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Abstract

Background: The main goal of this study is to explore the use of features representing patient-level electronic
health record (EHR) data, generated by the unsupervised deep learning algorithm autoencoder, in predictive
modeling. Since autoencoder features are unsupervised, this paper focuses on their general lower-dimensional
representation of EHR information in a wide variety of predictive tasks.

Methods: We compare the model with autoencoder features to traditional models: logistic model with least
absolute shrinkage and selection operator (LASSO) and Random Forest algorithm. In addition, we include a
predictive model using a small subset of response-specific variables (Simple Reg) and a model combining these
variables with features from autoencoder (Enhanced Reg). We performed the study first on simulated data that
mimics real world EHR data and then on actual EHR data from eight Advocate hospitals.

Results: On simulated data with incorrect categories and missing data, the precision for autoencoder is 24.16%
when fixing recall at 0.7, which is higher than Random Forest (23.61%) and lower than LASSO (25.32%). The
precision is 20.92% in Simple Reg and improves to 24.89% in Enhanced Reg. When using real EHR data to predict
the 30-day readmission rate, the precision of autoencoder is 19.04%, which again is higher than Random Forest
(18.48%) and lower than LASSO (19.70%). The precisions for Simple Reg and Enhanced Reg are 18.70 and 19.69%
respectively. That is, Enhanced Reg can have competitive prediction performance compared to LASSO. In addition,
results show that Enhanced Reg usually relies on fewer features under the setting of simulations of this paper.

Conclusions: We conclude that autoencoder can create useful features representing the entire space of EHR data
and which are applicable to a wide array of predictive tasks. Together with important response-specific predictors,

specific predictors

we can derive efficient and robust predictive models with less labor in data extraction and model training.
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Background

In recent years, there has been increasing interest in
clinical prediction research as well as a growing consen-
sus on the importance of predictive models for medical
science [1-5]. Predictive models can be used to aid in
the clinical decision-making process, inform the poten-
tial development of illness, or relate the current health
status of individuals to their future possible outcomes.
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The dramatic increase of EHR (Electronic Health Rec-
ord) data provides many novel opportunities to capture
the association between patient outcomes and clinical
treatments, while also pushing the dimensionality and
complexity of data to a state where some classical pre-
dictive models may fail. LASSO (Least Absolute Shrink-
age and Selection Operator) [6], one of the most popular
variable selection methods, has been a good solution to
prediction problems for high dimensional data by
shrinking small coefficients to zero during regression. In
practice, when the response variable has a binary out-
come, logistic models are typically applied with LASSO
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variable selection. Machine learning procedures such as
Random Forest [7] have also been successfully imple-
mented in various practical problems. Operating on the
divide and conquer principle, Random Forest exhibits
remarkably good results by averaging the results ob-
tained from a predefined number of randomized individ-
ual decision trees while requiring very little tuning [8].

LASSO and Random Forest are both supervised strat-
egies that usually use different sets of predictors for
models with different response variables. Even for the
same response, such as a readmission event, the predic-
tors can vary widely across studies. Miotto et al. [9] pro-
posed a data representation using an unsupervised deep
learning method — a three-layer stack of denoising auto-
encoders — which has the potential to generate standard-
ized features to represent the original EHR data and can
be efficiently used in various types of predictive models.
The innovative work by Miotto et al. inspired us to
probe into some possible applications of autoencoder in
predictive models using EHR data.

Autoencoder has been successfully used in word sequence
processing [10], human pose image recovery [11], and nuclei
detection of breast cancer histopathology images [12],
among many other applications. It is a process exerting non-
linear transformations layer by layer during which the linear
combinations of output from the former layer become the
input of nonlinear activation functions in the following layer.
The objective of autoencoder is to minimize the difference
between final outputs and inputs from the first layer while
prioritizing the most useful information instead of simply
compressing or copying raw data [13]. That implies the
usage of this strategy is to capture the most informative data
while reducing noise. If the dimension of the last hidden
layer is less than the number of original predictors, a lower
dimensional data representation is obtained which can func-
tion as a new feature set in predictive models, consequently
mitigating the downsides of high dimensionality. Therefore,
in this paper, we research a strategy that deploys the lower-
dimensional data representation to reduce the feature set
size when building classifiers for EHR data. It is worth not-
ing that, due to its unsupervised nature, the lower dimen-
sional representation is capable of being applied to various
models with different response variables. Though it requires
massive computation, the process of extracting new features
can be computationally efficient with the machine learning
platform H20 which takes advantage of distributed systems
and in-memory computing [14].

