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Abstract

Background: Selection and selection bias are terms that lack consistent definitions and have varying meaning and
usage across disciplines. There is also confusion in current definitions between underlying mechanisms that lead to
selection and their consequences. Consequences of selection on study validity must be judged on a case-by-case
basis depending on research question, study design and analytical decisions. The overall aim of the study was to
develop a simple but general framework for classifying various types of selection processes of relevance for
epidemiological research.

Methods: Several original articles from the epidemiological literature and from related areas of observational
research were reviewed in search of examples of selection processes, used terminology and description of the
underlying mechanisms.

Results: We classified the identified selection processes in three dimensions: i) selection level (selection at the
population level vs. study-specific selection), ii) type of mechanism (selection in exposure vs. selection in population
composition), iii) timing of the selection (at exposure entry, during exposure/follow-up or post-outcome).

Conclusions: Increased understanding of when, how, and why selection occur is an important step towards
improved validity of epidemiological research.
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Background
Selection and selection bias are terms that still lack con-
sistent definitions in epidemiology, and they also have
varying meaning and usage in other scientific disciplines
[1, 2]. This is a source of misunderstandings that may
compromise validity, not the least in the interdisciplinary
collaborations that are common within empirical re-
search today. Most definitions of selection bias in epi-
demiology restrict the attention to sample selection in

that selection is viewed as a bias-inducing phenomenon
occurring at the study level, i.e. during design, enrol-
ment, follow-up or analysis [3–5]. The focus on study-
related issues when discussing selection bias implies that
selection processes occurring at the population level, for
example linked to migration, disease occurrence and
mortality [6], are often overlooked among applied re-
searchers. As an example of this narrow focus, it is
sometimes claimed that selection bias is not an issue in
cohort studies involving complete recruitment and
follow-up [7].
There is also confusion in the literature between the

underlying mechanisms that lead to selection and their
consequences, i.e. the selection effects. As a result,
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working definitions of selection bias vary depending on
whether consequences on internal or external validity
are included [4, 8–10]. Unifactorial selection processes
involving exposure or outcome but not both may distort
measures of disease occurrence, for example outcome
rates, risks and prevalence proportions, and may also
hamper external validity of associational effect measures
if the exposure effect is heterogeneous across population
groups [10]. Bi- or multifactorial selection processes in-
volving both exposure and outcome are generally neces-
sary in order to distort the internal validity of causal
effect measures [7, 8]. Selection effects must be judged
on a case-by-case basis depending on the specific re-
search question, study design and related analytical deci-
sions. For this reason, presence or absence of selection
effects cannot be determined generally for a cohort
study that measures various exposures and outcomes
[11]. The consequences of selection may even differ
across analyses of a specific exposure-outcome associ-
ation, for example in the main analysis versus in strati-
fied or mediation analyses [2, 12].
Identifying and characterizing underlying selection

processes when planning the study will aid the re-
searcher in taking appropriate actions in design, data
collection and analysis in order to enhance validity. The
overall aim of this study was therefore to develop a sim-
ple but general framework for classifying various types
of selection processes of relevance for epidemiological
research. Examples of selection processes from the epi-
demiological literature are discussed and classified ac-
cording to the proposed framework.

Methods
Notation and framework
We define a selection process as a process that results in a
non-random split of a population or study cohort into two
or more groups, either with respect to particular aspects
such as exposure or health status, or more general aspects
such as population membership or study eligibility. Stand-
ard causal diagrams (directed acyclic graphs, DAGs) are
useful for depicting and defining the underlying mechan-
ism behind different types of selection processes [8, 13].
Since the timing of the selection is crucial for judging its
effect, it helps if the nodes are ordered chronologically
from left to right in a causal diagram so that processes
that are assumed to operate simultaneously are repre-
sented by nodes and arrows that are aligned vertically. We
use subscripts for the nodes to indicate time, e.g. E0 repre-
sents exposure initiation in time window t = 0 and E1 ex-
posure in some later time window t = 1.

