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Abstract

Background: Stratification analyses have been widely utilized in molecular association meta-analyses to estimate
the interaction between genetic and environmental factors or to control for the confounding variables linked to a
disease. Two calculation methods utilized in practical research, which are known as the variants of factorial
stratification analysis and confounder-controlling stratification analysis in our nomenclature, have been applied in
previous studies, but none of which have presented a methodology and application for these analyses.

Methods: In this paper, these two approaches are integrated and further developed into a standard procedure for
stratification analysis. We first propose the advanced statistical methodology and theoretical algorithm of these
three types of stratification analysis and then provide two example applications in meta-analyses of molecular
association to illustrate the computing processes and interpretation of the results.

Results: The standard stratification analysis synthesizes the advantages of the first two practical methods, including
identifying and controlling confounding moderators or revealing and calculating gene-environment interactions, to
efficiently classify the real influence of various investigated factors on a disease in the general population.
Additional challenges concerning this method and their potential solutions are also discussed, such as the
approach to utilizing only the partially stratified data available in meta-research practice.

Conclusions: The standard stratification method will be extensively applicable to rapidly expanding future research
on the complex relationships among genetics, environment, disease, and other variables.
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Background

In molecular association meta-analysis, stratification
analysis (also called stratified analysis [1] or risk-
stratification analysis [2]) is frequently utilized to com-
pare the size of the effects of a genetic or epigenetic fac-
tor among the studied population with variants of a
characteristic, to control this confounder in clarifying
the real effects of the genetic factor, or to reveal the
interaction or effect modification occurring between the
genetic susceptibility and another exposure. The term
“stratification” denotes that an overall study population
is separated into several strata based on characteristics
(e.g., smoking status [3] or drug intake status [4]) that
may have an influence on the clinical indexes (e.g., a di-
chotomous disease outcome, such as the development of
cancer or not) (shown in Fig. 1). Stratified data are gen-
erally classified as in Table 1.

Although stratification analysis is powerful in solving
heterogeneity problems and occasionally provides accur-
ate or reasonable estimations and has been widely ap-
plied in meta-analyses of observational or experimental
studies of inheritance or clinical intervention [2—10], we
noted three methodological deficiencies of its application
in previous molecular association meta-analyses:

(a) Confusion of effect model selection to synthesize
original data in a meta-analytic stratification ana-
lysis. Our previous study pointed out that, in some
meta-analyses, stratified data from various studies
were merely added together as in a primary case-
control study and were pooled for a crude size of
effect without considering the heterogeneity across
each independent study [2, 5, 6]. On the other
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hand, for synthesizing data across strata within ori-
ginal studies, the data from different strata are
sometimes pooled using a fixed-effect model [11,
12] or a random-effects model [13, 14].

(b) Failure to control confounding factors and to reveal
a true effect of inheritance among the studied
population. Numerous previously reported meta-
analyses have detected the effect of genetic variants
among subpopulations with a particular characteris-
tic rather than the overall study population with a
larger sample size [4, 7—10].

(c) A lack of homogeneity testing across strata and
quantified estimation of interaction. The interacting
relationships were reported only through the
observed differences in effect sizes across strata,
which may result in an unconvincing conclusion of
interaction estimation due to the confounding
factors or low statistical power in some stratum [3,
8, 10].

For instance, in a meta-analysis reported by Meng F
et al. [6], the nonsmoking population of two inde-
pendent studies with 40 renal cell carcinoma (RCC)
patients with 70 controls and 35 RCC patients with
135 controls was added to the anther independent
size of 75 nonsmoking RCC patients and 205 non-
smoking controls [6] (Table 2). Then, these cases and
controls were applied for the computation of the
summary odds ratios (ORs) without considering their
differences in origins. Second, in a meta-analysis by
Nagao M et al. [4], the researchers calculated four
pooled ORs for estimation (Table 3) and concluded
that nonsteroidal anti-inflammatory drug (NSAID) use
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Fig. 1 Schematic of the stratification in meta-analyses
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Table 1 Sorting table for stratified data in molecular association meta-analysis of case-control studies
No. of Genetic Stratum; Stratum, Stratumy,
studies susceptibility Cases Controls Cases Controls Cases Controls
1 + an b ar by ag biq

