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Abstract

Background: It is important to estimate the treatment effect of interest accurately and precisely within the analysis
of randomised controlled trials. One way to increase precision in the estimate and thus improve the power for randomised
trials with continuous outcomes is through adjustment for pre-specified prognostic baseline covariates. Typically covariate
adjustment is conducted using regression analysis, however recently, Inverse Probability of Treatment Weighting (IPTW)
using the propensity score has been proposed as an alternative method. For a continuous outcome it has been shown that
the IPTW estimator has the same large sample statistical properties as that obtained via analysis of covariance. However the
performance of IPTW has not been explored for smaller population trials (< 100 participants), where precise estimation of the
treatment effect has potential for greater impact than in larger samples.

Methods: In this paper we explore the performance of the baseline adjusted treatment effect estimated using IPTW in
smaller population trial settings. To do so we present a simulation study including a number of different trial scenarios with
sample sizes ranging from 40 to 200 and adjustment for up to 6 covariates. We also re-analyse a paediatric eczema trial that
includes 60 children.

Results: In the simulation study the performance of the IPTW variance estimator was sub-optimal with smaller sample sizes.
The coverage of 95% CI’s was marginally below 95% for sample sizes < 150 and≥ 100. For sample sizes < 100 the coverage
of 95% CI’s was always significantly below 95% for all covariate settings. The minimum coverage obtained with IPTW was
89% with n= 40. In comparison, regression adjustment always resulted in 95% coverage. The analysis of the eczema trial
confirmed discrepancies between the IPTW and regression estimators in a real life small population setting.

Conclusions: The IPTW variance estimator does not perform so well with small samples. Thus we caution against the use of
IPTW in small sample settings when the sample size is less than 150 and particularly when sample size < 100.

Keywords: Randomised controlled trial, Covariate adjustment, Small population, Small sample size, Propensity score, Inverse
probability weighting
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Background
Randomised controlled trials (RCTs) provide high quality
evidence for the evaluation of new and existing treat-
ments. The random allocation of participants to treatment
groups guards against allocation bias and ensures all ob-
served and unobserved baseline covariates are independ-
ent of treatment allocation. In expectation, participants in
alternative randomized groups will differ only by their
treatment allocation and any subsequent effects of that
treatment. Thus any differences in outcomes between the
randomised groups can be attributed to the treatment
under investigation. A great deal of time, effort and money
typically goes into setting up and running RCTs. It is
therefore important to estimate the treatment effect ac-
curately and with optimal precision in the analysis.
One way to increase precision in the estimate and im-

prove power for RCTs with continuous outcomes is
through adjustment of pre-specified prognostic baseline
covariates [1–5]. It has been shown that the greater the
correlation between a covariate and the outcome, the
greater the reduction in the standard error of the treat-
ment effect [1, 3]. Kahan [5] demonstrated substantial
gains in precision when adjustments for highly prognos-
tic covariates were made. For these reasons European
Medicines Agency (EMA) guidelines [6] recommend in-
vestigators consider adjusting treatment effect estimates
for variables known a-priori to be strongly related with
outcome. In line with the EMA guidelines [6] we stress
that the pre-specified nature of any baseline adjustment
is crucial in the RCT setting. Covariates to be adjusted
for must be pre-specified in the trial protocol and/or
statistical analysis plan based on previous evidence and
clinical knowledge. Throughout this article we assume
all adjustments are pre-specified and do not consider
post-hoc adjustment further. Issues associated with post-
hoc adjustments, including the potential for cherry pick-
ing the most beneficial result, have been debated else-
where [3, 7, 8].
Adjustment for any stratification variables used within

the randomisation is also important to obtain correct
standard errors (SE’s) and no loss of power [9, 10]. Ad-
justment can also be especially useful to account for any
chance imbalances in prognostic baseline covariates. Al-
though the process of randomisation ensures there is no
confounding, it will not always result in a perfect balance
across baseline covariates between treatment groups. As
discussed by Senn [11] “there is no requirement for
baseline balance for valid inference,” but where imbal-
ance occurs the treatment effect may not be estimated
so precisely (larger standard errors will be obtained).
Since in smaller trial settings there will be a greater

chance of imbalance [12], pre-specified adjustment to
allow for any chance imbalances in prognostic baseline co-
variates can be particularly useful to achieve a more