In this paper, we first use simulated data to explore
the applicability of new features from autoencoder to
predictive models under different handlings of data for
quantitative variables and missing values. The applica-
tion of EHR data raises questions about the validity and
impact of some conventional practices when processing
clinical data, such as categorizing numeric variables and
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the handling of missing values. Categorization may cause
serious information loss and improper critical values
may lead to additional bias [15-17]. However,
categorization also simplifies the data and eventually the
predictive model. Missing data is a common problem in
real world data and is widespread in EHR data [3, 18—
21]. There are many options to address missing data
with less loss, including simple, widely used strategies
like single imputation or coding missing data as un-
known. In literature, there has been a lot of research on
the effects of categorization and missing data through ei-
ther simulation or real data analysis [22—26]. Here we
do not focus on quantifying the two effects. Instead, we
investigate their influence on various predictive strat-
egies because robustness to data limitations is crucial for
EHR applicability. Later, we also use EHR data to build
models to predict 30-day readmission rates (Readmit30)
and the presence of diseases such as Acute Myocardial
Infarction (AMI), Heart Failure (HF), Chronic Obstruct-
ive Pulmonary Disease (COPD) and Pneumonia from
the patient’s latest clinical visit. More specifically, we fit
logistic regression with new features from autoencoder
both with and without response-specific important vari-
ables as predictors for both simulated data and real data.
For better illustration, LASSO, Random Forest, logistic
models with only important variables (Simple Reg) and
with both important variables and features from autoen-
coder (Enhanced Reg) are included in the comparison.

Methods

Simulation study is shown to be a useful tool in the
sense that it can be tailored to test the properties of the
methods under circumstances which may not be
reflected or available in existing real data sets. To inves-
tigate the proposed strategy thoroughly, we perform the
study first on simulated data that mimics real world
EHR data and then on actual EHR data.

Set up of simulated data

The sample size is set to be 100,000. Assume that the sim-
ulated data consists of 100 predictors (x1, ..., X100), includ-
ing 72 numeric predictors with multistage influence and
28 numeric predictors with continuous influence. Here
continuous influence refers to the predictor that affects re-
sponse with a single continuous function and multistage
influence refers to the predictor that affects response with
a piece-wise continuous function which allows a predictor
to affect response differently at different stages. We will
explain in more detail in the next paragraph. Among all,
12 predictors are assumed to have a significant contribu-
tion to the response, including 8 multistage predictors and
4 continuous predictors. The remaining 88 are minor pre-
dictors with comparatively smaller contributions to the re-
sponse. Note that the numbers 100, 72, 28, 12, 8, 4 and 88
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are assumed for convenience according to our experience
in EHR data and can be changed to some other number
without affecting much of the major results of the study.
The probability of binary response variable Y being 1 is

derived from a logistic model P(Y = 1|1, ...,%100) = exp

(C2 @)/ + exp(%f (%)), where fiz) is the
contribution of the j' predictor x; to the response. It is a
flexible and reasonable way to assume the contribution of
each predictor is additive [27].

In our model, predictors contribute to response in two
ways: multistage and continuous. The consideration of
multistage is based on the observation that some quantita-
tive EHR features might exhibit non-linear influence. That
is, the two abnormal levels, above or below normal range,
can correlate with different health concerns and both
might result in hospitalization. For instance, the normal
level of serum calcium usually ranges from 8.5 to 10.5 mg/
dl if ignoring measurement errors across instruments [28].
Hypocalcemia, the state of low-level serum calcium, often
leads to tetany, convulsive seizures, and cardiovascular,
psychiatric, and a variety of ectodermal effects. Con-
versely, hypercalcemia, the state of high-level calcium in
blood, is usually related to soft tissue calcification, tubu-
lointerstitial nephropathy, anorexia, nausea, electrocardio-
graphic disturbances, and a spectrum of neurologic
changes from headache to coma [28]. This phenomenon
inspired us to use a piecewise multistage function to dis-
tinguish the possibly distinct intervals. However, there
may be a few predictors like age for which we do not wit-
ness some clear change points of corresponding influence.
Thus, we use a continuous function to approximate the
effect of these predictors. A detailed description of the
multistage functions (Figure 1) and continuous functions
(Figure 2) we have used can be found in the appendix.

