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Abstract

Background: Electronic Health Records (EHR) has been increasingly used as a tool to monitor population health.
However, subject-level errors in the records can yield biased estimates of health indicators. There is an urgent need
for methods to estimate the prevalence of health indicators using large and real-time EHR while correcting the
potential bias.

Methods: We demonstrate joint analyses of EHR and a smaller gold-standard health survey. We first adopted
Mosteller’s method that pools two estimators, among which one is potentially biased. It only requires knowing the
prevalence estimates from two data sources and their standard errors. Then, we adopted the method of Schenker
et al., which uses multiple imputations of subject-level health outcomes that are missing for the subjects in EHR.
This procedure requires information to link some subjects between two sources and modeling the mechanism of
misclassification in EHR as well as modeling inclusion probabilities to both sources.

Results: In a simulation study, both estimators yielded negligible bias even when EHR was biased. They performed
as well as health survey estimator when EHR bias was large and better than health survey estimator when EHR bias
was moderate. It may be challenging to model the misclassification mechanism in real data for the subject-level
imputation estimator. We illustrated the methods analyzing six health indicators from 2013 to 14 NYC HANES and
the 2013 NYC Macroscope, and a study that linked some subjects in both data sources.

Conclusions: When a small gold-standard health survey exists, it can serve as a safeguard against potential bias in
EHR through the joint analysis of the two sources.

Keywords: Big data, Electronic health records, Multiple imputations, Measurement error, Selection bias, Population
health surveillance

Background
Electronic Health Records (EHR) has been increasingly
used as a tool for public health surveillance by local and
national jurisdictions [1]. For example, recent studies in
New York City (NYC) reported that the prevalence

estimates from NYC Macroscope, an EHR-based surveil-
lance system in NYC [2], were comparable to the
survey-based estimates for diabetes, hypertension, and
smoking [3, 4]. EHR often cover more people (n ≥ 100,
000) than traditional population health surveys and, and
once the infrastructure is in place, the data collection
occurs in near real-time without additional recruitment
or interviewing cost.
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Despite these advantages, the prevalence estimates
from EHR can often be biased mainly due to two causes.
The first is selection bias. That is, EHR may not repre-
sent the target population. For example, the patient
population from NYC Macroscope under-represents
young men, over-represents patients living in high pov-
erty neighborhoods. It only includes patients who visit
primary care doctors connected to a particular EHR sys-
tem [2]. The selection bias can be corrected, if modeled
correctly, by post-stratification. The other source of
error is the misclassifications of health outcomes, which
is the main interest of our study. It comprises measure-
ment error (e.g., due to the use of non-standardized
instruments across sites), extraction error, or the collec-
tion of proxy-measurement (e.g., due to the recording
without distinction of both self-report and actual mea-
surements). McVeigh et al. [3] reported such subject-
level discrepancies by examining a chart review of partici-
pants who both visited NYC Macroscope providers and
also participated in the NYC Health and Nutrition Exam-
ination Survey (HANES), a population-representative
survey with field interviews and biospecimen collection.
Assuming NYC HANES measurements as “gold-standard,
” the chart review found a 5% subject-level error for obes-
ity, 19% for depression, and 19% for influenza vaccination.
Notably, the sensitivity (i.e., the proportion of the medical
condition identified in NYC HANES also indicated in the
EHR) was as low as 31% for depression and 19% for influ-
enza vaccination. In a later study, McVeigh et al. [5] ex-
tracted chart data from more than 20 additional EHR
software systems from primary care providers and re-
peated similar study for 190 participants of the 2013–14
NYC HANES. For the public health surveillance system
using EHR records, there is an urgent need for methods
to estimate the prevalence of health indicators using large
and real-time EHR while correcting the potential bias
using external sources.
Many existing methods allow investigators to pool

multiple data sources and some may be suitable for the
unique context of combining big data with a small gold-
standard survey. They can be classified by whether the
subjects are linked at the individual level and whether
potential biases are accounted for. For data sources that
are unavailable at the individual level, aggregate statistics
are pooled from the sources. For example, Thompson
[6] developed methods to combine aggregate statistics
from standardized surveys by an international tobacco
control project to find programs that are effective in re-
ducing tobacco use. She studied several approaches in-
cluding a model with random effects for the country.
However, her model assumed that all surveys were
equally likely to be biased and the bias across countries
canceled each other out. There are a handful of works
that account for pooling a gold-standard source with

