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Abstract

in two nationally-representative UK biosocial surveys.

measurement error.

findings are influenced by nurse measurement effects.

Background: Biosocial survey data are in high demand, yet little is known about the measurement quality of
health measures collected by nurses in respondents’ homes. Our objective was to analyze the degree to which
nurses influence measurement in anthropometric and physical performance indicators collected from respondents

Methods: The English Longitudinal Survey of Ageing and the UK Household Longitudinal Study — Understanding
Society were used to analyze fourteen anthropometric and physical performance measures covering weight, height,
pulse, grip strength, and lung capacity. Cross-classified multilevel models were used to estimate “nurse effects” on

Results: Overall, there is a medium effect of nurses on measurement. Across all measures collected in both studies,
nurses explain around 13% of all measurement variation. Variation in specific measures range between
approximately 2 and 25%. Grip strength and lung capacity are more heavily influenced by nurses than are height,
weight, and pulse. Lastly, nurse characteristics explain only a very small proportion of nurse measurement variation.
Conclusion: Objective health measures collected by nurses in household biosocial surveys are susceptible to non-
trivial amounts of measurement variation. Nurse ID numbers should be regularly included in biosocial data releases
to allow researchers to account for this unnecessary source of variation. Further, researchers are advised to conduct
sensitivity analyses using control variables that account for nurse variation to confirm whether their substantive
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Background

The collection of objective health measures (or “biomea-
sures”) in population-based social surveys has become
increasingly prevalent over the years [1]. At present,
numerous surveys collect anthropometric measures (e.g.
height, weight, waist and hip circumference, blood pres-
sure), physical performance measures (e.g. grip strength,
lung function), and biological specimens (e.g. blood,
urine) alongside traditional survey measures [2-5].
These so-called “biosocial surveys” provide researchers
with the means to enhance their understanding of the
complex interrelationships between the social environ-
ment and health outcomes in the population [6-8].
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There are at least three models of collecting biomea-
sures in social surveys. One model consists of a center-
based assessment, where respondents present themselves
at a medical facility (hospital, clinic, health center) [9,
10]. This model allows for a wide range of biomeasures
to be collected with sophisticated equipment adminis-
tered by a licensed medical professional. However, this is
the costliest model and impractical for older, more
vulnerable populations [11]. A less expensive model is to
train lay interviewers to administer the biomeasures
inside respondents’ homes [12—16]. This model conveni-
ently allows the administration of both the traditional
interview and collection of biomeasures in a single visit.
However, the range of biomeasures that can be collected
through this model is more limited as some countries
require certain specimens (e.g. whole blood) to be col-
lected by a licensed medical professional. A compromise
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on the center-based and lay interviewer models is to
send licensed nurses to respondents’ homes at some
point after the traditional interview takes place [3, 17].
This model allows for the collection of a broader range
of biomeasures compared to the lay interviewer model
and at a significantly lower cost compared to the centre-
based model.

Any model that deploys actors to collect biomeasures
in nonclinical and nonstandardized settings poses
challenges that can potentially affect the quality of the
collected measures [18]. Quality assessments of biomea-
sures collected by lay interviewers have been docu-
mented [4, 15, 19, 20], but quality assessments for
nurses who are deployed to respondents’ homes in social
surveys are still lacking. A large body of work indicates
that nurses are prone to committing measurement er-
rors in clinical settings [21-29]. Imprecision of measure-
ment (or between-observer variation) is the most
commonly cited source of measurement error in nurse-
led assessments [28, 29]. Biomeasures found to be sus-
ceptible to nurse measurement error, include height,
weight, and waist and hip circumference [28], blood
pressure [21, 22, 25], and skin fold measurements
[28]. Multiple factors have been suggested as possible
causes of nurse measurement error for these an-
thropometric measures, such as incorrect cuff size,
variation in training, digit rounding, inadequate know-
ledge of appropriate measurement techniques, and the
use of multiple nurses [24, 28, 30-35].