Literature review
In order to develop the framework, several highly cited
original articles from the epidemiological literature as

well as from related areas of observational research (eco-
nomics, sociology and statistics) were reviewed in search
of examples of selection processes, used terminology and
description of the underlying mechanisms [2, 3, 8, 9,
14–22]. The reference lists of these articles, more recent
publications and helpful reviewers led to identification
of additional examples [1, 6, 10, 11, 23–25].

Results
A general framework in three dimensions
In our proposed framework, we classify selection pro-
cesses in three main dimensions. Firstly, we distinguish
between selection processes at the population-level oc-
curring independently of study decisions and study-spe-
cific selection processes occurring only because of the
study. Secondly, we distinguish between selection in ex-
posure, i.e. selection processes that cause changes in ex-
posure, and selection in population composition, i.e.
processes that cause changes in the composition of the
general population, source or study population. Thirdly,
we organize the selection processes with respect to the
timing relative the exposure and the outcome, for ex-
ample selection occurring at exposure entry, during ex-
posure (but prior to outcome) or post-outcome. These
three dimensions are described in more detail in the fol-
lowing paragraphs.

Population vs. study-specific selection processes
Population selection processes occur in general or
source populations independently of study decisions,
whereas study-specific selection processes occur only be-
cause of the study. Epidemiologists are often familiar
with non-participation, self-selection into studies, losses
to follow-up and other types of study-specific selection
processes that can be serious concerns in empirical re-
search. However, there are also selection processes that
result in non-random groupings or changes in the com-
position of the underlying populations. These are con-
tinuously on-going at the population level irrespectively
of whether they are subject to sampling in empirical
studies [6]. Population selection occurs both within gen-
eral and specific populations, such as specific patient
populations. It includes phenomena that may lead to
confounding in observational studies, i.e. confusion of ef-
fects or lack of exchangeability between exposed and un-
exposed with respect to background risks for the disease
outcome [7]. The confounding resulting from population
selection processes is sometimes apparent, such as dif-
ferences in health determinants across groups in age, sex
or socioeconomic characteristics, and therefore possible
to adjust for in statistical analysis. However, population
selection processes often lead to subtle differences across
groups that are more difficult to account for, for ex-
ample if personal ambitions make individuals seek
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higher education, if self-interest drives individuals to
choose the occupation that produces the highest utility
for them, if physicians select patients into treatments
and when health conscious individuals select themselves
into preventive screening programs. Additionally, popu-
lation selection includes phenomena that are distinct
from confounding, for instance if an index event must
occur in order for someone to enter the eligible popula-
tion [22]. As examples, disease progression can only be
observed among people with the disease, and being un-
employed is often a prerequisite for taking part in a
job training program. Population selection may also
act during exposure, for example through survival of
the fittest and depletion of susceptibles over time
[24]. A general characteristic of population selection
effects is that they tend to persist also in “perfect”
observational study settings, including register-based
studies on entire populations [6].

Selection in exposure vs selection in population
composition
In the second dimension we make a mechanistic distinc-
tion between i) selection that causes changes in exposure
(selection in exposure) and ii) selection through for ex-
ample migration, disease events or deaths that causes
changes in the composition of the population (selection
in population composition; Fig. 1). Differences in mode
of action between these two types of selection mecha-
nisms, which can either be of unifactorial or bi/multifac-
torial origin, can be more formally depicted using causal
diagrams (Fig. 2a-d).

Selection in exposure (unifactorial case)
Each arrow between two nodes in a causal diagram rep-
resents a direct causal effect, but also a directed selection
process. To see why, consider the direct effect C0→ E1