precise answer. Although similar gains in efficiency will be
realized in both small and large sample size settings
through adjustment for any chance imbalance [11, 12].
Additionally in smaller populations settings Parmar et al.
[13] discuss how the benefits of adjustment for baseline
covariates could be harnessed to inform the trial design.
Since adjusting for covariates which are associated with
the outcome leads to increases in power, in smaller popu-
lation settings a lower sample size can be justified taking
into account the proposed adjustment, in comparison to
that required for an unadjusted analysis. Thus appropriate
statistical methods for performing adjusted analyses are
important for various reasons and may be particularly use-
ful in smaller trial settings.
Adjustment for baseline variables in the analysis of

RCTs is typically done using regression methods. For ex-
ample, for a continuous outcome a linear regression
model may be utilized. Recently, as an alternative method
of covariate adjustment, Williamson et al. [14] proposed
Inverse Probability of Treatment Weighting (IPTW) using
the estimated propensity score. They showed that, for a
continuous outcome, the IPTW treatment estimator has
the same large sample statistical properties as that ob-
tained via Analysis of Covariance (ANCOVA).
Since baseline covariates are not included in the out-

come model when IPTW is employed we hypothesized
this approach might confer some advantages in small
sample RCT settings where adjustment for a number of
baseline covariates is required. However, the theory of
Williamson et al. used to derive the properties of the
IPTW treatment and variance estimator used large sam-
ple properties and simulations only explored perform-
ance down to a sample size of 100.
The aim of this paper is to explore the performance of

IPTW using the propensity score and to compare it with the
more commonly used linear regression baseline adjustment
approach in smaller population trial settings. In the next sec-
tion we outline the baseline covariate adjusted regression
method and IPTW propensity score approach in more detail.
In Section 3 we assess how IPTW and linear regression ad-
justment compare in small population trial settings using a
simulation study. Since the computation of the appropriate
IPTW variance estimate that accounts for the uncertainty in
the estimated propensity score involves a number of compu-
tational steps (outlined in Section 2.2), we also examine the
performance of the bootstrap variance for the IPTW treat-
ment estimate. In Section 4 we re-analyse a paediatric ec-
zema RCT involving 60 children. We finish with a discussion
and recommendations in Section 5.

Methods
Regression modelling
Typically, adjustment for pre-specified baseline covari-
ates in the analysis of RCTs is performed using standard
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regression methods. Consider a two arm randomised
trial with a total of n subjects where for participant i,
Zi = 0 or 1 represents treatment allocation (0 = control,
1 = treatment), Yi denotes the outcome of interest and
Xi = (Xi1,…, Xip)′, a (p × 1) vector of baseline covariates.
For a continuous outcome Yi, a linear regression model
with the following structure may be used to estimate the
baseline adjusted treatment effect,

Y i ¼ αþ θZi þ βX i þ ei

ei � N 0; σ2
� �

Here θ represents the treatment effect after adjust-
ment for Xi i.e. conditional on having particular base-
line covariate values of Xi. Often this is referred to as
an analysis of covariance (ANCOVA). For other types
of outcomes alternative models can be used, such as
a logistic regression for binary outcomes or a Cox
proportional hazards model for time to event out-
comes [4].
Previous research has explored the properties of lin-

ear regression estimators with a varying number of
subjects. Various rules-of-thumb for the number of
subjects required in linear regression analyses have
been debated, which include specifying either a fixed
sample size, regardless to the number of predictors,
or a minimum number of subjects per variable (SPV)
ranging from 2 to 20 [15–17]. In this study, we will
compare the performance of linear regression model-
ling for covariate adjustment in smaller sample RCT
settings against IPTW using the propensity score.

IPTW propensity score approach
The propensity score is defined as the conditional
probability of being exposed to a particular treatment
given the values of measured covariates. For example,
continuing in the above two arm RCT setting where
Z denotes treatment allocation, Y the continuous out-
come and the baseline covariates are represented as
X = (X1,…, Xp), the propensity score is defined as:

e Xð Þ ¼ ℙ Z ¼ 1ð j XÞ:

In a simple two arm RCT allocating individuals in a
1:1 ratio this is known to be 0.5. But, previous work
has shown that estimating the propensity score using
the observed data and using it as if we didn’t know
the true score provides increased precision without
introducing bias in large samples [14]. The most
popular model of choice for estimating the propensity
score is a logistic regression [18]. As the treatment
indicator Z is binary, and suppose the logistic regres-
sion is parametrised by α = (α0, α1,…, αp)