potentially biased sources [7–11]. Earlier, Mosteller [9]
studied ways to combine the means from two samples
when one is potentially biased. Mosteller’s estimator,
chosen as one end of the methods, will be discussed fur-
ther in the following section. Lohr and Brick [7] ex-
plored methods for pooling domain-level estimates from
two surveys that measure victimization prevalence: their
gold-standard survey, the United States National Crime
Victimization Survey, and a larger but potentially biased
telephone companion survey. In their study, they com-
pared ten methods that combine a gold-standard survey
with another biased data source. The methods included
calibration methods, weighted averages of the estimators
from the two sources without any bias adjustment (i.e.
unadjusted dual-frame estimators), with bias adjustment
pooled across the domains, and with domain-specific
bias adjustment. The last method performed the best.
Another estimator that performed well was the multi-
plicative bias estimator published earlier [11]. Manzi
et al. [8] used a Bayesian hierarchical model to pool
domain-level smoking prevalence estimates from seven
surveys in the eastern regions of England. Similarly,
Raghunathan et al. [10] used Bayesian hierarchical model
to combine a potentially biased county-level prevalence
of cancer outcomes and risk factors from a larger tele-
phone survey, The Behavioral Risk Factor Surveillance
System, with an unbiased (or less biased) face-to-face
National Health Interview Survey (NHIS) covering fewer
counties and fewer households.
When data are available at the individual level, Kim

and Rao [12] developed a method to combine a small
survey with outcome measurement and auxiliary infor-
mation with a larger independent survey with only auxil-
iary information. Park et al. [13] developed a model to
pool one gold-standard source with outcome measure-
ment and auxiliary information with another independ-
ent source with a potentially biased outcome and the
same auxiliary measure. Schenker et al. [14] used mul-
tiple imputations to combine self-reported outcomes
from a large survey, NHIS, with a smaller NHANES that
has both clinical and self-report outcomes. They im-
puted clinical measurement of health outcomes for the
participants of the larger survey by modeling both the
underlying mechanism of misspecification of outcomes
and the mechanism of inclusion to each survey. We will
study further this method in the following section as an-
other end of the methods. For more than two proxy out-
come variables measured with lagged overlaps, Gelman
et al. [15] and He et al. [16] used similar multiple imput-
ation approaches.
In this study, we aim to demonstrate that the joint

analysis of a large EHR with a much smaller gold-
standard health survey can improve the accuracy of the
prevalence estimates. Our aim is not to study all
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available methods but instead to demonstrate two statis-
tical procedures at both ends of spectrum. First, we
adopt Mosteller’s method [9] to pool two estimators
when one is potentially biased. It only requires knowing
the prevalence estimates from two data sources and their
standard errors. Second, we adopt the method of Schen-
ker et al. [14], which uses iterative multiple imputations
of subject-level health outcomes for both surveys. This
procedure requires information to link some subjects be-
tween two sources and modeling the mechanisms under-
lying the misclassifications in EHR as well as modeling
inclusion probabilities to both sources. We demonstrate
the statistical properties of the two estimators using
simulation studies. Finally, we illustrate these methods
analyzing 2013–14 NYC HANES and the 2013 NYC
Macroscope and a small study that linked some subjects
between the two sources.

Methods
We consider two data sources. First is a health survey of
a smaller sample S1 with survey weights w1 that is repre-
sentative of the target population. Measurement Y1 in
the survey is the gold-standard and hence p̂1 ¼

P
i∈S1

w1;i

Y 1;i=
P

w1;i is an unbiased estimator of the prevalence
of interest p1. Another data source is EHR of a larger
sample S2 that becomes representative of the population
with post-stratified weights w2. Measurement Y2 in the
EHR may have subject-level errors and p̂2 ¼ P

i∈S2w2;i

Y 2;i=
P

w2;i may be a biased estimator of p1. We denote

logit of the prevalence as ϕ1 =logit(p1) and logit of
prevalence estimators from the two sources as y1 =logit(
p̂1) and y2 =logit(p̂2). We assume that the covariance be-
tween two estimators is ignorable since the number of
the overlapping subjects (S1∩S2) is typically very small
relative to the size of EHR (S2). We can link the subset
of the overlapping subjects (Sc) between the two sources.
Figure 1 outlines the data structure. We used statistical
software R for all statistical analyses [17, 18].

