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Comparison of alternative approaches for

difference, noninferiority, and equivalence
testing of normal percentiles

Gwowen Shieh
Abstract

Background: Percentiles are widely used in scientific research for determining the comparative magnitude and
reference limit of quantitative measurements. The investigations for point and interval estimation of normal
percentiles are well documented in the literature. However, the corresponding statistical tests of hypothesis have
received relatively little attention.

Methods: To facilitate data analysis and design planning of percentile study, this paper aims to present hypothesis
testing procedures and associated power functions for assessing the difference, noninferiority, and equivalence of
normal percentiles.

Results: Numerical illustrations about drug dissolution are provided to demonstrate the usefulness of the
suggested exact approaches and the deficiency of approximate methods.

Conclusions: The exact approaches are superior to the approximate methods on the basis of control of Type I
errors. Computer algorithms are constructed to implement the recommended test procedures and sample size
calculations for percentile analysis.

Keywords: Power, Quantile, Reference limit, Sample size
Background
Percentiles are extremely useful for describing the refer-
ence threshold and meaningful magnitude of numerical
quantities, such as achievement score, developmental
index, medical measurement, and physical dimension.
The inferential methods for normal means are well doc-
umented in the fundamental texts of statistical analysis.
However, the methodological aspects and statistical im-
plications of analyzing normal percentiles have been less
discussed. It is essential to note that normal percentiles
are a linear function of the mean and standard deviation
of the underlying population. Because the sample mean
and sample variance are complete and sufficient
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statistics for the population mean and variance, the
minimum variance unbiased estimator of a normal per-
centile can be readily obtained. Specifically, Royston and
Mathews [1] compared the minimum variance unbiased
estimator and other useful formulas under the intrinsic
criteria of bias and mean square error. More advanced
and theoretical treatments of normal percentile estima-
tion are also available in Keating, Mason, and Balakrish-
nan [2], Keating and Tripathi [3], Parrish [4], Rukhin [5],
and Zidek [6, 7].
Both exact and approximate confidence intervals of

normal percentiles have been considered in several ana-
lytical developments. The exact interval estimation of
normal percentiles was presented in Meeker, Hahn, and
Escobar [8], Johnson, Kotz, and Balakrishnan [9], and
Owen [10]. Note that the exact confidence intervals
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involve the quantiles of a noncentral t distribution. Such
critical values are not commonly available in tabulated
forms and the implementation necessitates appropriate
computing algorithms. To circumvent the reliance on a
noncentral t distribution, approximate methods were
considered by using the standardization technique and
the regular t distribution. Accordingly, the approximate
confidence intervals of Bland and Altman [11] and
Chakraborti and Li [12] are computationally simple and
the interval calculations do not require specialized soft-
ware. However, the numerical study of Shieh [13] dem-
onstrated that the confidence limits of the approximate
methods generally do not preserve the nominal equal-
tailed error rates. The finding provides cautionary coun-
terpoint on the practical value of approximate intervals,
especially when the sample sizes are small.
The existing investigations present important inferen-

tial methodology for point and interval estimation of
normal percentiles. However, the related hypothesis test-
ing problems have not been properly explicated in the
literature. It is well known that there exists a direct con-
nection between confidence interval and hypothesis test-
ing. But the two approaches are philosophically different
in the outset of precision and power viewpoints. Accord-
ingly, to conduct a significance tests for percentiles, the
conclusion can be alternatively obtained by examining
whether the specified percentile value is contained in the
proper two- or one-sided confidence intervals. It appears
that percentile analysis can be performed without expli-
citly defining the desirable test statistics and associated
rejection regions. However, power evaluation and sample
size planning for hypothesis testing methodologically dif-
fer from the precision and sample size considerations in
the context of interval estimation. Consequently, it is of
theoretical importance and practical interest to docu-
ment the exact test procedures, power calculations, and
sample size determinations for percentile studies.
To enhance the usage of percentile analysis, this article

describes hypothesis testing procedures and associated
power functions for assessing the difference, noninferior-
ity, and equivalence of normal percentiles. The differ-
ence and noninferiority procedures closely follow the
two- and one-tail test formulations. In the conventional
studies of the population means, a null hypothesis of
zero may be informative to address certain essential re-
search questions. The situations associated with percent-
ile assessment are more sophisticated because the target
percentile is unlikely a zero value. The percentile tests
for difference and noninferiority require researchers to
provide a sensible magnitude that corresponds to the
percentile threshold for identifying substantial research
finding. Moreover, the importance for establishing
equivalence instead of no difference has been empha-
sized in Blackwelder [14] and Parkhurst [15], among
others. Further details on the design and analysis of non-
inferiority and equivalence studies can be found in Flem-
ing et al. [16] and Wellek [17].
Notably, the binomial test of hypotheses concerning