⊤, so that:

log e Xð Þf = 1−e Xð Þð Þg ¼ X⊤α:

For each participant indexed by the subscript i, a prob-
ability of being either in the treatment or control arm,
given the baseline characteristics, can be estimated from
the fitted propensity score model as:

êi ¼ ê X ið Þ ¼ exp X⊤
i α̂

� �
1þ exp X⊤

i α̂
� �

As described in [18] other methods can be used to ob-
tain the propensity score such as neural networks, recur-
sive partitioning and boosting, however we focus on
estimation via logistic model throughout.
The propensity score was originally introduced in

1983 by Rosenbaum and Rubin [19] as a tool to adjust
for confounding in the observational study setting.
Rosenbaum and Rubin showed that, under certain as-
sumptions, at each value of the propensity score the dif-
ference between treatment arms will be an unbiased
estimate of the treatment effect at that value. At each
value of the propensity score individuals will on average
have the same distribution of covariates included in the
propensity score model. Consequently matching on the
propensity score, stratification on the propensity score
or covariate adjustment using the propensity score can
provide an unbiased estimate of the treatment effect. Al-
ternatively Inverse Probability of Treatment Weighting
(IPTW) using the propensity score [20] may be used.
That is for participants in a treatment arm a weight of
wi ¼ 1∕ êi is assigned, while participants in a control arm
are assigned weights of wi ¼ 1∕ ð1−êiÞ. For a continuous
outcome, the adjusted mean treatment group difference
can then be obtained by fitting a linear regression model
on treatment only, weighted by the inverse probability of
receiving treatment.
Unlike within the observational setting, issues of con-

founding do not occur in the RCT setting. However, re-
cently Williamson et al. [14] introduced the propensity
score approach, specifically via IPTW, as a useful
method for covariate adjustment to obtain variance re-
duction in RCT settings. Crucially the variance estimator
needs to take into account the estimation of the propen-
sity score. Williamson et al. showed consistent estima-
tion of the treatment effect and large sample equivalence
with the variance estimated via ANCOVA using their
derived variance estimator, which is based on the theory
of M-estimation [21] and Lunceford and Davidian [20]
and takes into account the estimation of the propensity
score. That is, the full sandwich variance estimator,
which taken into account all the estimating equations in-
cluding the components estimating the propensity score.
We hence forth refer to this variance estimator as the
IPTW-W variance estimator (see eq. 1, Additional file
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1). There has already been examples where trialists have
used such methods to obtain precise estimates in the
RCT setting [22].

Simulation study
To assess the performance of the two methods of base-
line covariate adjustment in small population RCT set-
tings we conducted a simulation study. We also
explored the performance of the non-parametric boot-
strap variance for the IPTW treatment estimator since
the IPTW-W variance estimate involves a number of
computational steps (see eq. 1, Appendix A, Additional
file 1). Data generation and all analyses were conducted
using Stata [23].

Data generation
First we considered RCT scenarios with continuous
covariates. We generated a set of 6 continuous covari-
ates (C1-C6), as independent standard normal vari-
ables with mean 0 and a variance of 1. A treatment
arm indicator (Z) was generated from a Bernoulli dis-
tribution with a probability of 0.5 to obtain approxi-
mately equally sized treatment groups. A normally
distributed outcome Y, with mean E [Y] = 2*C1 +
2*C2 + 2*C3 + 2*C4 + 2*C5 + 2*C6 + 5*Z and variance
52 was then simulated. Covariates were therefore
moderately associated with the outcome with a one
standard deviation increase in the variable associated
with a 2 unit increase in outcome. Treatment was
simulated to have a stronger association with out-
come, with a true difference of θ = 5 in outcome be-
tween treatment arms. Fixed sample sizes of 40–150
(in multiples of 10) and 200 were drawn. The param-
eters chosen ensured all trial scenarios had at least
80% power. For each sample size scenario we ran-
domly generated a total of 2000 datasets. Secondly we
repeated the above steps but included a mix of binary
and continuous covariates (see Additional file 1 for
these additional simulation methods).