in Fig. 2a, which here means that C-positivity (C0 = 1)
increases the likelihood of becoming exposed (E1 = 1).
As a consequence, C-positivity will be more common
among exposed individuals and less common among un-
exposed individuals than in the total population. Thus,
the direct causal link between C and E is a selection
process that leads to two selected groups in the popula-
tion, exposed and unexposed that have different compo-
sitions with respect to C. We will refer to any arrow that
ends in initiated, continued or terminated exposure as
selection in exposure. This selection process does not
affect the boundaries of the population as such (i.e. it
does not select in or out from the combined population
of unexposed and exposed). In occupational epidemi-
ology, healthy worker hire effect is a well-known example
of selection in exposure that may lead to confounding
bias in the estimated exposure effect on a disease out-
come D, if healthy individuals (C0 = 1) in a population
are more likely of becoming employed and thereby occu-
pationally exposed (E1 = 1) [21]. If the origin of the selec-
tion C only causes E and not D, then confounding bias
would not occur. However, external validity of associ-
ational measures can still be compromised by the causal
link between C and E if there is heterogeneity in the E –
D association across levels of C [10]. This would for ex-
ample occur if individuals that are less susceptible to the
exposure effect (e.g. more stress tolerant) are more
prone to become exposed (by applying for positions with
high job demands). The estimated E – D association
would still be internally valid but would not generalize
to the general population with a different distribution of
susceptible individuals.

Selection in population composition (unifactorial case)
The other fundamental selection mechanism, selection in
population composition, acts on the general, source or

Fig. 1 Selection in exposure vs. selection in population composition
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study population, for example by selecting individuals in
or out from the population eligible for the exposure (e.g.
only survivors until a certain age will be able to retire).
It may also select individuals in or out from the popula-
tion at risk during exposure (e.g. elevated preterm mor-
tality in a drug addict population filters the population
at risk of diseases typically occurring at older ages). As a
result of this selection mechanism, there will be differ-
ences in the composition of subpopulations that are se-
lected and filtered out, for example non-random
differences between eligible and non-eligible or between
those who remain at risk and those who do not. Selec-
tion in population composition is depicted in Fig. 2b,

where the directed selection mechanism C0→ here

means that C-positivity (C0 = 1) will be more common
those who remain in the population at risk (S1 = 1) than
among those who do not (S1 = 0). At the population
level, the boxed S represents what we refer to as condi-
tioning by nature, which means that any causal action in
this system downstream from this time window will only
act on the selected population (S1 = 1). As with unifac-
torial selection in exposure, the change of the population
composition with respect to C may compromise extern
validity if the magnitude of the exposure effect depends
on C [10].

Selection in exposure (multifactorial case)
Exposures are in reality often caused by several under-
lying selection mechanisms, either acting independently
or in concert. Importantly, the origin of some these se-
lections may be unknown. A selection process with two
independent, directed selections into a common effect E
is depicted in Fig. 2c, one originating from a known
source C and one from an unknown source U. This

combined selection process will generally induce associ-
ations between C and U within strata of E that are differ-
ent from those of the underlying population. As an
example, suppose heavy alcohol consumption (E) is
caused by low socioeconomic status (C) but also by a
genetically determined tolerance for alcohol that allows
escalation of drinking, here assumed to be unknown (U).
The induced inverse association within strata of alcohol
consumption will imply that individuals with low socio-
economic status will have a worse tolerance on average
than individuals with high socioeconomic status within
the same stratum. Confounding bias in the estimated ef-
fect of E on a disease outcome D may occur also after
adjustment for C, if the unknown exposure cause U is a
direct or indirect cause of D [8]. Bias may occur even if
U is only causing D in interaction with C. A hypothetical
example is presented in Table 1, where the relative risk
(RR) of E on D is constant (2.0) across strata of C and U.
If the effect of C on D depends on U, then the causal ef-
fect of E can only be correctly identified in individuals
where C is absent (so called partial exchangeability [26]).
Bias will occur in analyses adjusted for C since exposed
and unexposed individuals with the same level of C dif-
fer in U. Stratification on C may for this reason lead to
false conclusions regarding the heterogeneity in the ex-
posure effect.

Selection in population composition (multifactorial case)
Multifactorial selection processes also frequently operate
on the population composition. An example is depicted
in Fig. 2d, where the composition of an index population
S (for example all cases of a certain disease) has an ex-
posure E as a known origin but also an unknown origin
U. Any subsequent causal action on disease progression
can only be observed among people with the disease

Fig. 2 Fundamental selection mechanisms occurring at exposure entry at the population-level, illustrated by causal diagrams with subscripts of
the nodes indicating time. a. Unifactorial selection in exposure (E1) b. Unifactorial selection in population composition (boxed S1) c. Multifactorial
selection in exposure (E1) d. Multifactorial selection in population composition (boxed S1, induced inverse association is marked with a
dashed line)
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(S = 1), which in the causal diagram is represented by .