- (o} dp Ci2 dio Cig qu
2 + ar [op an b5, axq boq

- Co1 ds, Cn d2 Coq qu
k + ak1 bk1 k2 bkz . dkq bkq

- Ck dii Ck2 dio Ckq qu
was associated with a decreasing cancer risk among Methods
both  peroxisome  proliferator-activated receptor Effect model selection in a meta-analytic stratification
gamma (PPARy) rs1801282 CC carriers (P=0) and analysis

CG+ GG carriers (P=0.006), whereas the PPARy
rs1801282 polymorphism (CG + GG vs CC) had little
influence on developing cancer among non-NSAID
users (P =0.865) or NSAID users (P=0.658) [4]. Al-
though this approach enabled confounder control
within a stratum, the effect of either the PPARy
rs1801282 polymorphism or NSAID intake failed to
be revealed at an overall study population level. On
the other hand, He W et al. [3] investigated the asso-
ciation between the murine double minute 2 (MDM?2)
rs2279744 T/G polymorphism and the risk of lung
cancer by smoking status (Table 4) and showed that
the MDM?2 1s2279744 polymorphism increases the
risk of lung cancer among nonsmokers (TG vs. TT:
P=0.008; GG vs. TT: P<0.001; GG+ TG vs. TT: P=
0.001) but not among smokers (TG vs. TT: P =0.896;
GG vs. TT: P=0.353; GG+ TG vs. TT: P=0.607),
without considering the confounding caused by the
stronger effect of tobacco smoking and applying a
quantitative test to this observed “interaction”.

To solve the issues described above, we discuss the
logic of effect model selection in a stratification analysis
and then provide systematic descriptions of the method-
ology, application and interpretation of three calculation
methods for performing stratification analyses in a meta-
analysis of molecular association, herein referred to as
factorial stratification analysis, confounder-controlling
stratification analysis and standard stratification ana-
lysis, on the basis of the original methods [2—4, 6-10]
and complementary analyses conducted by us [5].

The selection of the effect model is a matter of cardinal
significance in a meta-analysis. Besides directly affecting
the computing process, the model also serves the pur-
pose to analysis and the interpretation of statistical re-
sults [15]. The pooled effect M is calculated as the
weighted average of each included study effect size:

_ Zf:l W.Y; (1)
==l
Zi:l Wi
and the variance of the pooled effect is computed as:
1
Vm=—=—— (2)
Zi:l Wi

where W, is the weighting factor of study i and Y; is the
effect size for study i. Generally, two widely applied stat-
istical models exist in meta-analysis: the fixed-effect
model (FM) and the random-effects model (RM) [16]. In
the FM, the weight of each part can be described as
follows:

Wi= v, (3)

where V; is the variance of the mean for study i. Under
the FM, we suppose that only one true effect size
is shared by all included studies and that sampling errors
lead to all observed variances in the analysis. In contrast,
the weight assigned to each study in the RM is:

Table 2 Meta-analysis of the association of the CYPTAT Mspl polymorphism and smoking with the risk of renal cell carcinoma

Meta-analysis No.of  CYP1A1 Non-smokers Smokers
studies  Mspl
Cases Controls OR 95%Cl P Cases Controls OR  95%Cl P
Meng F et al, 2015 [6] 2 Wt/Wt 75 205 1 (reference) NA 67 128 143 096-2.13 0.08
Wt/Ve+Veve 92 119 211 144-309 <0001 90 73 337 224-506 <0001

Note: OR odds ratio, C/ confidence interval, NA not available, CYP1A1 cytochrome P450 1A1
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Table 3 Meta-analysis of the association of the PPARy rs1801282 polymorphism and NSAID use with the risk of cancer
Meta-analysis No. of  Genetic Non-NSAID users NSAID users
studies  comparison 5 T el OR Pon P, Model OR 95%Cl Pon
Nagao M et al, 6 cC NA 1 (reference) NA NA 1 (reference) NA
2014 CG + GG 0865 F 0.932 0.830-1.046 0865 0034 R 0.942 0.724-1.226 0.658
cc CG+GG