All predictors are generated from a multivariate
normal distribution, where the mean vector is drawn
from a uniform distribution ranging from 150 to 250
with the covariance matrix being 0,-0,0.5'“”, where o;
and o; are standard deviations of predictor x; and x;
respectively, with o; and o; generated from a uniform
distribution U[70,100]. For example, correlation be-
tween x; and x, is 0.5/'"2/=0.5 and between x, and
x5 is 0.5/ 731 =0.25. This correlation structure has the
convention that more correlated predictors are likely
to be put in adjacent columns of the data matrix.

We randomly chose 70% of observations as training data
and the rest as testing data. The whole process was re-
peated 100 times. The mean of AUC (area under the re-
ceiver operating characteristic curve) of the true model is
0.7963. The mean of AUC of the true model containing
only the 12 important predictors is 0.7353. The mean of
AUC of the true model containing only the remaining 88
minor predictors is 0.6899. There are on average 13,265
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positive responses out of 100,000 observations, which is
designed to mimic the 30-day readmission rate in real
data.

Simulation study design
Here we consider 4 scenarios to handle the simulated
data.

1. Raw data: derive models using raw predictors.

2. Correct categories: all numeric predictors are
recoded to be categorical with correct critical
values. The correct threshold(s) for predictor x; are
the value(s) at which flx;) is equal to zero.

3. Incorrect categories: all numeric predictors are
categorized but 12 important predictors and half of
minor predictors are recoded according to incorrect
cutoff points. Since we usually have certain
knowledge about the nature of explanatory
variables, the shift of cutoff points from the truth
should not be too much. More specifically, the
maximum deviation of incorrect thresholds from
true critical values is 80, which is assumed to mimic
mild but not extreme misclassification mistakes in
practice.

4. Incorrect categories and missing data: all important
predictors and 90% of the trivial predictors have
values missing-at-random conditional on category;
the missing percentages for predictors in and out of
normal range are 90 and 5% respectively. This miss-
ing pattern of normal and abnormal predictor
values is intended to approximate real world data
such as lab values. All missing observations are set
to be an unknown category. In addition, important
predictors and 50% of the minor predictors have
mis-specified threshold(s) consistent with scenario
3 for observed values.

Scenario 2 is designed to investigate the impact of
categorization on predictive models when all predictors
are classified correctly. Scenario 3 provides a more realis-
tic version of handling data, as in many situations it is not
clear what are the best thresholds for categorization. Sce-
nario 4 is closest to the reality of EHR data, considering
the impact of both missing data and categorization. As
mentioned in [21], there exist more complex imputation
methods like multiple imputation or model-based imput-
ation. However, we consider only the naive method to test
robustness of predictive models in extreme cases.

Real data preparation

We extracted the EHR data from eight Advocate Aurora
Health hospitals located in the Chicago metropolitan area.
The original data set has 104,398 observation rows with
496 predictors. Redundant variables that are irrelevant or
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represent extremely rare events were removed. After re-
coding categorical predictors and lab measurement values
to dummy variables, we ended up with 469 predictors.
The thresholds for categorization are all based on expert
knowledge. Missing values in any predictor were classified
as an additional unknown category. Out of the 469 predic-
tors, 8 are numeric, including age, length of stay in the
hospital, etc. The rest are all binary variables. Due to
strong correlation among predictors like repeated mea-
sures for the same person at different time points, the
rank of the design matrix is 420, less than the number of
predictors. Five response variables are considered in the
data: Readmit30, COPD, AMI, HF and Pneumonia. Out of
the 104,398 encounters, the number of events for Re-
admit30 is 12,211 (11.70%), for COPD 7367 (7.06%), for
AMI 2288 (2.19%), for HF 6362 (6.09%) and for Pneumo-
nia 3482 (3.34%).