Statistical analysis
A linear regression model containing the treatment co-
variate only was fitted to estimate the unadjusted treat-
ment effect for each simulated data set. Subsequently we
conducted four different adjusted analyses, adjusted for
(i) C1 only, (ii) C1-C2, (iii) C1-C4 and (iv) C1-C6. Ad-
justed analyses were performed using multiple linear re-
gression and IPTW using the propensity score estimated
via a logistic regression. The outcome model used in the
IPTW analysis was a linear regression of outcome on
treatment, weighted by the estimated propensity score.
For each analysis we extracted the estimated treatment

effect, θ̂ , and its estimated standard error, cSE . For the

unadjusted and adjusted linear regression analyses the
model based estimated standard error was used and for
IPTW we estimated the variance using the formula pro-
vided by Williamson et al. that takes into account the
uncertainty in the estimated propensity score (IPTW-
W¸ eq. 1 in Appendix A, Additional file 1). For each
analysis we also estimated the non-parametric bootstrap

variance for the treatment effect, cSEboot using 1000 repli-
cates drawn with replacement [24] to compare with the
model based and IPTW-W variance estimators. For
IPTW the bootstrap included re-estimation of the pro-
pensity score for each bootstrap sample. 95% confidence
intervals were calculated using the t-distribution for the
linear regression analyses. For IPTW we calculated 95%
confidence intervals (CI’s) using the normal distribution
following the approach taken by Williamson et al.
For each scenario and analysis method we calculated

the mean treatment effect and mean cSE over the 2000
replicated data sets. Mean percentage bias was computed

as ðθ̂ –θ)/θ *100. We compared the mean estimated

standard error, cSE; to the empirical SE of the observed

treatment effect over the 2000 simulations, SEðθ̂Þ , and
computed the ratio of the mean estimated SE to the em-
pirical SE. We also calculated the coverage of the 95%
CI’s as the percentage of estimated 95% CI’s that in-
cluded the true value of the treatment effect (θ = 5). We
used 2000 simulations for each scenario so that an em-
pirical percentage coverage greater than 96% or less than
94% could be considered as being significantly different
to the desired 95%.

Case study: the ADAPT trial
The Atopic Dermatitis Anti-IgE Paediatric Trial
(ADAPT), conducted by Chan et al. (2018), was a
double-blind placebo-controlled trial of Omalizumab
(anti-IgE therapy) amongst children with severe
atopic eczema. A total of 62 participants were ran-
domised to receive treatment for 24 weeks (30 omali-
zumab: 32 placebo) at a single specialist centre,
stratified by age (< 10, ≥10 yrs) and IgE (≤1500, >
1500 IU/ml). The primary objective was to establish
whether Omalizumab was superior to placebo with
respect to disease severity. Outcomes of eczema se-
verity included the total SCORing Atopic Dermatitis
(SCORAD) and Eczema Area and Severity Index
(EASI). Quality of life was assessed using the (Chil-
drens) Dermatological Life Quality Index (C)DLQI.
Full details of the trial protocol, statistical analysis
plan and results have been published elsewhere [25–
27]. Analysis followed the Intention-to-treat
principle, including all individuals who received
treatment as randomised with an available follow-up.
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Two participants were missing week 24 follow-up
are not included in our analyses since the focus of
these evaluations is not on missing data here.
For each outcome (the total SCORAD, EASI and

(C)DLQI) a linear regression model adjusted for the
baseline outcome, IgE and age was fitted. We then
implemented IPTW using the propensity score, esti-
mated via a logistic regression, including baseline out-
come, IgE and age as covariates. The outcome model
used in the IPTW analysis was a linear regression of
the outcome on treatment, weighted by the estimated
propensity score. The variance of the IPTW treatment
estimate was computed using the IPTW-W variance
estimator that incorporates the uncertainty in the es-
timated propensity score (see Eq. 1 in Additional file
1 and Stata code in Additional file 2). Following Wil-
liamson et al. we calculated 95% CI’s and p-values for
the IPTW treatment estimate using the normal distri-
bution. For the adjusted regression analyses we used
the t-distribution. For both methods we also calcu-
lated the bootstrap variance, using 10,000 bootstrap
samples drawn with replacement and included re-

estimation of the propensity score for each replicate.
For comparison we also performed an unadjusted
analysis for each outcome, using a linear regression of
outcome on treatment group only. Our focus is on
evaluating the performance of IPTW against linear re-
gression, rather than the clinical interpretation of the
trial results which has been discussed elsewhere. All
statistical analysis was conducted using Stata [23].
Stata code for the analysis can be found in Additional
file 2.