Non-NSAID NA 1 (reference) NA NA 1 (reference) NA

user

NSAID user 0942 F 0.743 0673-0820 0 0065 F 0.786 0.663-0.932 0.006

Note: OR odds ratio, CI confidence interval; F fixed-effect model; NA not available, NSAID nonsteroidal anti-inflammatory drug, PPARy peroxisome proliferator-

activated receptor gamma

1
V4 T?

i (4)
where V; and T are the estimated within-study variance
and between-study variance, respectively. In the RM, we
allow the true effect sizes to differ from study to study.
The study previously conducted by us showed that suit-
ably employing effect models could effectively resolve
some abnormal phenomena occurring during a stratifi-
cation analysis [5]. In a meta-analytic stratification ana-
lysis, two aspects should be taken into consideration
during the effect model selection: (a) which effect model
is appropriate for computing the effect within each
stratum and (b) which effect model is appropriate for
pooling the summary effects across strata. These two is-
sues will be addressed separately as follows.

(I) Within strata: The criterion for the selection of an
appropriate effect model in this step is the same as
it was for the simple mate-analysis, except that the
unit of analysis is a “substudy” (study included in a
stratum) rather than a “study”. As generally recog-
nized, FM or RM is selected according to the

results of the test of homogeneity [17]. When the P
value of the homogeneity test is more than 0.05
(sometimes 0.10 is defined as the test level for its
low statistical power) or the I* statistic of the x*-
based Q test is less than 50% [16], the multiple in-
cluded substudies will be considered as having
homogeneity, sharing a common effect across stud-
ies; then, an FM will be selected to synthesize the
ORs. Otherwise, when the heterogeneity of varia-
tions was observed at a significant level, revealing
that the true effects are different from one study to
another, an RM will be chosen to estimate the
mean effect of all included substudies.

(IT) Across strata: After the effect sizes within strata are

determined, we can proceed to compare these effect
sizes and/or combine them to determine an overall
estimate. For this purpose, we select an FM to
complete this work. The reasons are as follows: (a)
A test of homogeneity is conducted to examine the
variation across strata, and the overall estimate will
not be performed until this test shows no
significant variation across strata, which also
suggests no effect modification or interaction

Table 4 Meta-analysis of the MDM2 rs2279744 polymorphism in lung cancer by smoking status

Meta-analysis No. of Sources — Genetic Non-smokers Smokers
studies of results comparison P Model OR P 2 Model OR  95%C P
He W et al, 5 A TGvs. TT 2860% F 1275 1.066-1.526 0008  7240% R 1015 0816-1.262 0.896
201231 GGvs. TT 0.00% F 1583 1.257-1.99%4 <0001 84.00% R 1201 0816-1.768 0.353
GG+ TGvs. TT 4050% F 1334 1.125-1.581 0.001 832%° R 1.072 0.823-1.3%4 0.607
Non-smokers Smokers
P Model OR r Model OR  95%Cl
B TGvs. TT - 1271 1.063-1.521 - 1.013 0.846-1.212
GGvs. TT - 1.521 1.214-1.905 1.200 0.886-1.625
GG+ TGvs. TT 4050% F 1328 1.119-1.575 - NA NA

Note: OR odds ratio, C/ confidence interval, F fixed-effect model, NA not available A: statistical results calculated by us using STATA 14.0; B: statistical results

calculated by original authors using METAGEN; MDM2 murine double minute-2
@ complementally calculated by us
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between the investigated factor and stratified
variable [18, 19]. (b) The FM assumes that these
multiple strata share a common true effect size and
that the number of strata is finite and known, while
the RM assumes that effect sizes vary by variants of
characteristics across stratum and that the number
of strata is infinite [18]. When we are working
across strata, the assumption of the FM rather than
the RM meets the results of the homogeneity test
and serves our purpose.

In summary, when performing a meta-analytic stratifi-
cation analysis, we recommend selecting the effect
model of FM or RM based on a homogeneity test within
stratum and employing the FM for estimation across
strata.