Mosteller estimator
At the core of the problem is a simple question: “Can
we gain by pooling two estimates when one is possibly
biased but from a larger sample?” Earlier, Mosteller
(1948) [9] studied whether to pool two sample means
when one is potentially biased. He compared the mean
squared error (MSE) of various mean estimators: the un-
biased mean, test-then-pool estimator (i.e., pooling two
means only when the mean difference was not signifi-
cant), and maximum likelihood estimator (MLE) assum-
ing mean-zero Gaussian bias. The last estimator showed
the least MSE. We adopt his approach to account for
unequal sample sizes and unequal variances. The estima-
tor is a weighted average of y1 and y2:

ϕ̂
M ¼ k1y1 þ k2y2ð Þ= k1 þ k2ð Þ:

It can be shown that the MSE of this family of estima-
tors is minimized when k1 ¼ 1=σ21 , k2 ¼ 1=ðτ2 þ σ22Þ ,
where σ1 and σ2 are the standard errors of y1 and y2,

Fig. 1 Data elements in the 2013–14 NYC HANES, limited to the in-care population and stratified by whether the participant was in the chart
review study, and 2013 NYC Macroscope
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and τ = E(y2) − ϕ1 is the bias of y2. The estimator is also
the MLE of ϕ1 under the model yj = ϕ1 + 1(j = 2)θ + ej
where θ and ej are mutually independent zero-mean
normal variable with variance τ2 and σ2

j , respectively.

The variance and bias parameters were estimated by

consistent estimators σ̂21 ¼ s21, σ̂
2
2 ¼ s22 and τ̂2 ¼ ðy1−y2Þ2:

For example, s2j can be the sample variance estimated

using survey weights.
The same estimator can also be derived from an ap-

proximate Bayesian perspective [19] by setting a prior to
the asymptotically normal sampling distribution of yj. If
we set a non-informative prior (i.e. normal with infinite
variance) of ϕ1, and zero-mean normal prior of the bias
E(y2) − ϕ1 with variance τ2, then the posterior distribu-

tion of ϕ1 can be shown to be normal with mean ϕ̂
M

and variance σ21ðσ22 þ τ2Þ=ðσ21 þ σ22 þ τ2Þ. τ measures the
prior belief in closeness of the prevalence measured by
EHR and health survey. The 95% highest density cred-
ibility interval of the logit prevalence is given as

ϕ̂
M � 1:96 σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 þ τ2ð Þ= σ21 þ σ2

2 þ τ2ð Þ
q

The estimator, while less efficient than the subject-
level imputation estimator below, is simpler to imple-
ment by practitioners who often do not have resources
to link subjects in two sources or model the mechanisms
of the misclassifications in EHR.

Subject-level imputation estimator
Misclassification model
We adapted the approach by Schenker et al. [14] and
modeled the misclassification between the binary out-
comes of ith subject in health survey (Y1, i) and EHR (Y2,
i):

logit P Y 2;i ¼ 1jY 1;i ¼ y1;i
� �

¼ β0l þ β1lzi þ β2ly1;i ð1Þ

logit P Y 1;i ¼ 1jY 2;i ¼ y2;i
� �

¼ γ0l þ γ1lzi þ γ2ly2;i ð2Þ
where zi is a vector predictor. Since the relationship may
depend on the design factors of surveys, the model is
stratified by four levels (l = 1, 2, 3, 4) divided by the
quartiles of the inclusion probabilities to the health sur-
vey as q11, q12, q13 and to the EHR as q21, q22, q23.

Model for inclusion to each source
Since the inclusion probabilities to health survey (π1i)
are unknown for most EHR subjects, we model them by
a model, logit π1i = a0+ a1 ui, where ui is a vector of sur-
vey design factors. The model is fit over entire EHR sub-
jects weighted by their post-stratified weights (w2).

Similarly, we model the inclusion probability to EHR
logit π2i = b0+ b1vi and fit it over entire health survey
subjects weighted by their survey weights.