Results
Results of the simulation studies
Initially with all continuous covariates we considered
52 scenarios (13 different sample sizes and 4 levels of
adjustment). The full results can be found in Supple-
mentary Table B1, Additional file 1. Figure 1 shows
the average treatment effect against sample size.
There was negligible bias for the treatment effect for
all settings and both methods of adjusted analysis.
The treatment effects were practically equivalent
when analysis was performed by regression or IPTW

Fig. 1 Mean treatment effect estimates in adjusted analysis performed by multiple linear regression and IPTW. True treatment effect = 5. In most
cases the difference between the IPTW and regression estimate is negligible, therefore the lines are coinciding
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using the propensity score. The absolute mean per-
centage bias was ≤2.4% for each adjusted analysis
method across all settings.
Figure 2 shows how for analysis performed using lin-

ear regression, for all sample size and covariate settings
the model based SE estimates were practically equivalent
to the empirical standard error of the treatment effect
estimates. This was the case even in the smallest sample
size setting of n = 40 with adjustment for 6 covariates.
When analysis was performed using IPTW, for sample
sizes greater than 100 there were no observable differ-
ences between the estimated standard error of the IPTW
estimate versus the empirical standard error for all co-
variate settings. With up to (and including) 6 covariates
cSE=SEðθ̂Þ ≥0.95 and ≤ 1.00 for IPTW and n > 100 (see
Supplementary Table B1, Additional file 1). However for
smaller sample sizes (≤100) the estimated standard error
of the treatment effect was smaller in comparison to the
empirical standard error of the IPTW treatment esti-
mate. This was true for all covariate settings, although
less notable with adjustment for 1 covariate. The esti-
mated standard error for the IPTW treatment estimate

was typically lower than the regression standard error.
When we compared the performance of the empirical
standard error for the linear regression and IPTW esti-
mate this was fairly similar when 1 to 4 covariates were
adjusted for. With 6 covariates there was evident diver-
gence between the empirical standard error for the two
methods for smaller sample sizes.

In Fig. 3 we see the discrepancy between the IPTW-W
estimate of variance and the empirical variance results in
the percentage coverage being significantly less than 95%
for IPTW for smaller sample sizes. The 95% coverage
was first significantly below 95% (indicated by being
lower than 94% with n = 2000 simulations) for a sample
size of n = 130 with 1 and 2 covariates. With 4 and 6 co-
variates this occurred at n = 140. The drop in coverage
was evidently only marginally significantly below 95% for
sample sizes of n = 100–150. For sample sizes less than
n = 100 in all covariate settings the drop in coverage be-
comes larger. For the smallest sample size of n = 40 the
percentage coverage was 91.0, 90.8, 89.1 and 89.6% with
adjustment for 1, 2, 4 and 6 covariates. In comparison,
for the adjusted linear regression analyses the percentage

Fig. 2 Mean estimated standard error versus empirical standard error of estimated treatment effects in adjusted analysis
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coverage was not significantly different to 95% in all
cases, bar marginally for n = 40 and 2 covariates.

Propensity score diagnostics
In each simulated scenario we also measured the stan-
dardised differences for the included covariates and av-
eraged these over the 2000 simulations to assess the
covariate distribution between the treatment groups. On
average, as expected due to randomisation, in all scenar-
ios (sample size 40 to 200, with 1 to 6 covariates) the
average standardised differences were 0.00. For the smal-
lest sample size of 40 and adjustment for 1, 2, 4, and 6
covariate the average non-overlap for the estimated pro-
pensity score across treatment arms was n = 4.3, 4.9, 6.2
and 7.6; however, over the 2000 simulations the non-
overlap range was (2 to 16), (2 to 23), (2 to 27) and (2 to
29) respectively for 1, 2, 4, and 6 covariates. For a sample
size of 100 the average (range) overlap with 1, 2, 4, and
6 covariates was respectively, n = 4.2 (2 to 17), n = 4.5 (2
to 18), n = 5.2 (2 to 19) and n = 6.0 (2 to 24). For a larger
sample size of 200 the average (range) overlap with 1, 2,
4, and 6 covariates was respectively, n = 4.2 (2 to 15),
n = 4.4 (2 to 17), n = 5.1 (2 to 24) and n = 5.4 (2 to 22).