quantiles in Mood, Graybill, and Boes ([18], Section
11.3.2) provides an appealing nonparametric alternative.
Although the procedure is applicable for all random
samples from a continuous distribution, there are not
many feasible alpha values for small sample sizes, unless
randomized tests are used. In general, the nonparametric
tests may be more powerful than their parametric coun-
terparts when normality assumption fails, whereas the
nonparametric alternatives are less powerful than the
parametric procedures when the conventional assump-
tions hold. More importantly, the undesirable properties
and related problems associated with binomial tests have
been addressed in Vos and Hudson [19] and Thulin
[20], among others. Comprehensive discussions and re-
views for the prevailing Wald large-sample normal test
and other alternative interval procedures can be found
in Agresti and Coull [21], Newcombe [22], Brown, Cai,
and DasGupta [23, 24], and the references therein. The
illustrations and appraisals in this article were confined
to the test procedures that assume normality of the sam-
pling distribution.
This paper aims to present the exact test procedures

for percentile study under the three structural consider-
ations of difference, noninferiority, and equivalence sce-
narios. For the purpose of providing profound
implications in selecting the most appropriate approach,
the approximate techniques of Bland and Altman [11]
and Chakraborti and Li [12] are also extended to the
percentile testing problem. Specifically, Bland and Alt-
man [11] proposed an approximate t distribution for a
convenient transformation of the natural, but biased, es-
timator of the normal percentile. On the other hand,
Chakraborti and Li [12] suggested that a standardized
minimum variance unbiased estimator also has an ap-
proximate t distribution. Note that the simplified consid-
erations proposed in Bland and Altman [11] and
Chakraborti and Li [12] may be appealing for inducing
computational shortcuts but they do not necessarily
maintain the desired accuracy for all settings, especially
when the sample sizes are small. Accordingly, it is essen-
tial to discern not only which method is most suitable
under what circumstances but also the actual differences
between the contending test procedures.
Furthermore, the corresponding power and sample

size calculations for advance planning of percentile stud-
ies are explicated. Monte Carlo simulation study was
also conducted to compare the accuracy of the exact
and approximate procedures with respect to the control
of Type I error rate. Although an exact technique is the-
oretically better than the approximate methods, the
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actual performance may not guarantee a substantial dif-
ference to justify the need for adopting the exact ap-
proach that is methodologically sophisticated and
computationally demanding. The current study provides
detailed analytic explications and numerical evidences to
reveal the discrepancy between the exact and approxi-
mate procedures for percentile analysis. A drug dissol-
ution problem and accompanying software programs are
employed to illustrate the usefulness of suggested proce-
dures for data analysis and design planning.

Methods
Exact test procedures
Assume X1, …, XN are a sample from a N(μ, σ2) popula-
tion with unknown mean μ and variance σ2 for N > 1.
The 100pth percentile of the normal distribution N(μ,
σ2) is denoted by θ, where

θ ¼ μþ zpσ ð1Þ
and zp is the (100·p)th percentile of the standard normal
distribution N(0, 1). An intuitive, but biased, estimator
of the percentile θ is

θ̂B ¼ X þ zpS; ð2Þ

where X ¼ PN
i¼1

Xi=N and S2 ¼ PN
i¼1

ðXi−XÞ2=ðN−1Þ are the

sample mean and sample variance, respectively. Accord-
ingly, the minimum variance unbiased estimator is

θ̂M ¼ X þ zpcS: ð3Þ
where c = (ν/2)1/2Γ(ν/2)/Γ{(ν + 1)/2} and ν =N – 1. Fur-
ther details about the point estimation properties of θ̂B
and θ̂MU are available in Royston and Mathews [1]. Also,
the recent study of Shieh [13] compared several confi-
dence interval procedures of θ. In contrast, the focus
here is on the hypothesis testing of normal percentiles.
Under the prescribed normal setting for the sample

{X1, …, XN}, standard derivations show that

TE ¼ X−θ

S2=N
� �1=2 ∼t v;−zpN

1=2
� �

; ð4Þ

where t(ν, −zpN
1/2) is a noncentral t distribution with de-

grees of freedom ν and noncentrality parameter –zpN
1/2.

The fundamental properties and related extensions of
noncentral t distribution can be found in Johnson, Kotz,
and Balakrishnan [9].

Tests for difference
To detect the magnitude of a percentile in terms of the
hypotheses

H0 : θ ¼ θ0 versus H1 : θ≠θ0; ð5Þ
the test statistic is of the form
TE0 ¼ X−θ0

S2=N
� �1=2 ; ð6Þ

where θ0 is a constant. The test rejects H0 at the significance
level α if TE0 < τα/2 or TE0 > τ1−α/2 where τα/2 and τ1−α/2 are
the lower and upper (100·α/2)th quantiles of the distribution
t(ν, −zpN

1/2), respectively, for 0 <α < 0.5. Accordingly, it can
be shown that the power function is of the form

ΨDI Δð Þ ¼ P t v;Δð Þ < τα=2
� �þ P t v;Δð Þ > τ1−α=2

� �
; ð7Þ

where Δ = (μ – θ0)/(σ
2/N)1/2.