Factorial stratification analysis

The first type of stratification analysis we addressed here
is a “factorial stratification analysis”, referring to one of
the subtypes of stratification analysis in the previous
meta-studies [2, 6, 20]. In this method, the effect sizes
are calculated at different exposure levels to obtain a pri-
mary understanding of the roles of the investigated gen-
etic factors, third-party variables and both on the risk of
diseases. In detail, subjects with no genetic susceptibility
in the unexposed stratum (e.g., nonsmokers carrying
the wild-type allele or genotype) are regarded as a refer-
ence and compared with individuals with genetic suscep-
tibility in the same stratum (e.g, nonsmokers
carrying the mutant-type allele or genotype), subjects
with no genetic susceptibility (e.g., smokers carrying
the wild-type allele or genotype) and susceptible individ-
uals (e.g., smokers carrying the mutant-type allele or
genotype) in the exposed stratum, which can be clearly
understood in Table 5A.

(I) In the three pairwise comparisons mentioned above,
we can compute ORs for all other groups and

Table 5 Factorial stratification analysis and confounder-
controlling stratification analysis

A.

Exposure  Stratum 1 Stratum 2 ICR and ORj¢

- Reference OR,_ ICR = ORy4—0OR;+—0Ry- 41
+ OR,, OR,., ORint = OR24 /(OR1 1 x OR,-)
B.

Exposure  Stratum 1 Stratum 2 Combined OR

- Referencel Reference2  OR, = %W

+ OR, OR;

Note: OR odds ratio, ICR interaction contrast ratio
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evaluate between-study heterogeneity according to
Cochran’s xz-based Q and P statistic tests [16].

(II) Appropriate meta-analysis models are selected to
compute the pooled ORs, including OR,_, OR;, and
OR,,) with corresponding 95% confidence intervals
(ClIs) for different comparisons based on a heterogen-
eity test. As mentioned above, the selection of the ef-
fect model within stratum should be based on the
results of the test of homogeneity [17]. Here, if I <
50%, the FM (the Mantel-Haenszel (M-H) method)
[1] is applied. Otherwise, we will select the RM (the
Der Simonian-Laird (D-L) method) [21].

(IINOn the basis of the above steps and referring to
the methodology on a single-study level [22], we
can suggest additionally calculating another two
effect sizes for the comprehensive estimation of
whether an interacting relationship exists be-
tween the investigated genetic factor and strati-
fied moderator and further quantifying the
strength of this interaction at a meta-analytic
level. The interaction contrast ratio (ICR) [23]
with a 95% CI obtained by the delta method [24]
was computed for the additive scale:

ICR = ORy—OR . —OR,_ + 1 (5)

and the OR;,; with a 95% CI was computed for the
multiplicative scale [22]:

OR;,; = __ ORy (6)
OR1+ X ORQ_
where OR;,, OR,_, and OR,, are the effect sizes calcu-
lated in Step (II). The ICR (or OR;,,) reveals the relative
strength of the observed effect compared to the theoret-
ically superposed effect of the two factors at a meta-
analytic level by an additive model (or the multiplicative
model). When two factors share homogenous effects on
outcome, the larger or smaller the ICR deviating from 0
is (or ORy,, deviating from 1), the stronger the interact-
ing effect between the investigated factor and stratified
moderator is. Instead, when their effects are opposite,
ICR>0 (or ORy, >1) suggests that the interaction in-
creases the risk of developing disease, while ICR <0 (or
ORyy < 1) suggests that the interacting effect plays a pro-
tective role in disorder. Ideally, the ICR (or ORy,) should
be 0 (or 1) if the protective and destructive effects, re-
spectively, from these two factors can be neutralized. Not-
ably, this step is usually not included in the former
practical method [2, 5, 6, 20] to perform this kind of strati-
fication analysis, as reported in previous studies.
As shown in Table 5A, the role of each factor is inde-
pendently assessed for both individual and joint effects
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on the risk of disease, and in addition, the ORs can be
examined in terms of departure from specified models
of independence (the additive model or the multiplica-
tive model) [25], so we call this stratification analysis a
“factorial” method.

Confounder-controlling stratification analysis

In a primary case-control study, another classical subtype
of stratification analysis was used to control confounding
factors and reveal the real relationship of genetic suscepti-
bility with disease by computing the effect sizes within the
stratum using an M-H or inverse-variance (I-V) approach
used to combine them [1]. In published meta-analyses of
genetic associations at a population level, an analogous
subtype of stratification analysis was also generally per-
formed to process stratified data [3—5, 7-9], in which the
ORs are pooled within the same stratum but not com-
bined across strata. The advanced subtype can be visually
understood, as shown in Table 5B.