Bootstrap variance
With adjustment for 1 or 2 covariates, Fig. 4 shows that
the bootstrap standard error for the IPTW treatment es-
timate performed similarly to the bootstrap standard
error for the regression treatment estimate for all sample
sizes. With 4 or more covariates performance depended
on sample size and the number of covariates adjusted
for. With a larger sample size of 150 and 200 the boot-
strap variance for the IPTW estimate performed well in
all covariate settings explored (see Supplementary Table
B2, Additional file 1).
Simulation results with a mix of binary and continuous

variables were generally the same and are shown in Sup-
plementary Table B3 and B4, Additional file 1.

Results of the case study
Table 1 summarises selected baseline characteristics, in-
cluding the randomisation stratification factors, for the
60 participants in the ADAPT study included within our
analyses. Generally there was a good balance in the co-
variate distributions between the treatment arms. Not-
ably there were only 3 individuals with IgE ≤ 1500. We
therefore also conducted sensitivity analysis treating IgE

Fig. 3 Coverage rates of 95% confidence intervals in adjusted analysis
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as a continuous variable (see Supplementary Table C1 in
Additional file 1). The correlation between the baseline
value and week 24 outcome was 0.25 for total SCORAD,
0.25 for EASI and 0.20 for (C) DLQI indicating a mild
positive linear relationship between baseline and follow-
up outcomes.
Figure 5 shows the distribution of the estimated pro-

pensity scores by treatment arm, for each outcome. Due

to randomised treatment allocation, the distributions are
well balanced across arms. The median (range) esti-
mated propensity score for the placebo and omalizumab
group were respectively 0.50 (0.31, 0.53) and 0.51 (0.35,
0.54) for the total SCORAD; 0.48 (0.33, 0.61) and 0.51
(0.33, 0.60) for the EASI outcome; and 0.50 (0.31, 0.54)
and 0.51 (0.35, 0.54) for the (C) DLQI outcome. Despite
the small sample size, due to randomization there was

Fig. 4 Mean bootstrap standard error versus empirical standard error of estimated treatment effects in adjusted analysis

Table 1 Baseline covariates in the ADAPT study

Baseline covariate Omalizumab
N = 30

Placebo
N = 30

Total
N = 60

Age: < 10 yrs 14 (47%) 15 (50%) 29 (48%)

≥10 yrs 16 (53%) 15 (50%) 31 (52%)

Total IgE: ≤1500 1 (3%) 2 (7%) 3 (5%)

> 1500 29 (97%) 28 (93%) 57 (95%)

Total IgE (kU/l) 8110.5 (4556.0, 22,122.0) 8372 (4461.0, 16,200.0) 8321 (4508.5, 19,425.0)

Total SCORAD 69.5 (10.7) 69.5 (9.2) 69.5 (9.9)

EASI 45.5 (10.1) 43.4 (11.3) 44.4 (10.7)

(C)DLQI 17 (5.6) 17.2 (4.4) 17.1 (5.0)

Data are presented as mean (SD) for approximately normally distributed continuous values, or median (25th, 75th centile) for skewed continuous variables, and
frequency (%) for categorical variables
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generally excellent overlap with non-overlap being ob-
served for only 1 placebo and 4 omalizumab for the total
SCORAD (total 8% participants), 2 placebo and 1 omali-
zumab for the EASI and (C) DLQI (total 5%
participants).
Table 2 displays the results of the analyses where IgE was

treated as a binary covariate as pre-planned in the ADAPT
statistical analysis plan. For each outcome, as expected, we
observed relative to the unadjusted analysis the treatment
effect increased and the standard error (SE) decreased in
the adjusted analyses performed by linear regression, indi-
cating a more precise estimate. In the adjusted regression
analysis for the total SCORAD the SE was 4.3% smaller, for
EASI the SE was 3% smaller and for (C) DLQI the SE was
1.4% smaller in comparison to adjusted analysis. Within the
IPTW analyses the obtained treatment effects did not
exactly correspond with those obtained via linear regres-
sion. Moreover the standard error was consistently smaller
when IPTW was used in comparison to the adjusted linear
regression analysis across all 4 outcomes. For IPTW the SE
for the obtained treatment effect, in comparison to the ad-
justed linear regression analysis was 4.5% lower (3.43 versus
3.59) for the total SCORAD, 4.6% lower for EASI (3.11 ver-
sus 3.26) and for (C) DLQI 4.1% lower (1.40 versus 1.46).
This contrasted with the bootstrap standard error for the