Tests for noninferiority
In addition to the regular test of difference, it is of prac-
tical importance to test the hypotheses for noninferior-
ity. The problem of testing noninferiority of percentiles
can be presented by the following hypotheses:

H0 : θ≤θ0 versus H1 : θ > θ0 ð8Þ
when larger values of θ are desired and θ0 is the desig-
nated noninferiority threshold. The test procedure rejects
the null hypothesis at the significance level α if TE0 > τ1 − α

and the associated power function is readily obtained as

ΨNI Δð Þ ¼ P t v;Δð Þ > τ1−αf g: ð9Þ
On the other hand, if smaller values of θ are preferred,

then the following hypotheses should be adopted for the
test of noninferiority:

H0 : θ≥θ0versus H1 : θ < θ0; ð10Þ
where the chosen value θ0 represents the noninferiority
bound. At the significance level α, the rejection region
for the lower one-sided test is TE0 < τα and the power
function is expressed as

ΨNI Δð Þ ¼ P t v;Δð Þ < ταf g: ð11Þ

Tests for equivalence
Unlike the traditional differences-based procedures,
equivalence testing provides a proper method for dem-
onstrating the comparability of target percentile. In gen-
eral, the null and alternative hypotheses of a test of
percentile equivalence can be formulated as

H0 : θ−θT ≤ � δorθ� θT ≥δversus

H1 : �δ < θ� θT < δ;

ð12Þ
where θT and δ (> 0) are constants. Accordingly, θT is
the target value and δ represents the minimum thresh-
old for declaring equivalence between the population
percentile θ and θT. Following the two one-sided tests
procedure proposed by Schuirmann [25] and Westlake
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[26] for assessing equivalence of mean effects, the null
hypothesis is rejected at the significance level α if

TEL ¼ X−θT þ δ

S2=N
� �1=2 > τ1−α andTEU ¼ X−θT−δ

S2=N
� �1=2 < τα: ð13Þ

It is important to note that the rejection is an intersec-
tion of two one-sided segments in terms of the lower
and upper (100·α)th quantiles τα and τ1 − α of the non-
central t distribution t(ν, −zpN

1/2). The rejection region
of X and S2/N has an isosceles triangular shape similar
to those in Meyners [27] and Schuirmann [28] for the
equivalence procedure of two treatment means. Conse-
quently, the power function of the percentile equivalence
test can be written as

ΨEQ

¼ P θT−δþ τ1−α S2=N
� �1=2

< X < θT þ δþ τα S2=N
� �1=2n o

:

ð14Þ
Moreover, it is clear from the fundamental assumption

in Eq. 1 that Z ¼ ðX−μÞ=ðS2=NÞ1=2∼Nð0; 1Þ and K = νS2/
σ2 ~ χ2(ν), where χ2(ν) denotes the chi-square distribu-
tion with ν =N – 1 degrees of freedom, and Z and K are
independent. Let HE = 1 if K < κE, and HE = 0 if K ≥ κE
where κE = (4vNδ2)/{σ2(τ1 − α − τα)

2}. Then, the exact
power function can be expressed by

ΨEQ ¼ EK HE Φ UEð Þ−Φ LEð Þf g½ �; ð15Þ
where UE = (θT + δ − μ)/(σ2/N)1/2 + τα(K/v)

1/2, LE = (θT −
δ − μ)/(σ2/N)1/2 + τ1 − α(K/v)

1/2, Φ (⋅) is the cumulative
density function of the standard normal distribution,
and the expectation EK is taken with respect to the dis-
tribution K. It is essential to note that the probability
P{K ≥ κE} ≐ 0 in the subsequent numerical assessments
under a wide range of model configurations. This
phenomenon is similar to the power computations for
the equivalence procedure of two treatment means as
noted in Siqueira, et al. [29] and Shieh [30]. Therefore,
the exact power appraisal can be numerically approxi-
mated by

ΨAEQ ¼ P t v;ΔUð Þ < ταf g−P t v;ΔLð Þ < τ1−αf g; ð16Þ
where ΔU = (μ – θT – δ)/(σ2/N)1/2 and ΔL = (μ – θT + δ)/
(σ2/N)1/2.

Approximate methods
For the purpose of method comparisons, two different
approaches for testing normal percentiles are also pre-
sented next. To construct confidence intervals of normal
percentiles, Bland and Altman [11] and Chakraborti and
Li [12] considered simple t approximations for the stan-

dardized forms of θ̂B and θ̂M; respectively. Their
methods are extended and examined here for the three
types of difference, noninferiority, and equivalence testing.