() Pooling the stratified data of each included study
within every stratum with the FM (the M-H
method) or the RM (the D-L method) based on the
P statistic of the heterogeneity test. The algorithms
of this substep are the same as those in Step (1) and
Step (II) in the factorial stratification analysis and in
the simple meta-analysis.

(II) Checking heterogeneity across strata. The x*-based
Q test is conducted to estimate the variation
between the ORs with 95% Cls across strata.
Further analysis of these strata will depend on
whether the variation across strata is significant.

(LID)If variation across strata does not show any statistical
significance (the P value of * statistic is greater than
0.10), indicating that the true effects of investigated
factors across strata are identical, then the FM (the I-
V method) is utilized to combine the effect sizes with
the upper and lower Cls in each stratum:

> (Wi x OR;)
S Wi

(7)

ORcombined =

where OR; is the pooled effect size in each stratum and
wry; is the weight assigned to each stratum using the I-V
method. The theory of employing FM is based on three
aspects of the abovementioned assumptions: (a) all strata
share the same true effect; (b) this true effect is a point
value; and (c) the number of strata is defined previously.
These assumptions meet the situation when the test of
homogeneity indicates no significant variation across
strata.
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(IV)The crude OR was computed using the overall
sample size without stratification and then
compared with the adjusted OR via stratification
(ORcombined)- Any inconsistency in statistical
significance between the effect sizes suggests that
the stratified moderator serves as a confounding
factor in the analysis.

(V) If the variation across strata is significant (the P
value of y” statistic is less than or equal to 0.10),
then the true effects of the investigated factors
across strata are different. The stratification
moderator will be considered an interacting or
effect modification factor for the relationship
between the genetic variant and the risk of disease.
Interaction or effect modification is a constant,
natural phenomenon and is not associated with the
design of the study. The RM is not suitable for
combining effect sizes across strata because it
assumes that the number of strata is infinite, which
is contrary to the actual situation.

As mentioned above, the main goal of this step is to
control the confounding variables and reveal the real ef-
fect of the investigated factor; we call this analysis a
“confounder-controlling stratification analysis”. Notably,
four steps (II-VI) are usually not included in the former
practical method [3-5, 7-10] to perform this kind of
stratification analysis, which can also be called a
subgroup-type stratification analysis, as reported in pre-
vious studies.

Standard stratification analysis

As discussed above, the former two subtypes of meta-
analytic stratification analyses have their own advantages
and disadvantages. On one hand, we can use a factorial
stratification analysis to reveal when exposure or con-
founding variables have a multilevel viewpoint, particu-
larly the double effect of two confounding or interacting
factors in an overall study population, to ascertain
whether the investigated genetic factor interacts with the
stratification moderator and to further quantify the
strength of the interacting effect. This method can ef-
fectively solve issue (c) described in the Introduction but
not issue (b). On the other hand, a confounder-
controlling stratification analysis can be used to identify
the confounding or interacting variables via stratification
and further uncover the true effects of genetic suscepti-
bility among the overall study population. This variant
of analysis can effectively resolve issue (b) described in
the Introduction but not issue (c). Thus, a complete
stratification analysis could include the above two
methods to solve both issues. Therefore, we further pro-
vide a “standard stratification analysis” by supplying and
extending the statistical algorithms of our previously
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@ Factorial Stratification Analysis

® Confounder-controlling Stratification Analysis

effect model according to 7 statistics:
OR,, (genetic susceptibility)
OR,. (another exposure)
OR,, (both)

(I) Synthesizing stratified data using appropriate

(IT) Within stratum: estimating effect of
weaker factor using appropriate effect model
according to /° statistics in different strata:
OR, & OR,

!

P<0.10

(VI) Gene-exposure
interaction
(ICR & ORy,,)

Reporting confounding

Difference

(III) Estimating variations across strata

§ P>0.10

(IV) Across strata: synthesizing the effect
sizes using fixed-effect model:

ORCombined
v

(OR,,0R, & OR,.)

Fig. 2 Flow diagram of the process of standard stratification analysis in meta-analyses

(V) ORCombined VS. ORcrude

established analytic approach [5], which can regard both
factorial stratification and confounder-controlling strati-
fication analyses as subtypes. A flow diagram of the
standard stratification process in the meta-analysis is de-
tailed in Fig. 2.