Bayesian iterative regression imputation
While we are ultimately interested in imputing missing
health survey outcomes (1) in Fig. 1, we follow Schenker
et al. [14] and perform iterative imputations between
two models M1, to impute missing EHR values (2) in
the figure, and M2, to impute missing health survey
values (1) in the figure. This is repeated B times. Imput-
ing missing EHR values (2) in the figure increases sam-
ple size when fitting M2, the model we are ultimately
interested. The additional variation caused by using im-
puted values was accounted for by the multiple imput-
ation standard error formula below. The following is the
detailed procedure.
To impute missing Y2,i, we divided the subjects S1 ∪ S2

into 4 (l = 1, …, 4) groups by the quartiles q21, q22, q23,
and within each group fit Bayesian regression model M1
with a weakly informative prior for βl = (β0l, β1l,β2l) of in-
dependent Cauchy distributions with 2.5 scale and zero
location, first on the subjects Sc whose identities can be
linked between two data sources. Then, we drew a pos-
terior sample of βl, and in turn Y2,i conditional on βl for
all health survey subjects missing Y2,i. Subsequently,
treating this imputed Y2,i as observed, we imputed miss-
ing Y1,i by dividing the subjects into 4 groups by q11, q12,
q13 and fitting the regression model M2 on all EHR sub-
jects with independent Cauchy prior for γl = (γ0l, γ1l, γ2l)
with 2.5 scale and zero location. We drew a posterior
sample from γl, then in turn Y1,i for all EHR subjects
missing Y1,i. We iterated B times to fit models M1 and
M2, treating imputed values from the previous step as
observed and imputing the missing outcome variables
until convergence. Then we calculated a prevalence esti-
mator p̂m =

P
i∈S2w2iŶ m;1;i=

P
w2i based on the imputed

health survey measurements of all EHR subjects. Notice
that the outcome values were imputed only when they
are missing. In other words, Ŷ m;1;i = Y1, i for subjects
whose health survey outcome was observed. Finally, we
combined inferences from M such multiple imputations.
The resulting prevalence estimator is unbiased when the
specified models are correct:

P̂
R ¼

XM

m¼1
p̂m=M

The standard error of ϕ̂
R
=logit(P̂

R
) was estimated by

the standard way [20, 21]:

SE ϕ̂
R

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W þ 1þ 1=Mð ÞB

p

where W=
P

ms
2
m=M , B=

P
mðϕ̂m−ϕ̂

RÞ2=ðM−1Þ , and sm
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is the naïve standard error of the logit prevalence ( ϕ̂m )
calculated from mth imputation. Since the overlap be-
tween two sources can be small, we used Barnard-Rubin
degrees of freedom [22, 23] to compute credibility inter-
vals, first in log-odds scale before they were transformed
to probability scale.

Results
Simulation studies
We performed simulation studies to assess the perform-
ance of the methods under various settings. We gener-
ated correlated binary outcomes (Y1, Y2) of a target
population (N = 10,000,000) whose conditional distribu-
tions follow logistic models: logit P(Y1 = 1|Y2) = η10+ φ
Y2 and logit P(Y2 = 1|Y1) = η01+ φ Y1 where η10 = γ0+
γ1x1+ γ2x2, η01 = β0+ β1x1+ β2x2. To do so, we first gen-
erated an independent Bernoulli variable x1 with success
probability .5 and a standard normal variable x2. Then
we generated the correlated binary outcomes (Y1, Y2)
which has 4 possible outcomes (0,0) (0,1), (1,0), (1,1)
with corresponding joint probabilities p00, p01, p10, p11
where p11: p10:p01: p00 = exp.(φ + η10 + η01): exp.(η10):
exp.(η01):1. This set up guarantees that the conditional
distributions of outcomes are the two stated logistic
models. The log odds ratio φ and the linear coefficients
were set so that the true prevalence based on two data-
sets were p1 = p11+ p10 = 0.3 and p2 = p11+ p01 = 0.3, 0.31,
0.32, 0.33, or 0.35.
Then, we randomly selected subjects for the health