We randomly chose 70% of observations to be the
training set and the remainder to be the testing set in
100 repetitions. The list of important response-specific
predictors for Readmit30 was derived from prior re-
admission research [29, 30]. A description of these vari-
ables is given in Table 1. The lists of important variables
for the other response variables were extracted from 30
training sets using stepwise selection in SAS 9.4. The in-
clusion criteria for the list of important variables is the
highest frequency of being selected as well as a p value
less than 0.0001 in the final model. In practice, import-
ant response-specific variables can also be obtained from
literature, expert suggestions, or both.

Model training and evaluation
For both simulated and real data, 5 models were trained:

1. Autoencoder: logistic model applied to features
generated by stacked sparse autoencoders

2. LASSO: logistic model with LASSO selection on

raw predictors together with transformations of

numeric predictors (if there are any)

Random Forest with raw predictors

4. Simple Reg: logistic model applied only to
important variables

5. Enhanced Reg: the proposed strategy which applies
logistic model to the new features in model 1
combined with important variables in model 4. We
additionally use LASSO penalty to achieve a sparser
model.

w

All analyses were performed with R 3.4.1 and SAS 94.
We implemented autoencoder in H20 via R interface by
using the R package ‘h20’ [14]. To obtain sparse autoenco-
ders, an L1 penalty was applied to the coefficients with re-
spect to each hidden unit and the value of penalty
parameter was chosen to be 10” % We decided to use two
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hidden layers for both simulated and real data. The num-
ber of hidden layers and number of units in each layer
were determined by the overall predictive performance of
models. For example, in the real EHR data, we tuned the
number of new features generated by autoencoder with
the value ranging from 50 to 300 and found that the pre-
dictive power of models increases with the number of fea-
tures. The number of 200 was chosen because in this
situation model performance was close to optimal while
decently reducing the number of features. From results of
simulation and real data application, autoencoder with
two hidden layers has already achieved remarkable per-
formance. Thus, we adopt the setting of two hidden layers
throughout the numeric studies while to some extent re-
duce the possibility of overfitting raw data.

In LASSO, we set the L1 penalty parameter to the
value at which the minimal cross-validated error was
achieved (1,,;,) using the training data. As LASSO is de-
signed for linear models, we report the results of LASSO
after adding quadratic, cubic and log transformations of
numeric predictors (if there are any) to both training
and testing data. Note that no transformation is needed
under scenarios 2, 3 and 4 of simulation study as there
are only categorical variables. Simple Reg employs no
additional feature selection. For random forest, we just
adopt the default settings of function randomForest in R
package ‘randomForest’, e.g., set number of trees to grow
to the default value 500.

Our decision to use LASSO selection in Enhanced Reg is
an attempt to remedy autoencoder’s unsupervised nature.
Autoencoder captures variability in EHR data, which might
or might not contribute to the response of Y. Therefore, we
need another variable selection process for the final predict-
ive model to get rid of redundant information, which can
simplify the model and make it more robust.

During evaluation, we used precision given recall, posi-
tive predictive value (PPV) given negative predictive
value (NPV) and AUC to measure the performance of
predictive models. The definitions of these measures are
all based on numbers of true/false positives and true/
false negatives as listed in Table 2. We report precision
given recall equal to 0.7. PPV is presented given NPV
equal to 0.95 (simulated data and real data with the re-
sponse variable Readmit30) or 0.99 (real data with the
other four response variables that are rare events with
high NPVs). AUC is an overall measure for the perform-
ance of predictive models for relatively common events.
But note that it is not a good measure for rare events;
instead, precision/recall or PPV/NPV can be a better
choice. For all the above measures, higher is better, in
general. In addition, we display the number of features
in the model to measure the complexity of predictive
models. A smaller number of features means the result-
ing model has a lower possibility to overfit raw data.
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Table 1 Descriptive statistics of important variables for Readmit30. For binary variables like Acuity, the figures represent the number
of positive cases and corresponding percentage of the sample (in parenthesis). For numeric variables like Length of Stay, the figures
are sample means and corresponding standard deviations (in parenthesis)