Suggested guidelines for minimizing nurse measure-
ment error include adequate training, ongoing quality
control, a controlled working environment free of
impediments, double measurement of a subsample to
assess the extent of imprecision, and minimizing the
number of nurses used within a given study [28, 34,
36-38]. However, these guidelines are incongruent
with the practical realities of most large-scale biosocial
surveys. First, freelance nurses are decentralized and geo-
graphically dispersed which makes standardized training
and ongoing oversight of their technique rarely feasible.
Second, the working environment (ie. respondents’
homes) can vary considerably with respect to space, light-
ing, and other factors that may influence measurement.
Third, double measurement is impractical as it places un-
due burden on respondents and may harm participation
rates in follow-up waves of a longitudinal study [39].
Lastly, many nurses are needed to cover large geographical
areas common in nationally-representative biosocial
surveys. Deploying a large number of nurses increases the
possible magnitude of measurement error, even when only
small differences in technique occur between nurses over
time [28].

Given the high demand for biosocial survey data, it is
important to understand their impact on the measures
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collected. Only after that can the quality of these mea-
surements be determined. While some biomeasures are
relatively simple to administer and require modest
amounts of training (e.g. anthropometric measures),
there are others which are more complex and require
more extensive training (e.g. physical performance mea-
sures). Assessing the degree of nurse measurement error
across multiple biomeasures with different administra-
tion difficulties is therefore needed to determine where
larger measurement errors occur and where improve-
ments in measurement technique are most needed.

In this article, we examine the extent of nurse effects
in two longitudinal household biosocial surveys: the
English Longitudinal Study of Ageing (ELSA) and
Understanding Society — the UK Household Longitu-
dinal Study (US). Nurse effects are defined as variability
in the measurements at the nurse level. This form of
nurse measurement error introduces non-zero correla-
tions among the measurements collected by a nurse,
which can inflate the variance of descriptive estimates.
Using a cross-classified multilevel model that separates
nurse and area effects, we estimate nurse effects for a
host of anthropometric and physical performance mea-
sures collected over multiple waves of each study. Lastly,
we make use of background data on the nurses them-
selves to determine whether their age and level of
experience are factors that explain nurse measurement
error and should be accounted for in analyses of
biosocial survey data.

In short, the following three research questions are
addressed:

1) To what extent do nurses contribute to
measurement error in biomeasure collection?

2) Are nurse measurement error effects consistent
across surveys and over time?

3) Do nurse characteristics explain a significant
amount of nurse measurement error?

Methods

Data sources

The UK Household Longitudinal Study (UKHLS) is a
panel survey representative of the UK population [40]. It
initially started in 1992 under the name British House-
hold Panel Survey (BHPS). In 2009 a new version of the
survey was implemented with a sample size of 40,000
households in the UK under the name Understanding
Society (US). In wave 2 of the Understanding Society
(USW2), a random 80% of the sample was selected for a
nurse visit. Trained nurses visited respondents in their
homes around 6 months after the main interview. The
nurse visit collected data on height, weight, pulse, grip
strength and lung capacity after receiving verbal consent.
Additionally, after receiving written consent nurses also
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collected whole blood from the vein, but this component
is not part of the present investigation. In wave 3 of
Understanding Society (or wave 19 of the BHPS;
BHPSW19), all eligible BHPS members were selected for
a nurse visit. Similar procedures were followed as in the
previous wave.

In US wave 1 the individual response rate was 81.8%
while in waves 2 and 3 they were 59.4 and 61.3%, re-
spectively [41]. Response rates for the nurse visit (among
eligible individuals) were 58.6% for USW2 and 57% for
BHPSW19 [42].

The English Longitudinal Study of Ageing (ELSA) is a
longitudinal study that collects information every 2 years
from a representative sample of residents in England
who are 50vyears of age and older [17]. The sample is
based on respondents from the Health Survey for
England. In ELSA waves 2 (ELSAW?2), 4 (ELSAW4), and
6 (ELSAW®6), nurses visited eligible respondents and col-
lected the same anthropometric and physical perform-
ance measures as in the US/BHPS studies, as well as
blood from the vein.