survey (n1 = 250, 500, or 1000) and EHR (n2 = 100,000)
by inclusion probabilities proportional to logit π1i = a0 +
a1u1i + a2u2i + a3x1i and logit π2i = b0 + b1u1i + b2u2i +
b3x1i. u1 was an independent Bernoulli variable with suc-
cess probability .5 and u2 was a standard normal vari-
able. We set (a0, a1, a2, a3) = (b0, b1, b2, b3) = (1,1,1,
0.187). x1, the predictor of misclassification, was also in-
cluded as a survey design factor so that the missing
mechanism is missing-at-random but not missing-
completlely-at-random. Then, we selected more EHR
subjects among the health survey participants so that the
proportion of health survey participants that are also in
EHR is 20, 50%, or 100%. Finally, we deleted the values
of Y1 and π1 for the subjects not in the health survey
and Y2 for the subjects not in EHR. All π2 values were
deleted as inclusion probabilities are unknown in typical
EHR.
For each simulated survey and EHR, we used u1, u2,

and x1 to calculate post-stratified weights w2 for the
EHR. Then we calculated four prevalence estimates: esti-
mator based only on the health survey, estimator based
only on EHR, Mosteller estimator, and the subject-level
imputation estimator. For the subject-level imputation
estimator, we included burn-in iterations and combined

inferences of M = 30 multiple imputations. The overall
process of the generation of the target population, sam-
pling health survey and EHR from the population, and
calculating the prevalence estimates was repeated 200
times.
Table 1 shows the average prevalence estimates by the

four estimators. The size of the health survey (n1) and
the size of subjects linked between two sources (n12)
were both 500. Health survey estimator was unbiased in
all settings. On the contrary, EHR estimator was biased
except when there was no misclassification bias (i.e.,
p2 = 0.3), in which case post-stratification successfully
adjusted for the selection bias. Both Mosteller estimator
and the subject-level imputation estimator showed less
than 3% bias in all settings.
Table 2 shows the MSE of the estimators. When bias

was less than or equal to 5% (i.e., p2 = 0.3 or 0.31), the
EHR estimator outperformed the health survey estimator
due to a larger sample size. When the bias was more
substantial, however, it overwhelmed the benefit from
the sample size. Then, the subject-level imputation
model and the Mosteller estimator performed better
than the estimators based only on either source. Notably,
they either outperformed or were similar to the health
survey estimator in all settings. Between the two, the
Mosteller estimator performed better than the subject-
level imputation estimator when bias was small to mod-
erate (p2 = 0.3–0.33), but worse when bias was large
(p2 = 0.35).
We studied how the size of the health survey and the

size of subjects linked between two sources affect the
performance (Table 3). We fixed the true prevalence (p1)
at 0.3 and the prevalence (p2) measured from EHR (Y2)
at 0.32. The EHR estimator performed best when the
health survey was small (n1 = 250) but Mosteller’s esti-
mator performed best when the health survey size was
moderate (n1 = 500, 1000). The subject-level imputation
estimator requires enough size of subjects linked be-
tween two sources. Mostellers’ method, on the other
hand, performed well in most settings.

Analysis of NYC macroscope and NYC HANES
We illustrate the methods with data from NYC. To pro-
tect patient privacy, the authors did not directly access
the data but submitted R codes to the NYC Department
of Health and Mental Hygiene (DOHMH) and received
back the results of the joint analysis of two data sources
presented below.

Description of data sources
NYC Macroscope is an EHR-based surveillance system
developed by the NYC DOHMH in collaboration with
the City University of New York School of Public Health
to estimate the prevalence of chronic diseases and risk
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factors for adult population (20 years or older) in care by
participating primary care providers in NYC [2, 5]. The
data were available only as aggregate data stratified by
age group, sex, and neighborhood poverty level. Detailed
provider and patient inclusion and exclusion criteria are
documented elsewhere [2]. In this study, we used the
2013 data that included 716,076 patients.
The 2013–14 NYC HANES is a population-

representative survey of NYC residents aged 20 or older
(n = 1527) with the interview, physical examination and
biospecimen collection [24]. The data used in this study
were limited to in-care participants (i.e., participants
who have seen a provider for primary care in the previ-
ous year; n = 1135). Recently, a chart review study was
conducted among a subsample (n = 190) of in-care par-
ticipants from NYC HANES (Fig. 1) [5]. In their study,
more than 20 EHR from primary care providers were ab-
stracted for each chart review participant, and the data
were linked to the NYC HANES data at the individual
level. The chart review sample consisted of participants
who received primary care from NYC Macroscope or
non-NYC Macroscope providers. Because there was little
difference in demographic and clinical characteristics be-
tween the two groups, we used data from all participants
in this study. They performed the chart review on sub-
jects enrolled in NYC HANES 2013–14 (n = 1524) who
had doctors visit during the year (n = 1135) and signed a
consent form and Health Insurance Portability &

Accountability Act (HIPPA) waiver (n = 491) whose EHR
were available and valid (n = 190).