Variables Overall Index Index Admissions by the Value of Readmit30
Admissions YES (11.70%) NO (8830%) n = 92,187
n=104,398 _

n=12211

1. Length of Stay 445 (4.45) 561 (5.47) 430 (4.27)

2. Acuity 81,048 (77.63) 10,641 (87.14) 70,407 (76.37)

3. Number of ER Encounters in 0.36 (0.91) 0.58 (1.28) 0.33 (0.85)

Last Six Months

4. Number of Inpatient Encounters 6.01 (12.84) 12.04 (19.83) 521 (11.36)

in Last Year

5. Polypharmacy 18.88 (8.94) 19.19 (841) 18.84 (9.01)

6. Number of Inpatient Encounters 062 (1.30) 1.17 (1.74) 0.55 (1.21)

in Last Six Months
7. Discharge Disposition
Home/Self Care
Home Care
SNF
Rehab
LTC, Federal Hospital
AMA
Others
8. Mean Albumin Level
<34q/dl
34-50g/dl
>5
Unknown
9. Leukemia Current
10. Leukemia History
11. Malignancy Current
12. Malignancy History

13. RF without Hemo Current

14. History of Alcohol Substance Abuse

15. Dementia Current
16. Dementia History
17. Trauma Current

18. Trauma History

45,931 (44.00)
23,290 (22.31)
25,669 (24.59)
2948 (2.82)
1783 (1.71)
551 (0.53)
4226 (4.05)

54,177 (51.89)
20,535 (19.67)
134 (0.13)
29,552 (2831)
297 (0.28)
1272 (1.22)
5043 (4.83)
26,620 (25.50)
14,061 (13.47)
20,641 (19.77)
3305 (3.17)
15,559 (14.90)
7900 (7.57)
50428 (48.30)

3816 (31.25)
3560 (29.15)
3668 (30.04)
367 (3.01)
463 (3.79)
99 (0.81)
238 (1.95)

8087 (66.23)
1829 (14.98)
11 (0.09)
2284 (18.70)
64 (0.52)
246 (2.01)
847 (6.94)
3924 (32.13)
2348 (19.23)
2954 (24.19)
398 (3.26)
2143 (17.55)
949 (7.77)
6995 (57.28)

42,115 (45.68)
19,730 (21.40)
22,001 (23.87)
2581 (2.80)
1320 (143)
452 (0.49)
3988 (4.33)

46,090 (50.00)
18,706 (20.29)
123 (0.13)
27,268 (29.58)
233 (0.25)
1026 (1.11)
4196 (4.55)
22,696 (24.62)
11,713 (12.71)
17,687 (19.19)
2907 (3.15)
13,416 (14.55)
6951 (7.54)
43,433 (47.11)

Table 2 Definition of true positive, false positive, true negative and false negative

Predicted Value Measures
1 0
True Value 1 true positive (a) false negative () Sensitivity: a/(a +¢) Recall: a/(a + ¢)
0 false positive (b) true negative (d) Specificity: d/(d + b)
Measures PPV: a/(a + b) NPV: d/(c+d)

Precision: a/(a + b)
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Results

Simulation study results

Table 3 shows the performance of all methods under the
four scenarios described in the simulation study design.
Overall, predictive models using only new features gener-
ated from autoencoder are not the best but do have de-
cent performance. By combining important variables with
new features generated from autoencoder, Enhanced Reg
achieves better results. In fact, Enhanced Reg is always the
second-best performing strategy in scenarios 2—4, though
LASSO exhibits the best overall predictive capability with
the price of a much longer list of features. Under all sce-
narios, figures of Autoencoder and Random Forest are
closely matched by the numbers of Enhanced Reg and
LASSO, which is consistent with the finding in [29] that
performances for well-established predictive models tend
to be similar when sample size is large.

Precision, PPV and AUC of Enhanced Reg remain
roughly unchanged in the existence of categorization
and missing data (scenario 2-4), and stand at 24.89,
21.25%, 0.756 in scenario 4, respectively. For results of
Enhanced Reg, the biggest difference is observed be-
tween scenario 2 and scenario 3, where the above three
measures decline by 2.16, 2.63, 2.30% due to incorrect
categorization. Likewise, for the other four models, the
numbers across all scenarios are quite stable, although
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the figures of LASSO drop from 28.25, 25.09%, 0.788 in
scenario 1 to 24.07, 20.25%, 0.748 in scenario 3, corres-
pondingly. LASSO tends to include more features in the
final model than Enhanced Reg. In scenario 1, LASSO
has number of features equal to 300 in contrast to 57 for
Enhanced Reg, where predictive performance of the
former beats the latter by a neck (28.25%, 0.788 in com-
parison with 24.62%, 0.754 for precision and AUC, re-
spectively). In the most realistic setting, scenario 4, the
number of features for LASSO are 94 greater than for
Enhanced Reg (175 vs. 81) with a gain in evaluation
measures no more than 0.5%.