For ELSA waves 2, 4 and 6 the individual response
rates were 82, 71, and 76%, respectively [43—-46], while
response rates for the nurse visits were 87.3, 85.7 and
84.3%, respectively, among eligible individuals [47].

Outcomes

To investigate the impact of nurse effects on measure-
ment error we consider five different outcome measures:
height, weight, pulse, grip strength, and lung capacity.
These cover the typical anthropometric and physical
performance measures collected by nurses. Some of
these measures are administered multiple times. For ex-
ample, pulse is measured three times, grip strength is
measured three times for each hand, and lung capacity is
measured three times based on the equipment used.
Table 1 shows all of the measurements collected. In
total, fourteen individual measurements were taken [42,
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48]. In the forthcoming analysis, each individual meas-
urement is analyzed separately to evaluate whether
nurses have a differential impact on the full range of
measurements they collect.

To investigate the influence of nurses on measurement
we adopt similar procedures to those used in the inter-
viewer effects literature [49]. The main challenge in this
research is separating the effect of the nurse from other
possible confounders, especially area effects and re-
spondent characteristics. In the absence of randomized
allocation of nurses to respondents, a statistical ap-
proach is needed to control for these confounders. To
separate nurse and area effects, a cross-classified multi-
level model is used with random effects for nurses and
areas [50]. Here, areas are defined as Lower Super Out-
put Areas that represent areas of approximately 1500
households.

Respondent characteristics are introduced as control
variables. The control variables used for both surveys
are: sex, age, having a partner, owning the house, educa-
tion, overall health, if they have a long-term illness, if
they live in London and if they live in the north of UK.
Additional variables are included for the models based
on the US data: if living in an urban area, household
size, and interest in politics. In ELSA, a variable was in-
cluded on whether the respondent lives alone.

Statistical analyses
The cross-classified multilevel model is defined as:

Yijiwy = Yo+ Z Yu¥i(jk) + Uoj+ Uok + &

where Y, the dependent variable, varies by individual (i),
area (j), and nurse (k). This model is explained by an
intercept (y,) term and /4 control variables with fixed ef-
fects (y,). The random effects for area (Uy;) and nurse
(Uor) are cross-classified. Lastly, ¢ represents the re-
sidual, or unexplained variance.

Table 1 Measures collected and analyzed in the US/BHPS and ELSA surveys

Type Measure Units Number of Name in data
measurements
Anthropometric measures Height cm 1 height
Weight kg 1 weight
Pulse Beats per minute 3 pulse
Physical performance Grip strength Individual readings for non-dominant hand in kg 3 mmgsn
Individual readings for dominant hand in kg 3 mmgsd
Lung capacity The amount of air that can be blown out in one second, 1 htfev
measured in liters
The speed of air moving out of lungs at the beginning 1 htpev
of expiration, measured in liters per second
The total amount of air that can be forcibly blown out 1 htfvc

after a full inhalation, measured in liters
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In the context of the present research, Uy represents
nurse effects. It represents the amount of variation that
is explained by nurses after controlling for respondent
characteristics and area effects. If nurses have no impact
on the collection of a biomeasure this should be close to
zero. This quantity will answer the first research ques-
tion. To answer the second question, we inspect how
this coefficient varies by the survey, wave of data collec-
tion, and biomeasure.

To answer the third research question, the model is
expanded to include nurse control variables. Two nurse-
level variables were collected in both surveys: nurse age
and nurse experience. Comparing the estimate of Uy in
the first model and in the expanded model will inform
whether these two characteristics explain the nurse
measurement effects and whether they should be rou-
tinely collected in biosocial surveys.

R 3.5.2 was used for data cleaning and running the
models. The models were estimated using the rstanrm
package, an interface that facilitates the estimation of
multilevel models using the Monte Carlo Markov Chain
procedures from Stan. Estimation was implemented
using four chains with 2000 iterations out of which the
last 1000 were used for sampling. Weakly informative
prior distributions were used: normal distribution for
the intercept and slope and an exponential distribution
for the residual.’