Definition of health indicators
We selected six health indicators in the sources to dem-
onstrate the methods: hypertension diagnosis, diabetes
diagnosis, smoking, obesity, depression, and influenza
vaccination. Newton-Dame and her collegues describes
these indicators in detail [2]. Hypertension diagnosis was
defined as either systolic blood pressure ≥ 140 mmHg or
diastolic blood pressure ≥ 90mmHg or an existing rec-
ord of hypertension diagnosis (based on ICD-9 in NYC
Macroscope and self-report in NYC HANES). Diabetes
indicator was based on the presence of an ICD-9 diagno-
sis in NYC Macroscope and self-report in NYC HANES.
Smoking was based on an indication of ‘current smok-
ing’ in the most recent smoking status in the NYC
Macroscope and based on a self-report of current smok-
ing in NYC HANES. The obesity indicator was based on
the most recent body mass index (BMI) ≥ 30 in NYC
Macroscope and based on the measured height and
weight at the interview in NYC HANES. Depression in-
dicator was based on the presence of an ICD-9 depres-
sion diagnosis ever recorded, or a Patient Health
Questionnaire (PHQ-9) score ≥ 10 in NYC Macroscope
and based on a self-reported diagnosis or a PHQ-9
score ≥ 10 at interview in NYC HANES. Influenza vac-
cination indicator was based on the presence of a

Table 1 Simulation studies: prevalence estimate by four methods

True Population Prevalence Prevalence Estimate (95% CI)

Prevalence (p1) based
on outcome in health
survey (Y1)

Prevalence (p2) based
on outcome in EHR (Y2)

Health Survey (n1 = 500) Post-stratified EHR Mosteller estimator Subject-level
imputation estimator

0.3 0.30 0.300 0.299 0.300 0.303

0.3 0.31 0.300 0.309 0.303 0.302

0.3 0.32 0.299 0.319 0.305 0.302

0.3 0.33 0.298 0.329 0.305 0.303

0.3 0.35 0.300 0.349 0.308 0.304

The size of health survey (n1) and the size of subjects linked between two sources (n12) are both 500

Table 2 Simulation studies: square root of MSE of four methods

True Population Prevalence Squared Root of MSE

Prevalence (p1) based on
outcome used in health
survey (Y1)

Prevalence (p2) based
on outcome used in EHR (Y2)

Health Survey (n1 = 500) Post-stratified EHR Mosteller estimator Subject-level
imputation model

0.3 0.30 0.021 0.002 0.015 0.019

0.3 0.31 0.021 0.009 0.017 0.019

0.3 0.32 0.022 0.019 0.018 0.021

0.3 0.33 0.021 0.029 0.020 0.021

0.3 0.35 0.021 0.049 0.023 0.021

Square root of MSE for estimating p1 is shown. The size of health survey (n1) and the size of subjects linked between two sources (n12) are both 500. For each
row, the best performing method in each row is highlighted in bold
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relevant ICD-9/CPT/CVX code in NYC Macroscope and
based on the self-report of receiving influenza vaccin-
ation in the past 12 months in NYC HANES.

Illustration of the methods on NYC data
The NYC Macroscope used post-stratification to address
the selection bias of Macroscope data [25, 26] by match-
ing the joint distribution of gender, age group, and
neighborhood-level poverty to that of the city’s in-care
population. The prevalence estimates among the in-care
city population-based on NYC HANES and NYC Macro-
scope were close for hypertension diagnosis (NYC
HANES 34.3% vs. NYC Macroscope 33.7%), moderately
different for diabetes diagnosis (13.3% vs 14.8%), smok-
ing (17.3% vs. 15.9%), and obesity (31.7% vs. 29.1%), and
significantly different for depression (19.0% vs. 8.6%) and
influenza vaccination (48.6% vs. 21.2%). The discrepancies

