Details of comparison of estimators and related data
in 51 Spanish cities (Figures).

Abbreviations
CI: Confidence interval; SD: Standard deviation; SE: Standard error;
SE*: Approximate estimate of SE; V: Variance

Acknowledgements
None.

Authors’ contributions
BA drafted the manuscript. FS, AG and AT contributed by discussion and
comments on drafts. FS contributed also to the expressions concerning
power and related programming. AT provided and informed on the Spanish
cities data set. All authors have read and approved the final manuscript.

Funding
BA was supported for this work by the U.K. National Institute for Health
Research Health Protection Research Unit in Environmental Change and
Health. AG and FS were funded by grants from Medical Research Council-UK
(Grant ID: MR/M022625/1 and MR/R013349/1). AT was supported by Ministry
of Education (Spain) grant PRX17/00705. Funding bodies played no direct
part in the design of the study or collection, analysis, and interpretation of
data or in writing the manuscript.

Availability of data and materials
R-code is provided in Additional file 2. The Spanish daily mortality data was
provided by the Spanish National Institute of Statistics (reference PB242/
2016), with permission to use for analysis but not to make available to
others. The mortality data can be obtained from the Spanish National
Statistics Institute.

Ethics approval and consent to participate
Not applicable. The only data used was aggregated daily counts of deaths,
which authors had permission from the Spanish National Institute of
Statistics to analyse.

Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Public Health, Environments and Society, London School of
Hygiene and Tropical Medicine (LSHTM), 15-17 Tavistock Place, London
WC1H 9SH, UK. 2Centre for Statistical Methodology, London School of
Hygiene & Tropical Medicine (LSHTM), Keppel Street, London WC1E 7HT, UK.
3Institute of Environmental Assessment and Water Research (IDAEA), Spanish
Council for Scientific Research (CSIC), C/ Jordi Girona 18-26, 08031 Barcelona,
Spain.

Received: 30 June 2018 Accepted: 23 December 2019

References
1. Atkinson R, Kang S, Anderson H, Mills I, Walton H. Epidemiological time

series studies of PM2. 5 and daily mortality and hospital admissions: a
systematic review and meta-analysis. Thorax.
2014;69(7):660–5.

2. Atkinson RW, Mills IC, Walton HA, Anderson HR. Fine particle
components and health—a systematic review and meta-analysis of
epidemiological time series studies of daily mortality and hospital
admissions. J Expo Science Environ Epidemiol.
2015;25(2):208–14.

3. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series
regression studies in environmental epidemiology. Int J Epidemiol. 2013;42:
1187–95.

4. Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. Ambient temperature and
morbidity: a review of epidemiological evidence. Environ Health Perspect.
2012;120(1):19–28.

5. Yu W, Mengersen K, Wang X, Ye X, Guo Y, Pan X, Tong S. Daily average
temperature and mortality among the elderly: a meta-analysis and
systematic review of epidemiological evidence. Int J Biometeorol. 2012;
56(4):569–81.

6. Ioannidis JP. Why most published research findings are false. PLoS Med.
2005;2(8):e124.

7. Winquist A, Klein M, Tolbert P, Sarnat SE. Power estimation using
simulations for air pollution time-series studies. Environ Health. 2012;
11(1):68.

8. Lyles RH, Lin HM, Williamson JM. A practical approach to computing power
for generalized linear models with nominal, count, or ordinal responses. Stat
Med. 2007;26(7):1632–48.

9. Self SG, Mauritsen RH. Power/sample size calculations for generalized linear
models. Biometrics. 1988;44:79–86.

10. Whittemore AS. Sample size for logistic regression with small response
probability. J Am Stat Assoc. 1981;76(373):27–32.

11. Signorini DF. Sample size for Poisson regression. Biometrika. 199;78(2):446–50.
12. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*

power 3.1: tests for correlation and regression analyses. Behav Res Methods.
2009;41(4):1149–60.

13. PASS 15 Power Analysis and Sample Size Software, [ncss.com/software/
pass].

14. Rothman KJ, Greenland S. Planning study size based on precision rather
than power. Epidemiology. 2018;29(5):599–603.

15. Automatic Urban and Rural Network (AURN) [https://uk-air.defra.gov.uk/
networks/network-info?view=aurn].

16. Deaths registered by area of usual residence, UK [https://www.ons.gov.uk/
peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/
datasets/deathsregisteredbyareaofusualresidenceenglandandwales ].

17. Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D. Does particulate
air pollution contribute to infant death? A systematic review. Environ
Health Perspect. 2004;112(14):1365.

18. Hajat S, Armstrong B, Wilkinson P, Busby A, Dolk H. Outdoor air
pollution and infant mortality: analysis of daily time-series data in 10
English cities. J Epidemiol Community Health.
2007;61(8):719–22.

19. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J,
Tobias A, Tong S, Rocklöv J, Forsberg B, et al. Mortality risk attributable
to high and low ambient temperature: a multicountry observational
study. Lancet. 2015;386(9991):369–75.

https://doi.org/10.1186/s12874-019-0894-6
https://doi.org/10.1186/s12874-019-0894-6
http://ncss.com/software/pass
http://ncss.com/software/pass
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredbyareaofusualresidenceenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredbyareaofusualresidenceenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsregisteredbyareaofusualresidenceenglandandwales


Armstrong et al. BMC Medical Research Methodology           (2020) 20:15 Page 9 of 9
20. Tobías A, Armstrong B, Gasparrini A, Diaz J. Effects of high summer
temperatures on mortality in 50 Spanish cities. Environ Health. 2014;13(1):48.

21. Lu Y, Zeger SL. On the equivalence of case-crossover and time series
methods in environmental epidemiology. Biostatistics. 2007;8(2):337–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Approximate expressions for precision – single series
	Basic model and terminology
	Expressions for standard error

	Approximate expressions for precision – multiple series
	Implications for study power

	Results
	Graphical presentation of application of the expression for power in a range of scenarios
	Comparing our approximate power estimate with that estimated by standard power software
	Worked example of using the formulae in planning a study
	Comparison of the above approximations with conventional (quasi) Poisson estimates from real data

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