Such conditioning by nature on an index event necessary
for entering the diseased population creates associations
between the underlying determinants E and U that differ
among people with and without the disease. This can
lead to a bias commonly referred to as index event bias,
or more generally collider stratification bias (or simply

collider bias) in studies where the collider (i.e. the

event where the two directed selection mechanisms col-
lide) constitutes the study population [16, 22]. As an ex-
ample, smoking is a well-established risk factor for the
development of rheumatoid arthritis (RA) [16]. Never-
theless, null or even inverse associations between smok-
ing and disease progression among patients with RA
have been observed. The antiinflammatory role of nico-
tine has been put forward as a possible explanation of
the lower systemic inflammation and structural disease
progression in current smokers with RA [27]. However,
collider bias stemming from a selection mechanism of
the type depicted in Fig. 2d is a compelling alternative
explanation, as the necessary conditioning on the index
event S (incident RA) induces spurious inverse associa-
tions between the exposure E (smoking) and other risk

factors U that may also cause disease progression [16].
Another example of such paradoxical results that could
be explained by collider bias is the apparent protective
effect of obesity on mortality among end-stage renal dis-
ease patients [28].

Timing of the selection – at exposure entry, during
exposure or post-outcome
Figure 2a-d all represent selection mechanisms occur-
ring at exposure entry, prior to any exposure or treat-
ment effect in the downstream population. At the study-
level, selection occurring at exposure entry corresponds
to non-random sample selection at study entry in sur-
veys and baseline selection before follow-up starts in co-
hort studies [6, 29]. Selection may also act during
exposure (Fig. 3a-d), and affect continuation and termin-
ation of exposure or follow-up. Selection during expos-
ure would for example occur if individuals less
susceptible to side effects are more prone to stay ex-
posed or continue with a treatment (see additional ex-
ample in next section). Similarly, selection post-outcome
would occur if subclinical symptoms lead to loss to
follow-up in a study, or if a disease outcome lead to
changes in exposure. The latter would be an example of
reversed causality, meaning that the outcome causes ex-
posure changes rather than the opposite (Fig. 4a). This
situation would lead to bias unless data allow separation
of the timing of the outcome events and exposure
changes. Selection post-outcome would also lead to bias if
the composition of the general, source or study population
is dependent both on disease outcome and exposure (Fig.
4b). A particular example is selective participation and
nonresponse bias in studies conditioning on variables af-
fected by the outcome and exposure [2].

Selection processes at the population-level – additional
examples
We now illustrate how the proposed framework with
three dimensions (selection level, type of mechanism
and timing of the selection) can be used to classify selec-
tion processes commonly described in the epidemio-
logical literature (Table 2). In this section we focus on
population selection, whereas next section covers study-
specific selection processes.

Selection in exposure – at exposure entry, during exposure
or post-outcome
Self-selection into a screening program for breast-cancer
implemented in the general population may result in im-
portant differences between exposed (i.e. those attending
the screening) and unexposed women (those who do not
attend), including social, demographic, and health fac-
tors that can independently influence outcomes [30].
Self-selection at the population-level (Table 2, cell 1.1.1)

Table 1 Data from a hypothetical cohort study with
multifactorial selection in exposure (E) originating from C
(known source) and U (unknown source; Fig. 2C). The relative
effect of E on the disease outcome D is constant across strata of
C and U (RRED = 2.0). U influences the effect of C on D (RRCD =
1.5 when U = 0 but 4.0 when U = 1). Lack of adjustment for U
therefore leads to bias in the estimated exposure effect also
when C is adjusted for. Stratification for C may lead to false
conclusions regarding the heterogeneity in the exposure effect