in the depression prevalence and influenza vaccination
rate were likely due to the under-diagnosis of depression
in primary care settings and influenza vaccination outside
of clinics (e.g., pharmacies) that are not recorded by the
primary care EHR. The population characteristics in NYC
HANES and NYC Macroscope for the adult in-care popu-
lation are described elsewhere [27].
We estimated prevalence by the four estimators: esti-

mator based only on NYC HANES, estimator based only
on Macroscope data, Mosteller estimator, and the
subject-level imputation estimator. We assumed that
NYC HANES was the gold standard since data were col-
lected using a population-representative sample design
with a controlled and standardized data collection. The
chart review study with 190 subjects whose identities
were linked between NYC HANES and NYC Macro-
scope enabled us to calculate the subject-level

Table 3 Simulation studies: square root of MSE by different sample sizes

Size of health Survey (n1) Size of subjects linked
between two sources (n12)

Health Survey Post-stratified EHR Mosteller estimator Subject-level
imputation model

250 50 0.033 0.019 0.026 0.049

125 0.031 0.019 0.024 0.046

250 0.030 0.019 0.023 0.040

500 100 0.022 0.019 0.019 0.032

250 0.023 0.019 0.019 0.031

500 0.022 0.019 0.018 0.021

1000 200 0.016 0.019 0.014 0.027

500 0.015 0.019 0.015 0.022

1000 0.016 0.019 0.015 0.014

Prevalence (p1) measured in health survey (Y1) is fixed at 0.3 and the prevalence (p2) measured in EHR (Y2) is fixed at 0.32. The size of EHR (n2) is fixed at 100,000.
Square root of MSE for estimating p1 is shown. The best performing method in each row is highlighted in bold

Table 4 Prevalence estimate and 95% confidence/credibility intervals of select health outcomes among adults in care in New York
City (NYC), obtained from the NYC Macroscope 2013 and NYC HANES 2013–14

Outcomes Prevalence Estimate (95% CI)

NYC HANES
(n = 1135)

Crude NYC Macroscope
(n = 716,076)

Post-stratified
NYC Macroscope

Subject-level
imputation model

Mosteller estimator

Hypertension Diagnosis 34.3 33.7 34.7 35.6 34.7

(31.3, 37.4) (33.6, 33.8) (34.6, 34.8) (30.4, 41.1) (34.0, 35.4)

Diabetes Diagnosis 13.3 14.8 14.9 13.8 13.9

(11.3, 15.6) (15.8, 16.0) (14.9, 15.0) (10.6, 17.7) (11.5, 16.5)

Smoking 17.3 15.9 15.0 19.0 16.9

(15.1, 19.9) (15.8, 16.0) (14.9, 15.1) (16.0, 22.5) (14.4, 19.7)

Obesity 31.7 29.1 28.0 30.9 31.1

(28.7, 34.8) (29.0, 29.2) (27.9, 28.1) (26.5, 35.7) (27.9, 34.6)

Depression 19.0 8.6 8.3 20.3 18.9

(16.6, 21.6) (8.5, 8.6) (8.3, 8.4) (17.2, 23.9) (16.5, 21.5)

Influenza Vaccination 48.6 21.2 21.7 48.2 48.5

(45.4, 51.8) (21.1, 21.3) (21.6, 21.8) (43.8, 52.5) (45.3, 51.7)

The units are in percentage
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imputation estimates for which we used age group, sex,
and neighborhood poverty level as covariates for inclu-
sion models and misclassification models. There was a
lack of predictors that could properly model misclassifi-
cations in the EHR, such as hospital size, instrument la-
bels, or types of visits.
Mosteller prevalence estimates showed improvement

over both NYC HANES and NYC Macroscope estimates
(Table 4). In all six health outcomes, they showed
smaller standard errors compared to NYC HANES esti-
mates and smaller biases compared to Macroscope esti-
mator. The bias reduction was especially substantial (>
99% reduction) in depression and influenza vaccination
estimates because, for these indicators, EHR estimates
were given little weight (Table 5). On the other hand,
the subject-level imputation estimates did not outper-
form NYC HANES estimates: their credibility intervals
were larger than NYC HANES estimates. This was due
to the lack of predictors, as mentioned above, that could
model the mechanism of misclassification in EHR. The
subject-level imputation method requires us to correctly
model the misclassification as well as to approximate the
inclusion probabilities to the health survey for the EHR
subjects.
Table 4 also demonstrates that the selection bias in