The Chakrabort-Li method
In view of the desirable properties of the minimum vari-

ance unbiased estimator θ̂M; Chakraborti and Li [12]
suggested an approximate t distribution for the stan-

dardized quantity of θ̂M :

TM ¼ θ̂M−θ

mS2=N
� �1=2 ⩪ t vð Þ: ð17Þ

where m ¼ 1þ Nz2pðc2−1Þ and t(ν) is a t distribution

with degrees of freedom ν. Note that Var½θ̂M� = (mσ2)/N
and the denominator of TM is obtained by a direct sub-

stitution of σ2 with S2 in the standard deviation of θ̂M .
The simple formulation of TM provides an alternative

test statistic for judging the magnitude of normal per-
centiles. For the hypothesis test of difference in terms of
H0: θ = θ0 versus H1: θ ≠ θ0, the null hypothesis can be
rejected at the significance level α if TM0 < tα/2 or TM0 >
t1 − α/2, or equivalently ∣TM0 ∣ > t1 − α/2, where

TM0 ¼ θ̂M−θ0

mS2=N
� �1=2 ; ð18Þ

and tα/2 and t1 − α/2 are the lower and upper 100(α/2)th
quantiles of a t distribution t(ν) with degrees of freedom
ν, respectively. Under the approximate t assumption, the
corresponding power function can be derived as

ΩDI Δð Þ ¼ P t v;Δð Þ < tα=2m
1=2−zpcN

1=2
n o

þP t v;Δð Þ > t1−α=2m
1=2−zpcN

1=2
n o

:

ð19Þ
Similarly, the test statistic TM0 can be applied for hy-

pothesis testing of noninferiority of percentiles in terms
of H0: θ ≤ θ0 versus H1: θ > θ0. The test procedure rejects
the null hypothesis at the significance level α if TM0 > t1 − α

and the associated power function is

ΩNI Δð Þ ¼ P t v;Δð Þ > t1−αm
1=2−zpcN

1=2
n o

: ð20Þ

Moreover, under the hypotheses: H0: θ ≥ θ0 versus H1:
θ < θ0, the test of noninferiority is rejected if TM0 < tα
and the corresponding power is given by

ΩNI Δð Þ ¼ P t v;Δð Þ < tαm
1=2−zpcN

1=2
n o

: ð21Þ

For the case of evaluating percentile equivalence with
respect to H0: θ – θT ≤ −δ or θ – θT ≥ δ versus H1:
–δ < θ – θT < δ, the null hypothesis is rejected at the sig-
nificance level α if
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TML ¼ θ̂M−θT þ δ

mS2=N
� �1=2 > t1−α and

TMU ¼ θ̂M−θT−δ

mS2=N
� �1=2 < tα:

ð22Þ
Accordingly, the power function can be shown as

ΩEQ ¼ EK HM Φ UMð Þ �Φ LMð Þf g½ �; ð23Þ
where UM = (θT + δ – μ)/(σ2/N)1/2 + (tαm

1/2 – zpcN
1/2)(K/

v)1/2, LM = (θT – δ – μ)/(σ2/N)1/2 + (t1 − αm
1/2 –

zpcN
1/2)(K/v)1/2, and HM = 1 if K < κM, and HM = 0 if K ≥

κM where κM ¼ ðvNδ2Þ=fmσt21−αg . Numerically, the
power calculation can be simplified just as ΨAEQ given
above:

ΩAEQ ¼ P t v;ΔUð Þ < tαm
1=2−zpcN

1=2
n o

−P t v;ΔLð Þ < t1−αm
1=2−zpcN

1=2
n o

:

ð24Þ

The Bland-Altman method
Similar to the test procedures based on the minimum
variance unbiased estimator, hypothesis testing of nor-
mal percentiles can be conducted with the following

transformation of θ̂B in Bland and Altman [11]:

TB ¼ θ̂B−θ

bS2=N
� �1=2 ⩪ t vð Þ; ð25Þ

where b ¼ 1þ z2p=2 . Specifically, the hypothesis testing
of percentile difference in terms of H0: θ = θ0 versus H1:
θ ≠ θ0 can be rejected at the significance level α if ∣TB0 ∣
> t1 − α/2 where

TB0 ¼ θ̂B−θ0

bS2=N
� �1=2 : ð26Þ

The associated power function is of the form

ΞDI Δð Þ ¼ P t v;Δð Þ < tα=2b
1=2−zpN

1=2
n o

þP t v;Δð Þ < t1−α=2b
1=2−zpN

1=2
n o

:

ð27Þ
To perform the hypothesis testing of noninferiority

with H0: θ ≤ θ0 versus H1: θ > θ0, the test rejects the null
hypothesis at the significance level α if TB0 > t1 − α and
the power function is readily obtained as

ΞNI Δð Þ ¼ P t v;Δð Þ > t1−αb
1=2−zpN

1=2
n o

: ð28Þ
Likewise, under the hypotheses: H0: θ ≥ θ0 versus H1:
θ < θ0, the test of noninferiority is rejected if TB0 < tα and
the corresponding power is expressed as

ΞNI Δð Þ ¼ P t v;Δð Þ < tαb
1=2−zpN

1=2
n o

: ð29Þ

Moreover, for the equivalence test of normal percen-
tiles under the hypotheses of H0: θ – θT ≤ −δ or θ – θT ≥
δ versus H1: –δ < θ – θT < δ, the null hypothesis is
rejected at the significance level α if

TBL ¼ θ̂B−θT þ δ

bS2=N
� �1=2 > t1−α and

TBU ¼ θ̂B−θT−δ

bS2=N
� �1=2 < tα:

ð30Þ
In this case, the power function has the following

formulation:

ΞEQ ¼ EK HB Φ UBð Þ−Φ LBð Þf g½ �; ð31Þ
where UB = (θT + δ – μ)/(σ2/N)1/2 + (tαb

1/2 – zpN
1/2)(K/

v)1/2, LB = (θT – δ – μ)/(σ2/N)1/2 + (t1 − αb
1/2 – zpN

1/2)(K/
v)1/2, and HB = 1 if K < κB, and HB = 0 if K ≥ κB where κB
¼ ðvNδ2Þ=fbσ2t21−αg. Similar to the other two cases, the
power computation can be well approximated by

ΞAEQ ¼ P t v;ΔUð Þ < tαb
1=2 � zpN

1=2
n o

�P t v;ΔLð Þ < t1−αb
1=2 � zpN

1=2
n o

:

ð32Þ
Results
Numerical investigations are presented next to examine
and compare the fundamental features of the exact and
approximate test procedures of percentiles with respect
to the control of Type I error rate and accuracy of power
and sample size computation.

Tests for difference
For the purpose of illustration, the null Nðμ0; σ20Þ distri-
bution is set as N(0, 1) and two different mean values
are considered for the alternative distribution N(μ, σ2):
N(0.4, 1) and N(0.6, 1). The corresponding percentiles θ0
and θ are simplified as θ0 = μ0 + zpσ0 = zp and θ = μ +
zpσ = μ + zp, respectively, with μ = 0.4 and 0.6. For the
difference test of percentile in terms of H0: θ = θ0 versus
H1: θ ≠ θ0, the sample sizes needed to attain the specified
power 0.80 for the chosen significance level α = 0.05 are
determined by the power functions ΨDI, ΩDI, and ΞDI

for p = 0.1, …, 0.9. The computed sample sizes for the
prescribed three procedures {TE0, TM0, TB0} are summa-
rized in Table 1 for all eighteen combined cases of μ and



Table 1 The error between simulated alpha and nominal alpha for the difference tests of percentile H0: θ = θ0 versus H1: θ≠ θ0
with μ0 = 0, σ0 = 1, σ = 1, and α = 0.05

μ p Exact approach Chakraborti-Li method Bland-Altman method

N Lower-tail
error

Upper-tail
error

Two-tail
error

N Lower-tail
error

Upper-tail
error

Two-tail
error

N Lower-tail
error

Upper-tail
error

Two-tail
error

0.4 0.1 109 −0.0020 0.0009 − 0.0011 97 − 0.0101 0.0108 0.0007 95 −0.0108 0.0118 0.0010

0.2 80 −0.0042 −0.0019 − 0.0061 72 − 0.0113 0.0060 − 0.0053 71 − 0.0121 0.0082 − 0.0039

0.3 65 −0.0030 −0.0020 − 0.0050 60 − 0.0086 0.0045 − 0.0041 60 − 0.0091 0.0058 − 0.0033

0.4 57 0.0009 0.0012 0.0021 54 −0.0026 0.0040 0.0014 54 −0.0031 0.0046 0.0015

0.5 52 0.0024 0.0010 0.0034 52 0.0024 0.0010 0.0034 52 0.0024 0.0010 0.0034

0.6 50 0.0019 0.0005 0.0024 52 0.0056 −0.0029 0.0027 52 0.0056 −0.0032 0.0024

0.7 51 0.0020 −0.0004 0.0016 56 0.0093 −0.0083 0.0010 57 0.0101 −0.0088 0.0013

0.8 58 0.0014 −0.0012 0.0002 66 0.0124 −0.0119 0.0005 66 0.0147 −0.0127 0.0020

0.9 75 −0.0024 −0.0025 − 0.0049 87 0.0106 −0.0133 − 0.0027 88 0.0133 −0.0138 − 0.0005

0.6 0.1 54 0.0004 0.0012 0.0016 46 −0.0137 0.0155 0.0018 44 −0.0148 0.0181 0.0033

0.2 40 0.0014 −0.0009 0.0005 34 −0.0105 0.0137 0.0032 33 −0.0111 0.0158 0.0047

0.3 32 −0.0001 −0.0022 − 0.0023 29 − 0.0094 0.0087 − 0.0007 28 − 0.0103 0.0104 0.0001

0.4 27 0.0005 −0.0002 0.0003 26 −0.0048 0.0044 −0.0004 25 −0.0053 0.0052 −0.0001

0.5 24 0.0016 0.0005 0.0021 24 0.0016 0.0005 0.0021 24 0.0016 0.0005 0.0021

0.6 23 0.0037 0.0017 0.0054 24 0.0105 −0.0037 0.0068 25 0.0117 −0.0041 0.0076

0.7 22 0.0028 0.0001 0.0029 26 0.0150 −0.0094 0.0056 26 0.0173 −0.0107 0.0066

0.8 24 0.0014 −0.0012 0.0002 30 0.0183 −0.0155 0.0028 30 0.0209 −0.0159 0.0050

0.9 31 0.0009 −0.0015 −0.0006 39 0.0201 −0.0174 0.0027 40 0.0248 −0.0182 0.0066
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p. It should be noted that the parameter settings are
chosen so that the resulting sample sizes have a reason-
able magnitude that is often occurred in practice. More-
over, these situations with small and moderate sample
sizes are of great importance in the sense that the con-
tending procedures have the obvious potential of yield-
ing distinct outcomes. Monte Carlo simulation studies
of 10,000 iterations were conducted for examining the
accuracy of the power functions ΨDI, ΩDI, and ΞDI. The
results reveal that the simulated powers and the attained
powers of all three methods agree to the second decimal
place for all cases considered here. To save space, the
details are not reported.
Due to the approximate nature of the t distribution as-