Missing data was handled using listwise deletion. Over
all five samples there was, on average, about 4.6% miss-
ing cases on the independent variables and 2.5% on the
dependent variables. Over all the samples, an average of
8798 respondents, 4735 areas, and 116 nurses are used
per survey. The full sample and descriptive statistics can
be found in [Additional file 1.docx].

Results

Magnitude of nurse effects

To answer the first research question, a cross-classified
model was estimated for each of the fourteen measure-
ment outcomes of interest in each of the five waves of
data collection. To facilitate the interpretation of the
results, the nurse random effects are represented as
Intraclass Correlation Coefficients (ICCs). These can be
interpreted as the proportion of variation that is associ-
ated with each level of the data, in our case: nurses,
areas, and residual variance after controlling for re-
spondent characteristics.

Across all biomeasures collected in all surveys and
waves, the average nurse effect on measurement is 13%,
which is considered to be a medium-sized effect. This
quantity varies by biomeasure with a minimum of 2% to

!See http://mc-stan.org/rstanarm/articles/priors.html and http://mc-
stan.org/rstanarm/articles/glmer.html
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a maximum of 27%. Figure 1 shows how the nurse
effects vary by type of measure collected. The largest
nurse effects are for the physical performance measures:
grip strength and lung capacity, while the smallest
effects are for the anthropometric measures: pulse,
height and weight. There also appears to be some vari-
ation within each measure depending on the order in
which the measurements were collected. For example,
the largest nurse effect for grip strength occurs at the
first measurement, whereas the largest nurse effect for
pulse is observed at the third measurement, although
the differences are small.

Nurse effects on measurement error across surveys and
over time

Next, we investigate if these nurse effects vary over time
and data source. Figure 2 disentangles the variation by
biomeasure, survey, and wave. Only small variations are
observed: the average ICC in waves 2, 4, and 6 of ELSA
are 13.9, 15.8, and 12.5%, respectively, whereas the aver-
age ICCs for the US wave 2 and BHPS wave 19 are 11.5
and 12.7%, respectively. For ELSA, it appears that the ef-
fects of nurses on lung capacity measures are higher in
waves 2 to 4 compared to wave 6. One explanation for
this difference is the change in the model of spirometer
used in ELSA wave 6 [48]. On the other hand, waves 4
and 6 show higher levels of nurse effects on grip-
strength compared to wave 2, suggesting that nurse
effects are worsening over time. For UKHLS the effects
are more consistent although the average nurse effect is
also higher for BHPS19 than for USW2.

Comparing ELSAW?2 with USW?2 we see that nurse ef-
fects on lung capacity are higher in the former while the
effect on grip strength is higher in the latter. On average,
nurse effects are larger in ELSA (around 14%) than in
the US and BHPS (around 12%).

Another way to visualize the differences in nurse ef-
fects over time and between data sources is shown in
Fig. 3. Here, the higher levels of nurse effects for lung
capacity in waves 2 and 4 of ELSA are more obvious.
One can also see lower nurse effects on grip strength in
ELSAW?2 compared to the other data sources. Further,
the figure confirms the low levels of nurse effects on the
measures of pulse, height and weight in all data sources.

The impact of nurse characteristics on measurement error
effects

Lastly, we investigate to what degree nurse characteris-
tics (nurse experience and nurse age) explain the nurse
measurement error effects found above. Overall, nurse
characteristics explain only a very small proportion of
variation. The average proportion of variation explained
with nurse characteristics for each biomeasure ranges
from a minimum of 0.1% to a maximum of 1.8%. Thus,
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Fig. 3 Proportion of nurse variance for biomeasures by survey and wave after controlling for respondent characteristics

variation, on average. This was shown to vary signifi-
cantly from close to 0 % for some measures, such as
pulse, height and weight and up to 27% for grip
strength measurements. The finding that physical
performance measures are more susceptible to nurse
effects compared to anthropometric measures is con-
sistent with other nurse-led studies, which have found
measures of height and weight to be least prone to
measurement error compared to other measures
which require more careful administration and use of
more sophisticated equipment [28].