IPTW estimator which was closer to the adjusted regres-
sion standard error (both model based and bootstrap stand-
ard error), suggesting that the IPTW-W variance estimator
may not be performing adequately in the small sample
setting.
Notably the degree of reduction in the estimated SE

for IPTW versus regression adjustment was of a similar
magnitude to the reduction obtained from adjusting for
randomisation stratification factors and baseline out-
come versus the unadjusted analysis. If we were to take
a strict cut off as p < 0.05 to indicate significance, al-
though we wouldn’t obtain any different conclusions
from the two adjusted methods used here, in only
slightly different cases the differences between the
methods may result in different conclusions. For ex-
ample, for EASI the p-value from the regression analysis
was 0.046 versus 0.034 from IPTW; were the numbers
marginally different alternative conclusions could have
been reached. These results were consistent in sensitivity
analysis where IgE was alternatively treated as a continu-
ous variable (see Table C1 in Additional file 1).

Discussion
We set out to explore the properties of IPTW using the es-
timated propensity score for baseline covariate adjustment

Fig. 5 Propensity score distributions by treatment arm for the ADAPT case study
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in smaller population trial settings. With smaller sample
sizes IPTW did not perform so well. The coverage of 95%
CI’s was marginally below 95% for sample sizes of 100–150.
For sample sizes < 100 the drop in coverage increased and
was always significantly below 95%, indicating that the per-
formance of IPTW is not optimal. The smallest sample size
Williamson et al. explored the properties of IPTW for via
simulation was n = 100 (50 per arm). Although with adjust-
ment for 1 covariate they observed good performance of
the IPTW-W variance estimate they too observed coverage
significantly different to 95% for a continuous outcome
when a larger number of 3 covariates were adjusted for,
corresponding with our findings.
Subsequently we conducted adjusted analyses of three

continuous outcomes from a paediatric eczema trial in-
volving 60 participants using both IPTW and linear re-
gression. The results confirmed that with smaller sample
sizes there are differences between the linear regression
variance estimator and the IPTW-W variance estimator.
The IPTW-W variance estimate was lower than the esti-
mated variance obtained for the treatment effect via lin-
ear regression for all three outcomes.
These results suggest in small trial settings with a continu-

ous outcome there is a need for small-sample modifications
for the IPTW estimator. Using the current large-sample ver-
sion is likely to give over-precise results in very small sam-
ples. Fay and Graubard [28] showed that the sandwich
variance estimator (which is used within IPTW) is biased
downwards in small samples, which could also explain the
reason of poor performance for IPTW. In larger samples
IPTW using the propensity score method may however be a
useful alternative. Williamson et al. demonstrated the large
sample equivalence between the IPTW-W variance estima-
tor and the analysis of covariance variance estimator theoret-
ically and via simulation. Our simulation results using a
larger sample of n= 150 and n= 200 reflect their findings.
Thus we do not dispute that IPTW is a useful method for
covariate adjustment in RCTs with large sample sizes. More-
over, when IPTW is used with large samples we have

demonstrated how the bootstrap variance may be a simpler
route to variance estimation, given this incorporates the esti-
mation of the propensity score. When the bootstrap variance
appropriately takes into account the estimation of the pro-
pensity score, it may be a more accessible way to compute
the variance as the IPTW-W variance estimate involves more
computational steps.
Examination of propensity score diagnostics confirmed

excellent overlap across treatment arms on average in
the simulation study, despite the small sample sizes, as
expected due to randomisation. In the ADAPT case
study (n = 62) the estimated propensity score distribu-
tion and overlap was also excellent. However, it cannot
be ruled out that in future real life trial settings, despite
randomisation, due to chance one may get extreme
weights due to a lack of overlap in the estimated propen-
sity score by treatment arm. This may result in an add-
itional loss of precision in the small sample setting using
such methods [29].
A strength of this study is the inclusion of a real life