Macroscope was less than the bias due to subject-level
misclassifications: the range of differences in prevalence
estimates between Macroscope and NYC HANES for
diabetes, smoking, and obesity were similar with (1.6–
3.7%) and without (1.5–2.6%) post-stratification. How-
ever, it decreased to 0.4–0.6% for the Mosteller estima-
tor. The range of differences in depression prevalence
and influenza vaccination rate were also similar with
(10.7–26.9%) and without (10.4–27.4%) post-
stratification but it reduces dramatically to 0.1% for the
Mosteller estimator. This shows that post-stratification
alone was insufficient to correct the bias in the EHR for
these outcomes. But Mosteller estimator and subject-
level imputation estimator both used NYC HANES as a
safeguard against potential bias in EHR.

Discussion
Compared to traditional health surveys, EHR has a much
larger sample size and the potential to reduce standard

errors of prevalence estimates. It can be very helpful in
estimating prevalence in small sub-groups of the popula-
tions. In NYC Macroscope and our simulation study, we
found that the correction of the subject-level error of
EHR is necessary and possible.
In the simulation study, the health survey estimator

was unbiased, but the standard error was the largest. On
the contrary, the bias in EHR estimator can overwhelm
the benefit of its sample size. When that happened, both
Mosteller estimator and the subject-level imputation es-
timator yielded negligible bias and small standard errors:
they either outperformed or were comparable to the es-
timators based solely on either source. The subject-level
imputation estimator may outperform Mosteller estima-
tor when EHR bias is large. However, the estimator re-
quires enough size of subjects linked between two
sources and correctly modeling the mechanism of mis-
classification as well as modeling inclusion probabilities
to both sources.
The difficulty of such a task was demonstrated in the

analysis of the NYC data. Mosteller estimators showed
considerably smaller standard error than NYC HANES
estimates especially when the NYC Macroscope esti-
mates and NYC HANES estimates were close. The
subject-level imputation estimator did not outperform
NYC HANES estimator in part due to a lack of predic-
tors for misclassification. The predictors for misclassifi-
cation can be both patient-level characteristics, such as
types of visit, and institution-level predictors, such as
hospital size or instrument labels. These variables are
typically going to be found in EHR (or administrative
data sets that accompany EHR), while some patient
characteristics will still be found in a health survey. In
practice, the fit of the misclassification model should
guide the choice between considered approaches,
whether to model the underlying mechanism of mis-
classification or to use Mosteller’s estimator. This can be
done, for example, by cross-validated estimation of area
under the curve of the receiver operating characteristic
(ROC) curve as one moves the probability cutoff in the
logistic regression model M2.
In this article, we considered the health survey as the

gold standard. Here we acknowledge that survey mea-
surements are rarely unbiased. However, it is often help-
ful to treat one survey as gold-standard over another.
For example, investigators have treated a smaller in-
person survey as gold-standard over a larger telephone
survey [10], or clinical surveys as gold-standard over
self-reported outcomes [14, 28]. EHR are often adminis-
trative data collected for billing purposes with non-
standardized instruments and protocols, with complex
unknown inclusion mechanisms. NYC HANES was de-
signed for health survey purposes by standardized in-
struments and protocols and collected by representative

Table 5 Relative weights used in Mosteller estimator

Outcomes NYC HANES:Macroscope

Hypertension Diagnosis 0.075:0.925

Diabetes Diagnosis 0.665:0.335

Smoking 0.812:0.188

Obesity 0.855:0.145

Depression 0.993:0.007

Influenza Vaccination 0.997:0.003
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probability sampling. We assumed that typical bias treat-
ment for the health survey, such as post-stratification
and calibration for non-response bias has been success-
fully performed.

Conclusions
We demonstrated that the joint use of a small gold-
standard health survey with a larger EHR improves ac-
curacy in prevalence estimation. Depending on the avail-
able data, one can aim to model the misclassification
completely or calculate the weighted average of the
prevalence estimates from two sources. The studied ap-
proaches can improve the quality of EHR as a public
health surveillance tool. In another work, we are extend-
ing the methods to model subgroup level prevalence es-
timators from health surveys and EHR.
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