U C E D = 1, n D = 0, n Risk RRED
1 RRCD

2

0 0 E = 1 20 80 20%

E = 0 90 810 10% 2.0

1 E = 1 90 210 30% 1.5

E = 0 105 595 15% 2.0 1.5

1 0 E = 1 40 160 20%

E = 0 80 720 10% 2.0

1 E = 1 400 100 80% 4.0

E = 0 200 300 40% 2.0 4.0

Totals E = 1 550 550 50%

E = 0 475 2425 16% 2.32

0 E = 1 60 240 20%

E = 0 170 1530 10% 2.0

1 E = 1 490 310 61%

E = 0 305 895 25% 2.41
1 Relative risk among exposed (E = 1) vs. unexposed (E = 0) across strata of C
and U, overall and across strata of C
2 Relative risk among C-positive (C = 1) vs. C-negative (C = 0) across strata of E
and U
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has several context-specific synonyms such as confound-
ing by indication in clinical research, which occurs when
the clinical indication for selecting a particular treatment
(for example severity of the illness) also affects the out-
come [31], and the abovementioned healthy worker hire
effect in occupational epidemiology [21].
Selection in exposure at the population-level may also

occur during exposure (Table 2, cell 1.1.2), even when
exposure initiation was not subject to selection. As an
example, there was no apparent socioeconomic gradient
(C) in the propensity to start smoking (E0) among young
adults in the 1950’s [32]. However, the propensity to
continue smoking (represented by E1 in Fig. 3a) despite
growing evidence of serious health hazards exhibited a
clear inverse socioeconomic gradient [33]. The selection
from exposure initiation to exposure continuation can
be mediated by a side effect or an adverse event caused
by the exposure. This situation would for example occur
if initial smokers (E0 = 1 in Fig. 3b) who experience bad

cough (A1 = 1) are more likely to quit smoking than
others. Because of this selection, continuing smokers
(E2 = 1) would then have experienced bad cough to a
lesser degree than those who have given up smoking
(E2 = 0). Healthy worker survivor effect is a similar selec-
tion process, which implies that employees who can tol-
erate the physical or psychosocial working conditions
are more prone to stay in the workplace and thereby re-
main occupationally exposed [21].
Selection may also cause changes in exposure post-

outcome (Table 2, cell 1.1.3), for example if a certain ex-
posure may relieve subclinical symptoms. As an example,
it has been suggested that smoking in schizophrenia may
begin in the prodromal phase of the disorder [34].

Selection in population composition – at exposure entry,
during exposure or post-outcome
As already discussed in relation to Fig. 2d, selection in
population composition occurring prior to exposure

Fig. 3 Selection during exposure at the population-level, illustrated by causal diagrams with subscripts of the nodes indicating time. a. A known
determinant (C0) does not influence exposure initiation (E0) but exposure continuation (E1) b. E0 causes a side effect (A1) that influences E2. c. E0
and an unknown determinant (U0) cause an index or competing event (boxed S1) that precludes the disease outcome (D2) d. E0 and U0 cause an
early disease event (boxed D1) that leads to depletion of susceptibles that precludes later disease events (D2) to occur. Induced inverse
associations are marked with dashed lines

Fig. 4 Selection post-outcome at the population-level, illustrated by causal diagrams with subscripts of the nodes indicating time. a. Selection in
exposure (E1) caused by disease outcome (D0) b. Selection in population composition (boxed S1) caused by disease outcome (D0) and exposure
(E0). Induced inverse associations are marked with dashed lines
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entry often implies that an index event (for example
obtaining a certain age, becoming unemployed or falling
ill [22]) must have occurred in order to make an individ-
ual eligible for the exposure (Table 2, cell 1.2.1). Self-
selection may also affect population composition, for ex-
ample if people motivated to exercise and eat well
choose to live in neighborhoods that support this life-
style [35]. Changes in population composition may also
occur during exposure (Table 2, cell 1.2.2). Figure 3c
represents a situation where an exposure E causes an ad-
verse event S (with death as an extreme example) that
precludes continued stay in the population at risk with
respect to the disease outcome of interest D. Such mutu-
ally exclusive outcomes are commonly referred to as
competing event (competing risk) [15]. Continued causal
actions beyond a certain time window can only occur if
the adverse event has not occurred until then. This im-
plies that the exposure in the population at risk will
gradually become more and more inversely related to
other determinants of the adverse event (represented by
U in Fig. 3c). As an example, suppose we want to study
the effect of sedentary lifestyle (E) on the risk for de-
mentia (Y) at older ages. Thus, people will have to have
survived to older ages in order to become part of the ex-
posed population at risk. This necessary conditioning on
survival (S = 1) implies that surviving individuals with
sedentary lifestyle can be expected to have a more favor-
able risk profile with respect to other determinants (U)
of survival than surviving individuals with a physically
active lifestyle. Biased effect estimates would be obtained
if these determinants are also related to the risk of de-
mentia and are not accounted for.
Depletion of susceptibles, which is depicted in Fig.