By combining important variables with new features gen-
erated from autoencoder, Enhanced Reg achieves consist-
ently better performance than using new features alone
across all scenarios. Compared with Autoencoder, when all
predictors were recoded to correct categories in scenario 2,
Enhanced Reg sees an increase in the three measures of
0.70, 0.87 and 0.90% correspondingly. In scenario 4, by sub-
stituting Autoencoder with Enhanced Reg, the growth in
precision, PPV and AUC is 0.73, 0.80, 0.80%, respectively.

Real data results

Table 4 shows the results of the real EHR data analysis.
Note that we used the same 469 predictors to build pre-
dictive models for five different response variables. Thus,

Table 3 Simulation study results. Mean and coefficient of variation (in parenthesis) of precision (when recall = 0.70), PPV (when
NPV =0.95), AUC, NO. (number of features in predictive models) of five prediction models in testing set in 100 repetitions

Scenarios Prediction Models Precision (%) PPV (%) (NPV =0.95) AUC NO.
(recall =0.70)

1. Raw Data Autoencoder 24.23 (0.18) 19.93 (0.07) 0.749 (0.01) 50 (0.00)
LASSO (Apin) 28.25 (0.17) 25.09 (0.05) 0.788 (0.01) 300 (0.06)
Random Forest 2563 (0.18) 21.93 (0.06) 0.767 (0.01) 100 (0.00)
Simple Reg 20.96 (0.20) 1573 (0.11) 0.708 (0.02) 12 (0.00)
Enhanced Reg 24.62 (0.18) 2045 (0.07) 0.754 (0.01) 57 (0.03)

2. Correct Categories Autoencoder 25.07 (0.18) 2145 (0.07) 0.757 (0.03) 50 (0.00)
LASSO (i) 26.25 (0.17) 22.94 (0.05) 0.771 (0.01) 132 (0.02)
Random Forest 24.93 (0.18) 21.57 (0.06) 0.759 (0.01) 136 (0.00)
Simple Reg 6 (0.18) 17.10 (0.09) 0.713 (0.01) 16 (0.00)
Enhanced Reg 25.77 (0.17) 22.32 (0.06) 0.766 (0.01) 60 (0.06)

3. Incorrect Categories Autoencoder 22.73 (0.18) 18.82 (0.08) 0.732 (0.01) 60 (0.00)
LASSO (Apin) 24.07 (0.17) 20.25 (0.06) 0.748 (0.01) 132 (0.02)
Random Forest 2270 (0.18) 1867 (0.07) 0.733 (0.01) 136 (0.00)
Simple Reg 19.83 (0.19) 1531 (0.12) 0.690 (0.02) 16 (0.00)
Enhanced Reg 2361 (0.18) 19.69 (0.07) 0.743 (0.01) 69 (0.03)

4. Incorrect Categories and Missing Data Autoencoder 24.16 (0.18) 2045 (0.07) 0.748 (0.03) 60 (0.00)
LASSO (Apin) 2532 (0.17) 21.67 (0.06) 0.761 (0.01) 175 (0.08)
Random Forest 2361 (0.18) 19.92 (0.07) 0.745 (0.01) 226 (0.00)
Simple Reg 2092 (0.19) 1631 (0.10) 0.706 (0.02) 28 (0.00)
Enhanced Reg 24.89 (0.17) 2125 (0.07) 0.756 (0.02) 81 (0.04)
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Table 4 Real data results. Mean and coefficient of variation (in parenthesis) of precision (when recall = 0.7), PPV (when NPV =0.95 for
Readmit 30 and 0.99 for the others), AUC, NO. (number of features in predictive models) of five prediction models in testing set in

100 repetitions

Response Prediction Precision (%) PPV (%) AUC NO.
Models (recall=0.7) (NPV =0.95/0.99)