case study in addition to the simulations. The results
from the eczema trial and the simulations correspond
and lead us to our conclusions. We also carried out a
variety of simulation scenarios with both continuous and
binary covariates. All scenarios had at least 80% power
reflecting typical RCT scenarios. Of course, as with any
simulation study we were limited by the number of sce-
narios explored and our conclusions do not cover all
settings and are based on an assumed correct normal
outcome model. The EMA guidelines [6] recommend
“no more than a few covariates should be included in
the primary analysis” which was why we did not adjust
for more than 6 covariates. Six was quite a large number
anyway, particularly with sample sizes down to 40 corre-
sponding to a low 6.7 SPV. With 80% power and two-
sided 5% significance a sample size of 42 enables one to
detect only a large standardised effect of 0.9SD. In
smaller settings only very large effects could be detected.
The results in Figs. 2 and 3 clearly show how the large

Table 2 Analysis of the ADAPT trial

Outcome Analysis TE SE (bootstrap SE) 95% CI P-value

Total SCORAD Unadjusted −7.86 3.75 (3.70) −15.36 to − 0.36 0.040

Adjusted - Regression − 8.34 3.59 (3.62) −15.53 to − 1.14 0.024

Adjusted - IPTW −8.27 3.43 (3.63) −15.00 to − 1.54 0.016

EASI Unadjusted −5.62 3.36 (3.32) −12.34 to 1.10 0.099

Adjusted - Regression −6.67 3.26 (3.29) −13.21 to −0.13 0.046

Adjusted - IPTW −6.60 3.11 (3.26) −12.69 to −0.50 0.034

(C)DLQI Unadjusted −3.30 1.48 (1.47) −6.26 to −0.34 0.030

Adjusted - Regression −3.45 1.46 (1.47) −6.38 to −0.53 0.022

Adjusted - IPTW −3.40 1.40 (1.49) −6.15 to −0.65 0.015

Adjusted analysis includes adjustment for stratification factors Age (< 10 yrs., ≥10 yrs), IgE (≤1500, > 1500) and baseline value of associated outcome
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sample equivalence of the variance estimator breaks
down with smaller sample sizes.
Within our evaluations we concentrated on the analysis of

a continuous outcome. We did not look at a binary or sur-
vival outcome since the statistical properties of covariate ad-
justment are different within these settings. The non-
collapsibility of odds ratios and hazard ratios means that the
estimated treatment effect will change in addition to the pre-
cision when baseline covariates are included within an ad-
justed logistic regression analysis. Whilst baseline adjustment
also leads to increased power in logistic regression, this is not
obtained via increasing the precision of the treatment effect
[2]. Adjusted analysis via IPTW will preserve the marginal
estimand and it has been shown to increase precision over
an unadjusted analysis with large samples [14]. But based on
our results for a continuous outcome we expect to observe
similarly that IPTW does not perform so well with smaller
samples with a binary or survival outcome. Large sample the-
ory was used to derive the variance estimator for the IPTW
treatment estimator in the binary outcome setting and previ-
ous simulations with a sample size of 100 (50 per arm)
under-estimated the variance for a risk difference [14]. Fur-
ther work is required to confirm the properties of IPTW esti-
mators for a binary and survival outcome in small RCT
settings. Valuable future work will also explore the use of
small sample modifications to the IPTW estimator [28].
Throughout we compared the performance of IPTW

using the propensity score against regression modelling
for covariate adjustment. We chose to focus compari-
sons on regression analysis since this is the most com-
monly used method of adjustment and easily accessible.
However alternative methods of adjustment exist, in-
cluding performing a stratified analysis or using a semi-
parametric estimator [4]. Other estimators are discussed
in [30]. Further research is required to evaluate the per-
formance of other methods of adjustment in smaller
population RCT settings against IPTW.

Conclusions
In conclusion with large samples, as shown by Williamson
et al., IPTW using the estimated propensity score is un-
equivocally a useful alternative method for conducting
baseline adjustment in RCTs. In larger sample settings we
have demonstrated that the bootstrap variance is an alter-
native more accessible variance estimate to use within
IPTW analysis. However we caution against the use of
IPTW using the estimated propensity score, without
small-sample modifications to the standard error, confi-
dence interval and p-value calculation, in small sample
settings when the sample size is less than 150 and particu-
larly recommend against the use of IPTW without small-
sample modifications when sample size is less than 100. A
regression approach is preferable in such small sample
settings.
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