3d, is a selection process that is similar to the com-
peting event situation (Fig. 3c), in that the continued
exposure E causes selection gradually in population

composition (Table 2, cell 1.2.2). However, here the
outcome at a later time point (represented by D2 in
Fig. 3d) does not get competition from other out-
comes but from the same outcome at earlier time
points (D1). Thus early events in the outcome of
interest caused by the exposure may lead to depletion
of susceptibles in the population over time [24]. As
an example, an effect of smoking on a particular dis-
ease outcome may seemingly decrease over time, or
even change direction, as early disease events “eat” of
the causal components required for the disease to
manifest at older ages. It has been suggested that the
hazardous effect of smoking on mortality may dis-
appear for ages 85 and above [36]. However, an alter-
native explanation is that the harmful effect of
smoking is disguised by depletion of susceptibles, i.e.
smokers among the oldest are likely to be a more se-
lected group of survivors than non-smokers at the
same age with respect to other determinants of sur-
vival. Bias will occur in the estimated smoking effect
unless susceptibility can be measured and accounted
for.
Selection processes may also alter the composition of

the population post-outcome (Table 2, cell 1.2.3). A well-
known example is Berkson’s fallacy, where the population
of patients who come to the hospital is structurally differ-
ent from patients with the same disease who for various
reasons do not come [18]. The selected population may be
dissimilar from the unselected population with respect to
a single determinant of the selection, but also with respect
to associations between different determinants (Fig. 4b
with S as selected population). Post-outcome selection of
the Berkson type may for example affect validity in studies
of malformations in live births [37], as malformations
often increase the risk of miscarriages and these are often
impossible to observe.

Table 2 Commonly described selection processes at the population-level in the epidemiological literature classified according to
the proposed framework

Level Type of mechanism Timing of the selection

At exposure entry During exposure Post-outcome

(1) Population- level (1.1) Selection in exposure (1.1.1) Self-selection
Confounding by indication
Healthy worker hire effect

(1.1.2) Side effects causing
exposure changes
Healthy worker survivor effect

(1.1.3) Subclinical symptoms
causing exposure changes

(1.2) Selection in population
composition

(1.2.1) Index event
Self-selection

(1.2.2) Competing event
Depletion of susceptibles

(1.2.3) Berkson’s fallacy

At study entry During follow-up Post-outcome

(2) Study-specific (2.1) Selection in exposure (2.1.1) Self-selection (2.1.2) Non-compliance1 (2.1.3) Non-compliance1

(2.2) Selection in population
composition

(2.2.1)
Restriction of source population
Study base definition
Self-selection
Healthy volunteer effect

(2.2.2) Loss to follow-up (2.2.3) Loss to follow-up
Selective participation in
a case-control study

1Non-compliance with treatment (exposure) administration specified in the study protocol
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Study-specific selection processes – additional examples
Selection in exposure – at study entry, during follow-up, or
post-outcome
Study-specific selection in exposure may occur at study
entry in studies of medical or social interventions, where
exposure or treatment is not randomized but assigned
by the investigator or chosen by the study person (e.g. as
a prerequisite for participation). Such self-selection
(Table 2, cell 2.1.1) may lead to bias, and can also occur
post-randomization in randomized studies, in particular
in trials where treatment assignment cannot be blinded
and participants are free to refuse treatment [25]. Non-
compliance with the treatment protocol caused by side
effects (during follow-up; Table 2, cell 2.1.2) or by sub-
clinical symptoms (post outcome; Table 2, cell 2.1.3)
may also affect the validity of interventional studies.