Readmit30 Autoencoder 19.04 (0.02) 16.88 (0.02) 0.707 (0.01) 200 (0.00)
LASSO (i) 19.70 (0.02) 17.79 (0.02) 0.719 (0.00) 162 (0.10)
Random Forest 1848 (0.02) 16.50 (0.02) 0.707 (0.01) 469 (0.00)
Simple Reg 18.70 (0.02) 16.06 (0.02) 0.700 (0.01) 25 (0.00)
Enhanced Reg 19.69 (0.02) 17.68 (0.02) 0.717 (0.00) 144 (0.10)

COPD Autoencoder 55.90 (0.02) 42.16 (0.03) 0.961 (0.00) 200 (0.00)
LASSO (Amin) 58.02 (0.02) 44.50 (0.02) 0.963 (0.00) 266 (0.04)
Random Forest 56.19 (0.02) 4045 (0.03) 0.956 (0.00) 469 (0.00)
Simple Reg 5151 (0.02) 35.53 (0.03) 0.952 (0.00) 21 (0.00)
Enhanced Reg 57.06 (0.02) 43.62 (0.02) 0.962 (0.00) 161 (0.08)

AMI Autoencoder 57.40 (0.04) 68.80 (0.03) 0.985 (0.00) 200 (0.00)
LASSO (Amin) 58.57 (0.04) 70.10 (0.04) 0.986 (0.00) 64 (0.59)
Random Forest 56.32 (0.03) 65.90 (0.03) 0.982 (0.00) 469 (0.00)
Simple Reg 52.24 (0.04) 56.43 (0.06) 0.984 (0.00) 1(0.00)
Enhanced Reg 59.26 (0.04) 70.66 (0.03) 0.986 (0.00) 9 (0.14)

Heart Failure Autoencoder 6148 (0.02) 43.94 (0.02) 0.961 (0.00) 200 (0.00)
LASSO (Amin) 63.15 (0.02) 45.88 (0.02) 0.964 (0.00) 5 (0.08)
Random Forest 60.67 (0.02) 42.56 (0.02) 0.958 (0.00) 469 (0.00)
Simple Reg 57.81(0.02) 38.50 (0.02) 0.954 (0.00) 18 (0.00)
Enhanced Reg 62.37 (0.02) 45.09 (0.02) 0.962 (0.00) 8(0.10)

Pneumonia Autoencoder 40.17 (0.03) 34.56 (0.03) 0.955 (0.00) 200 (0.00)
LASSO (Amin) 42.18 (0.03) 35.94 (0.02) 0.958 (0.00) 204 (0.09)
Random Forest 3827 (0.03) 3244 (0.03) 0.951 (0.00) 469 (0.00)
Simple Reg 3244 (0.02) 28.76 (0.02) 0.942 (0.00) 11 (0.00)
Enhanced Reg 41.39 (0.03) 35.54 (0.02) 0.957 (0.00) 173 (0.08)

during each repetition, the same 200 new features gener-
ated by autoencoder are applied to Autoencoder and En-
hanced Reg for all responses. Across all five models, the
measures of model performance for relatively rarer
events, COPD, AMI, HF and Pneumonia, exceed those
for Readmit30.

Enhanced Reg is the best-performing model when re-
sponse is AMI, or otherwise the second-best strategy
with performance slightly worse than LASSO. With re-
sponse variable Readmit30, COPD, HF and Pneumonia,
the average number of features for LASSO are greater
than Enhanced Reg. By contrast, with the response vari-
able AMI, the number of features for Enhanced Reg
double the amount of LASSO. Nevertheless, it is worth
mentioning that, in this case, the CV (coefficient of vari-
ation) of number of features for LASSO is 0.59, in
marked contrast to 0.14 for Enhanced Reg, which may
indicate a lack of robustness in LASSO models.

Applying logistic model only to new features generated
by autoencoder gives decent performance and incorporat-
ing response-specific variables (Enhanced Reg) further en-
hances performance. When response is readmit30,
Enhanced Reg increases the AUC from 0.707 (Autoenco-
der) to 0.717 (Enhanced Reg). At the same time, the num-
ber of features of the model are reduced from 200 to 144
due to the shrinkage effect of LASSO selection. For other
response variables, we observe minimum changes to
AUC, but AUC for all methods is already greater than
0.942 due to the low occurrence of positive events. En-
hanced Reg also leads to an increment in precision of
0.66% (for Readmit30), 1.16% (for COPD), 1.86% (for
AMI), 0.89% (for HF) or 1.22% (for pneumonia).