sociated with the two approximations of Chakraborti
and Li [12] and Bland and Altman [11], it is of statistical
concern to validate the control of the Type I error rates.
Note that the real distribution of the percentile is
skewed when sample size is small and p deviates consid-
erably from 0.5. This implies that the symmetric t ap-
proximation of the two test statistics TM0, and TB0 is
presumably unsuitable. In other words, the two critical
values tα/2 and t1 − α/2 are theoretically inaccurate when
one-sided rejection probability are evaluated. It is con-
structive to examine three distinctive Type I errors cor-
respond to the lower-tail, upper-tail, and two-sided
rejection regions of the difference tests of percentile.
Accordingly, Monte Carlo simulation studies were also
performed to compute the simulated Type I error rates
of the exact and approximate test procedures for θ = θ0
or μ = 0. The simulated Type I error rate was the pro-
portion of the 10,000 replicates whose test statistic fell
in the designated rejection region. In the process, the es-
timates of the lower-tail and upper-tail rejection rates
were computed and summed as the overall or two-sided
simulated Type I error rate. The accuracy of the control
of Type I error rate can be assessed by the differences
between the one-sided and two-sided simulation esti-
mates and the nominal values 0.025 and 0.05, respect-
ively. These differences or errors of the three contending
test procedures are also reported in Table 1. It can be
readily seen from the results in Table 1 that the all three
test methods have excellent control of two-sided Type I
error rate. The absolute magnitudes of the errors are less
than 0.01 for the investigated mean and percentile
configurations.
Moreover, the lower-tail and upper-tail rejection rates

of the exact approach are also very close to the nominal
levels. But the one-sided Type I error rates of the two
approximate methods do not maintain the same accur-
acy especially for low and high percentiles. Despite the
desired performance of the approximate tests in overall
Type I error rate, the resulting errors of the lower-tail
rejection region tend to be negative for small p while
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those associated with large p are constantly positive. In
contrast, the upper-tail errors have the exactly opposite
outcomes. For the particular case with μ = 0.6 and p =
0.9, the induced errors for the approximation of Chakra-
borti and Li [12] are 0.0201 and − 0.0174 for lower and
upper rejection regions, respectively. The corresponding
deviated percentages are 0.0201/0.025 = 80.4% and
0.0174/0.025 = 69.6%. To the approximate method of
Bland and Altman [11], the lower-tail and upper-tail er-
rors are 0.0248 and − 0.0182 with the deviated percent-
ages 0.0248/0.025 = 99.2% and 0.0182/0.025 = 72.8%,
respectively.

Tests for noninferiority
The underlying characteristics of the exact and approxi-
mate methods for the noninferiority test of percentile
are also assessed. With the same model formulations in
the previous scenario of difference test, the required
sample sizes are computed for the hypotheses H0: θ ≤ θ0
versus H1: θ > θ0 with the power functions ΨNI, ΩNI, and
ΞNI. As expected, the result reported in Table 2 is rela-
tively smaller than the counterpart in Table 1 with the
identical values of μ and p. Moreover, simulation studies
were also performed to appraise the actual performance
of Type I error for θ = θ0 or μ = 0. The errors between
the simulated rejection rates and nominal value α = 0.05
are presented in Table 2. Unlike the exact procedure
Table 2 The error between simulated alpha and nominal alpha for
with μ0 = 0, σ0 = 1, σ = 1, and α = 0.05

μ p Exact approach

N Error

0.4 0.1 85 0.0047 7

0.2 63 0.0017 5

0.3 51 −0.0011 4

0.4 44 0.0033 4

0.5 41 −0.0010 4

0.6 39 −0.0017 4

0.7 40 −0.0004 4

0.8 46 0.0001 5

0.9 60 −0.0019 6

0.6 0.1 42 −0.0027 3

0.2 31 −0.0042 2

0.3 25 0.0010 2

0.4 21 −0.0002 2

0.5 19 −0.0006 1

0.6 18 −0.0008 1

0.7 18 −0.0013 2

0.8 20 −0.0026 2

0.9 25 −0.0016 3
with good control of Type error rate, the two approxi-
mate tests do not maintain the required performance.
Specifically, when μ = 0.6 and p = 0.9, the absolute errors
(absolute error percentage) can be as large as 0.0258
(0.0258/0.05 = 51.6%) and 0.0260 (0.0260/0.05 = 52.0%)
for TM0 and TB0 of Chakraborti and Li [12] and Bland
and Altman [11], respectively. Although the situations
improved with increasing sample size as those cases
when μ = 0.4, they still suffer some potential deficiency
and are outperformed by the exact test.