Selection in population composition – at study entry,
during follow-up or post-outcome
Selection in population composition at study entry may
either be ‘intentional’ or ‘unintentional’ from the re-
searcher’s perspective [6]. Intentional selection occurs
based on criteria established by the researcher, for ex-
ample when restricting the source population for a co-
hort study or defining the study base for a case-control
study (Table 2, cell 2.2.1). Intentional selection may have
consequences on validity. As an example, randomized
clinical trials and observational cohort studies on effects
of hormone-replacement therapy on coronary heart dis-
ease have yielded conflicting results. A major reason for
the differences was the inappropriate definition of the
source population in several of the cohort studies [19].
Long-term current users of estrogen/progestin were in-
cluded at baseline, which led to selection of individ-
uals less susceptible to adverse effects and with biased
treatment effects as a consequence. Unintentional self-
selection affecting population composition at study
entry occurs when there are differences between the
source population (those who are eligible to participate)
and the study population (those who actually participate).
A particular example is the healthy volunteer effect (i.e. par-
ticipants being more healthy than non-participants [15]),
which may hamper the possibilities to generalize results be-
yond the study sample. Both intentional and unintentional
baseline selection (at study entry) may in cohort studies
lead to collider bias of the type depicted in Fig. 3c, for ex-
ample if study participation (S) is caused both by the expos-
ure (E) of interest and another outcome risk factor (U) [6].
Loss to follow-up in cohort studies before or after out-

come has occurred (Table 2, cells 2.2.2 and 2.2.3) can be
critical if outcome ascertainment is dependent on
continued study participation (for example by an add-
itional visit to the study center) [38], but is generally
of less concern if outcomes are ascertained by health

care registers [39]. Selection occurring post-outcome
is of particular concern in case-control studies if en-
rolment is done retrospectively after ascertainment of
case/control-status [40].

Discussion
The important distinction between population and study
selection is presently lacking in most working definitions
of selection bias. Early work by Kleinbaum et al. used
the term selection bias to denote a distortion in the esti-
mate of effect resulting from the manner in which sub-
jects are selected into the study population [3]. Similarly,
Delgado-Rodriguez & Llorca defined selection bias as
the error introduced when the study population does
not represent the target population [15]. However, these
restrictive definitions to a large extent exclude selection
occurring at the population level, which may therefore
fly under the radar in the mind of applied researchers
when interpreting their results. Furthermore, in the
commonly used working definition of confounding (con-
fusion of effects [41]), the reason why exposed and unex-
posed individuals differ with respect to a third variable is
not specified. Knowledge about underlying selection
processes are essential for the choice of adequate study
design, appropriate statistical methods and correct ana-
lytical decisions [9]. We therefore find it inappropriate
to have restrictive or unspecific definitions of central val-
idity concepts in epidemiology that do not naturally lead
investigators to think carefully about potential reasons
why the populations of exposed and unexposed individ-
uals may lack comparability, either already at study entry
or evolving gradually during follow-up.
Our proposed framework in three main dimensions

may bridge some of the gaps between previous work on
selection in different scientific disciplines that have ei-
ther viewed selection as a phenomenon that occurs prior
to exposure [14, 42], or as a phenomenon that occurs
downstream the exposure from selecting on a collider
[8, 13]. The Cochrane handbook for systematic reviews
of interventions defines selection bias in clinical observa-
tional studies as “systematic differences between baseline
characteristics of the groups that arise from self-
selection of treatments, physician-directed selection of
treatments, or association of treatment assignments with
demographic, clinical, or social characteristics” [42].
Self-selection is thus a keyword for this definition, i.e.
the selection occurs at exposure or treatment entry. The
baseline characteristics for which the differences are ob-
served are not necessarily the true underlying factors re-
sponsible for the selection, but are likely to be associated
with them. A related issue is therefore to what extent
the resulting selection effects can be accounted for by
the observed differences in baseline characteristics.
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Selection into social programs was the specific selec-
tion mechanism considered in a seminal paper by Heck-
man et al. [14]. The authors made a decomposition of
the resulting selection effect into three components: 1)
systematic differences in covariate patterns among
treated and untreated, 2) lack of sufficient support (over-
lap) for certain covariate patterns, 3) selection bias, pre-
cisely defined. With this decomposition, confounding in
the sense that the treatment effect is confused with that
of the observed covariates would be due to differences
and lack of support in covariate pattern (component 1
and 2), whereas any differences not attributable to the
observed covariates would be the remaining selection ef-
fect (component 3).
Hernan et al. [8] have proposed a now widespread dis-