Discussion
A potential usage of the new features generated by auto-
encoder is to create a set of standardized variables that
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represent most of the variations in EHR data. These
standardized variables are capable of being widely used
in a variety of predictive models. Another way to utilize
the new representation is to define distances between
patients/encounters so that a comparable control group
can be easily extracted from the data [31, 32].

Since representations are not limited to specific usage, to
some degree, new features from autoencoder may have a
lower chance to overfit data even without bootstrap-based
or other cross validation approaches when modeling. Ac-
cording to [33], a simple, robust model should be preferred
to an overly fine-tuned model for the specific data.

From another point of view, these new features repre-
sent the overall variation of predictors but potentially fail
to capture the information most relevant to the re-
sponse. Therefore, we came up with the idea of incorp-
orating some response-specific important variables to
aid with predictive modeling. Important variables, usu-
ally originating from expert experience or research, con-
tain useful response-specific information. Using both the
response-specific information and general representa-
tions of all predictors from autoencoder, we are likely to
derive accurate and generalizable predictive models. In
simulation studies, Enhanced Reg shows decent per-
formance with a much shorter list of features compared
to LASSO, which inspired us to apply this strategy to
real data analysis. The results in real data further sup-
port the validity of this approach. However, it is tricky to
define how many important variables are ‘enough’ for
the purpose of enhancing predictive performance. In
addition, it is worth researching other strategies for
combining the response-specific information.

In real applications, we are always facing the tradeoff
between the ease of use and the accuracy of prediction.
New features from autoencoder only represent generic
variation among predictors, enabling wide applicability
to various modeling tasks and potentially mitigating the
labor of extracting specialized datasets. Still, features
generated by unsupervised strategies may or may not
capture the information most related to the variation of
specific response variables. From our simulation and real
data analysis, the predictive performance of Enhanced
Reg is to some extent inferior to LASSO. Regardless of
the nature of unsupervised features, it may also be par-
tially due to the incompleteness of our dataset since we
only extracted a small number of variables for each pa-
tient. Consequently, features from autoencoder may not
draw a whole picture of each subject. In contrast, as a
supervised strategy, LASSO identifies the predictors that
are most related to the response while penalizing the co-
efficients of less relevant predictors to zero. During
modelling, we choose the value of penalty parameter via
10-fold cross validation. That is, the comparison is es-
sentially between the ‘best’ model that LASSO could
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achieve with Enhanced Reg. In this circumstance, the
proposed strategy tends to obtain a more parsimonious
model under the limited scenarios of studies of this
paper. Nevertheless, more experiments are still required
to verify that this tendency persists in external data.

Another concern about features from autoencoder lies
in its interpretability. Autoencoder exerts a series of
nonlinear transformations on raw predictors to derive
representations, resulting in new features’ vague inter-
pretation of original variables. On the other hand, vague
interpretation of features extracted from autoencoder
could have an upside. Since these features do not dir-
ectly represent traditional patient characteristics or iden-
tifying features, they can obscure protected health
information (PHI) and may provide an ethical alternative
for sharing data across external institutions and research
studies. Increased sharing would enable repeatable re-
sults and broader exploration, consequently improving
quality and accountability in clinical research.

Conclusions

In this paper, we have explored the potential usage of
autoencoder features extracted from EHR data in predic-
tion models. Autoencoder features alone in logistic
models have decent, though not optimal, prediction per-
formance in our examples. To enhance the performance,
we proposed a strategy, Enhanced Reg, that combines
generic features generated from autoencoder with
response-specific predictors with established predictive
importance. Enhanced Regression achieves better per-
formance than the strategy of using autoencoder features
alone. In simulation studies, Enhanced Reg has decent
performance though LASSO exhibits the best overall
predictive performance with the price of much larger
number of features in the final model. The results in
simulation and real data analysis indicate the possibility
of applying standardized features from autoencoder and
the enhanced regression strategy across a wide range of
responses, with potential gains in efficiency, portability,
and responsible data sharing.
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