Further, we investigated to what degree nurse effects
vary by time and survey. This issue is important as vary-
ing nurse effects can distort estimates of change and
comparisons between studies. Some differences over
time and study were observed, but they did not reveal a
consistent pattern. Nurse effects were larger for mea-
sures of lung capacity in ELSA compared to US and
BHPS. On the other hand, nurse effects on grip strength
were higher in US and BHPS compared to ELSA. Look-
ing at comparisons over time it was found that ELSA
wave 6 had smaller nurse effects on lung capacity com-
pared to earlier waves 2 and 4, suggesting that nurse
measurement improves over the course of the study for
this particular measure. This pattern, however, was re-
versed for grip strength where the largest nurse effects
were observed in the later waves of the study.

Finally, we attempted to explain these nurse effects
using two important nurse characteristics measured in
all five datasets: nurse experience and nurse age. Overall,
the models explained only a very small proportion of the
nurse effects (less than 2%) when the nurse characteris-
tics were introduced. It is clear that additional nurse

characteristics are needed to better understand the pro-
cesses that help explain measurement error effects.

This study has two important limitations. Firstly, in
the absence of random allocation of nurses to respon-
dents a modeling approach to control for confounding
of nurse and area effects and respondent characteristics
was used. Although this approach makes the assumption
that both effects can be separated through control vari-
ables, it does yield good variation and highlights differ-
ences between biomeasures and data sources in nurse
effects. Further, this is a standard approach used in in-
vestigating observer effects in observational studies [49].
Secondly, the analysis of nurse characteristics that ex-
plain nurse measurement effects is based on only two
variables: experience and age. Although these variables
are important from a theoretical viewpoint, we found
that they have poor explanatory ability. Thus, more in-
formation about the nurses is needed to understand the
processes underlying nurse measurement effects and
allow researchers to control for these effects.

From these results, it is clear that making available the
nurse ID variable as well as nurse characteristics can be
useful not only for modelling nonresponse but also for
estimating and accounting for nurse effects on measure-
ment error. The results also suggest the need to perform
sensitivity analyses that take into account the nurse ef-
fects on measurement when using data collected by
nurses. These effects are similar to those found in the
interviewer effects literature and highlight that objective
measures of health collected by nurses are not impervi-
ous to measurement error.

Lastly, more research is needed to understand the
mechanisms of nurse measurement error effects. This
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can be done either through qualitative research or by
collecting more detailed information about nurse atti-
tudes and behaviors, similar to what has been done in
the lay interviewer effects literature [19]. This can, in
turn, inform procedures or training programs that can
help minimize this unnecessary source of measurement
error.

This research is among the first to investigate the ef-
fects of nurses on biological data collection in a
population-representative household sample survey. This
was informed by two distinct literatures: the medical re-
search in biological data collection and the survey meth-
odology research on interviewer effects. Our results
indicate that this has the potential to be an important
research area and opens up some intriguing research
questions. For example, do these finding generalize to
other types of health care professionals? Are these differ-
ences in nurse effects by type of measurement consistent
across contexts and survey institutes? How do these ef-
fects influence substantive analyses? We hope this study
will trigger avenues for research that can answer such
questions.

Conclusions

Our study showed that some objective health measures
collected by nurses in household surveys are susceptible
to non-trivial amounts (up to 27%) of measurement
error variability at the nurse level. Physical performance
measures tended to be more influenced by nurse meas-
urement error than anthropometric measures. Nurse
characteristics did not explain a significant amount of
the observed measurement error. We recommend that
researchers account for this unnecessary source of error
by incorporating nurse ID numbers in their analysis, or
performing a sensitivity analysis to determine whether
substantive findings are affected by nurse measurement
effects. Moreover, a richer array of nurse characteristics
should be included in biosocial data releases to further
allow researchers to control for this.
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