tinction between confounding and selection bias based
on causal diagrams: confounding occurs when there
exist common causes of exposure and outcome, while
selection bias results from conditioning on common ef-
fects of exposure and outcome. The underlying mechan-
ism in the Hernan selection (also denoted endogenous
selection bias in subsequent work [2]) is different from
the selection bias defined by Heckman [14], where selec-
tion is into exposure rather than occurring as a conse-
quence of the exposure. In our proposed framework, we
argue that selection processes are ubiquitous, i.e. present
in all the arrows of a causal diagram, and common
causes (confounding), conditioning on common effects
(endogenous selection) and Heckman selection are thus
specific examples of selection processes that can be
characterized by our proposed framework.
Consistent with the third dimension of our proposed

framework, Elwert et al. [2] characterize the endogenous
selection of the Hernan type further depending on the
timing of the conditioning, i.e. selection acting on pre-
treatment, post-treatment, outcome or post-outcome
variables. Our framework allows for distinction between
selection processes and the potential consequences of
selection, which are closely linked to the context and
study objectives. As an example, suppose there is a selec-
tion process affecting a particular population at risk at
exposure entry in a unifactorial manner (for example re-
lated only to current health status represented by C0 in
Fig. 2b). An investigator whose main interest is to report
a valid estimate of the relative exposure effect may be
less concerned about this selection than another investi-
gator whose objective is to report risk differences (or
number needed to harm), assess the etiologic fraction, or
generalize the findings to the unselected population.
Some study limitations should be noted. Our study was

not based on a systematic review of the literature and may
thus not have detected all relevant aspects of selection in
observational research. Two additional aspects, uni- vs.
multifactorial selection [10, 21] and intentional vs.

unintentional selection [6], were identified and described
but not included as separate dimensions in the proposed
framework. Another limitation was that reviewing different
analytical approaches to correct for selection effects was
outside the scope of the study. The effects of selection can
be adjusted for using various methods depending on the re-
search question, underlying selection mechanisms and
causal structures [1, 8, 11, 43]. Only a few notes are made
here. Firstly, the reason why general study participation
predictors (such as age and sex) should be accounted for in
the analysis can be baseline collider bias (selection in popu-
lation composition at study entry) rather than classical con-
founding (selection in exposure) [6]. Secondly, inverse
probability weighting (IPW) is a preferable method to
standard regression adjustment for factors causing selection
in order to reduce bias from self-selection at exposure or
study entry and from loss to follow-up [11]. The reason for
this is that regression adjustment may for some causal
structures open up new backdoor paths from exposure to
outcome by conditioning on other colliders [8]. Thirdly,
handling threats to external validity due to selection typic-
ally requires auxiliary data from non-participants, or a ran-
dom sample of the target population, and that IPW
methods are applied [1]. Using auxiliary data is an attractive
approach to correct for selection effects in for example the
Nordic countries, where individual-level data from popula-
tion and health care registers can be linked to cohort mem-
bers and target population members through personal
identification numbers [39, 43].

Conclusions
Based on a literature review, we have proposed a frame-
work for classification of selection processes as occurring
either at the population or study level. We further distin-
guished between selection processes that cause changes in
exposure and selection processes that cause changes in
population composition. We additionally organized the se-
lection processes with respect to the timing relative the
exposure and the outcome. Our proposed framework can
be used to identify and classify selection processes that
may lead to lack of comparability of exposed and unex-
posed populations or decrease study validity in other ways,
either already at exposure initiation or gradually evolving
during exposure. We expect the use of this framework to
increase awareness among applied researchers of how se-
lection processes may influence, or even jeopardize, valid-
ity of epidemiological research.
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