Tests for equivalence
For the sake of completeness, numerical examination is
extended to the equivalence tests of percentile in terms
of H0: θ – θT ≤ −δ or θ – θT ≥ δ versus H1: –δ < θ – θT <
δ. In this case, the target percentile and threshold are
set as θT = zp and δ = 0.6, respectively. The alternative
normal distribution is selected as N(μ, 1) and the associ-
ated percentile is θ = μ + zpσ = μ + zp. Then, the power
functions ΨAEQ, ΩAEQ, and ΞAEQ are applied to com-
puted the minimum sample sizes required for attaining
the nominal power 0.80 at α = 0.05. The resulting sample
sizes are listed in Table 3 for μ = 0 and 0.3 and p = 0.1,
…, 0.9. It was further justified with simulation studies
that the power and sample size calculations of the three
procedures are all extremely accurate for all eighteen
cases reported here. However, power evaluation is valid
the non-inferiority tests of percentile H0: θ≤ θ0 versus H1: θ > θ0

Chakraborti-Li method Bland-Altman method

N Error N Error

7 0.0124 75 0.0168

7 0.0155 56 0.0175

8 0.0123 47 0.0141

3 0.0046 42 0.0070

1 0.0004 41 0.0003

1 −0.0048 41 −0.0077

4 −0.0112 45 −0.0120

1 −0.0154 52 −0.0183

8 −0.0170 69 −0.0182

6 0.0197 35 0.0274

7 0.0192 26 0.0278

3 0.0119 22 0.0215

0 0.0052 20 0.0072

9 −0.0008 19 −0.0014

9 −0.0086 19 −0.0092

0 −0.0154 21 −0.0195

3 −0.0220 24 −0.0252

1 −0.0258 31 −0.0260



Table 3 The error between simulated alpha and nominal alpha for the equivalence tests of percentile H0: θ – θT≤ − δ or θ – θT≥ −
δ versus H1: - δ < θ - θT < δ with δ = 0.6, θT = zp, σ = 1, and α = 0.05

μ p Exact approach Chakraborti-Li method Bland-Altman method

N Error N Error N Error

0 0.1 47 − 0.0006 45 0.0196 45 0.0257

0.2 35 0.0003 34 0.0197 34 0.0162

0.3 30 −0.0015 29 0.0121 29 0.0143

0.4 27 −0.0039 26 0.0070 26 0.0056

0.5 26 −0.0006 26 −0.0006 26 −0.0033

0.6 27 −0.0018 26 −0.0071 26 −0.0111

0.7 30 −0.0033 29 −0.0144 29 −0.0154

0.8 35 −0.0047 34 −0.0188 34 −0.0191

0.9 47 −0.0034 45 −0.0205 45 −0.0212

0.3 0.1 110 −0.0024 121 0.0117 123 0.0205

0.2 84 0.0000 91 0.0097 92 0.0103

0.3 73 0.0024 78 0.0063 78 0.0069

0.4 69 0.0001 72 0.0023 72 0.0043

0.5 71 0.0015 71 −0.0014 71 0.0012

0.6 76 0.0008 74 − 0.0081 74 − 0.0069

0.7 87 −0.0050 82 −0.0068 81 −0.0075

0.8 106 −0.0041 99 −0.0112 97 −0.0112

0.9 144 −0.0005 133 −0.0123 131 −0.0152
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and informative only when the critical value satisfies the
nominal Type I error rate. Additional simulation studies
were employed to assess the control of Type I error rates
of the equivalence tests {TEL, TEU}, {TML, TMU}, and
{TBL, TBU} for θ = θT – δ or μ = −δ = − 0.6. The errors
between the simulated and nominal Type I error rates
are presented in Table 3. The assessments show that the
two approximate tests {TML, TMU}, and {TBL, TBU} are
not as good as the exact procedure {TEL, TEU}. The defi-
ciency of the two simple t distributions is particularly
more prominent when the sample size is small and |p –
0.5| is large.
An example
To demonstrate the usefulness of the suggested tech-
niques and accompanying programs, a quality control
application in pharmaceutical products is exemplified
and analyzed with the hypothesis testing and sample size
procedures. Suppose a sample of the selected batch of
tablets is obtained and tested according to the accept-
ance sampling plan. Specifically, the dissolution perform-
ance is assessed in terms of the percentage of tablets
dissolved less than a specified amount at a certain time
period.
For illustration, the summary statistics of the dissol-

ution values are X ¼ 50:10 and S = 1.31 for N = 15. Sup-
pose that the experimenter is interested in the 90th
percentile of the distribution of the dissolution quantity.
Then, it follows that z0.9 = 1.2816, c = 1.0180, and the

minimum variance unbiased estimator is θ̂M = 51.8091.
Using the working settings μ0 = 49.3 and σ0 = 1.2, the as-
sociated 90th percentile value is computed as θ0 = μ0 +
zpσ0 = 50.8379. The test statistic TE0 has a value of
− 2.1816. For testing the hypotheses of H0: θ = 50.8379
versus H1: θ ≠ 50.8379, the two critical values or the
lower and upper 2.5th quantiles of the noncentral t dis-
tribution t(14, − 4.9636) are τ0.025 = − 8.7695 and
τ0.975 = − 2.7909, respectively. The null hypothesis is
rejected and it implies that the 90th percentile of dissol-
ution amount is not 50.8379 at α = 0.05. Also, it can be
shown that the values of the two approximate test statis-
tics for Chakraborti and Li [12] and Bland and Altman
[11] are TM0 = 2.0857 and TB0 = 2.0614, respectively,
with the critical value t0.975 = 2.1448. Hence, the two ap-
proximate tests suggest that the null hypothesis cannot
be rejected for α = 0.05.
Moreover, a noninferiority test can be formed as H0:

θ ≤ 50.8379 versus H1: θ > 50.8379. With a critical value
τ0.05 = − 3.1072, it indicates that the 90th percentile of
dissolution distribution is higher than 50.8379 at the 5%
level of significance. In this case, the critical value for
the two approximate methods is t0.95 = 1.7613. Thus, the
two approximate tests lead to the same result as the
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exact procedure. Assume a equivalence test of the 90th
percentile is expressed as H0: θ – θT ≤ −δ or θ – θT ≥ δ
versus H1: –δ < θ – θT < δ with θT = 50 + (1.2816)(1.3) =
51.6660 and δ = 1.2. The test statistics are {TEL, TEU} =
{− 1.0821, − 8.1776} and the corresponding critical values
are {τ0.95, τ0.05} = {−3.1072, −8.0108}. Thus, there is suffi-
cient evidence to suggest that the 90th percentile is
practically 51.6660 for the 5% level of significance. The
resulting values for the approximate tests are {TML,
TMU} = {2.8845, − 2.2700} and {TBL, TBU} = {2.8761,
− 2.3817}. With the associated critical values t0.95 = 1.7613
and t0.05 = − 1.7613, they also reach the same equiva-
lence outcome. Supplemental computer programs are
provided to take advantage of the embedded statistical
functions in the interactive matrix language software of
Statistical Analysis System (SAS/IML) [31] for perform-
ing the prescribed exact test procedures.
For planning future drug dissolution study, sample size

calculations should be considered so that the tests have
enough power to confirm meaningful magnitude of per-
centile. It is commonly assumed that typical sources like
published findings or expert opinions can offer plausible
and reasonable values for the vital characteristics of fu-
ture study. Hence, the sample statistics of the summary
statistics are used as parameter values μ = 50.1 and σ =
1.31. To achieve the nominal power 0.80 with α = 0.05,
the constructed SAS/IML programs reveal that the re-
quired sample sizes are N = 21 and 17 for the test of dif-
ference: H0: θ = 50.8379 versus H1: θ ≠ 50.8379 and the
test of noninferiority: H0: θ ≤ 50.8379 versus H1: θ >
50.8379, respectively. Moreover, for the abovementioned
test of equivalence with θT = 51.6660 and δ = 1.2, sample
size N = 25 is needed to attaining the nominal power
0.80 at α = 0.05. Note that the exemplifying configura-
tions are included in the user specifications of the SAS/
IML programs presented in the supplemental files. Ac-
cordingly, users can easily modify the input values in
these statements to accommodate their own model
specifications.

Discussion
The present investigation generalizes and expands
current results in the statistical literature by describing
both exact and approximate procedures for the three dif-
ferent percentile tests of difference, noninferiority, and
equivalence. The exact approach employs a noncentral t
distribution, while the approximate techniques follow
the familiar t distribution as considered in Chakraborti
and Li [12] and Bland and Altman [11]. Regarding the
two approximate procedures, the results of the conven-
tional tests for difference show that the lower critical
value tα/2 is generally too small for lower normal percen-
tiles and is typically too large for the higher normal per-
centiles. On the other hand, the upper critical value t1 − α/2
overestimate and underestimate the correct one for small
and large p, respectively. Even the overall Type I error is
not an issue, it is statistically improper to recommend a
two-sided test procedure on the basis of a combination of
some noticeable under- and over-sized critical values and
rejection regions. Moreover, despite the relatively involved
analytic assessments and computational requirements, the
comprehensive numerical appraisals show that the exact
approach is superior to the approximate methods on the
basis of control of Type I errors.
Conclusion
In view of the conceptual simplicity and context-free
feature, percentiles are widely used for determining the
relative magnitude and substantial importance of quanti-
tative measurements in all scientific fields. Accordingly,
much of the literature has provided the inferential pro-
cedures for point and interval estimation of normal per-
centiles. To extend the applicability of percentile
analysis, this article addresses the hypothesis testing
problem for the percentiles of a normal distribution.
The recommended test procedures and derived power
functions are also empirically justified for percentile
score assessments and sample size determinations. In
order to facilitate data analysis and study planning, spe-
cialized computer programs are presented for conduct-
ing hypothesis testing and sample size calculation in
percentile research.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-00933-z.
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difference.

Additional file 2. SAS/IML program for computing required sample size
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noninferiority.
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for percentile test of noninferiority.
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equivalence.
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