(I) Estimating the effects of genetic susceptibility and
exposure by synthesizing stratified data using an appro-
priate effect model and computing the summary ORs of
interest, OR;,, OR,_ and OR,, (same as Steps (I) to (II)
of a factorial stratification analysis). The algorithms of
this substep are the same as those in the former two
types of stratification analysis.

(II) to (V) A confounder-controlling stratification ana-
lysis is performed to investigate the weaker effect be-
tween the two factors displayed in Step (I) first, and then

the stronger effect is explored (OR;, vs. OR,_). The real
role of the weaker variable is more difficult to determine
under the confounding impact of the stronger factor.
The aim of this analysis is to control the potential con-
founding of the stronger effect and reveal the weaker
effect.

(VI) If the variation across strata is significant (the P
value of the x* statistic is less than or equal to 0.10),
then the true effects of the investigated factors across
strata are different. The stratification moderator will be
considered an interacting factor for the relationship be-
tween the genetic variant and the risk of disease. The
logic of this step is the same as that in the confounder-
controlling stratification analysis. To further quantify the
strength of the interacting effect, ICR and ORy, with

and the [Disease]

Template table. Standard stratification analysis by [Environmental exposure] for association between [Genetic susceptibility]

Genetic Stratum 1 Stratum 2 Test of association and
susceptibility N with/without outcome N with/without outcome heterogeneity (b)
- al bl a2 b2 OR,_ (OR,, ) [95%CI] ~ I
+ cl dl s 2 d2 OR,,[95%CI] ~ I
Test of association o _p o n o 5
and heterogencity ()| ORr+ (OR1w) [95%CI) ~ I OR,,[95%CTI] ~ I OR,.[95%Cl] ~ I

Number of included studies: n

Crude ORs: OR,[95%CI]; OR,[95%CI]

Additive model: ICR = OR,, — ORy, — OR,_ + 1, [95%CI]

Pa

Multiplicative model: OR;y = OR34/(OR14 X OR;_), [95%CI]

Variation across strata: Py2yq; P(y2)p

Adjusted ORs across stratification: OR (compined)a = Zi—‘zl(w(,m)i X ORai)/Z{-‘Zl Wavayi> [95%CI]
Part II

OR (combineays = Lica(Wavpyi X ORp;) /2oy Wi [95%CI]

Fig. 3 Template table of the standard stratification analysis in meta-analyses
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95% Cls were calculated to show the impact on the risk
of the disease when both factors simultaneously exist.
Algorithms of these steps also refer to those (Step (III))
used in the factorial stratification analysis.

The standard stratification analysis served as a com-
bination of two subtypes of stratification methods, fac-
torial stratification analysis and confounder-controlling
stratification analysis, which included Steps (I) and (VI)
and Steps (II) to (V), respectively. We propose a tem-
plate table for presenting the statistical results of this
analysis, which will allow readers to obtain the informa-
tion needed to assess the association of interest (Fig. 3).
Notably, al, b1, cl1, d1, a2, b2, c2 and d2 represent the
sum of relative ones in the included studies, which helps
to obtain a rough estimation of the distribution of the
summary cases and controls in each item. We also pro-
vide step-by-step instructions in a table format to make
it easier to follow for meta-research practitioners (Table
S1). This method of analysis and data presentation not
only reveals an overall effect of genetic variants by con-
trolling confounders but also provides a quantified esti-
mation of the strength of the interaction, giving us a
comprehensive view of the relationship between the gen-
etic factor and a third party as well as their effects on
the disease outcome.

Results

To illustrate this point in detail, a standard stratification
analysis was performed using two examples of previous
meta-analyses [3, 4] concerning molecular association in
cancers developments, which were mentioned in the
Introduction. STATA version 14.0 software (STATA
Corporation, College Station, TX, USA) with the soft-
ware package metan [26] was utilized to complete the
analytic work in this paper.

Example 1: The PPARy polymorphism and NSAID
usage in the cancer risk The first meta-analysis used
here for illustrative purposes investigated the roles of the
PPARy rs1801282 polymorphism and the intake of
NSAID in developing cancer, which collected eight stud-
ies involving 4269 cases and 5903 controls [4], and all
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studies consisted of stratified data (Table S2). Two aims
were proposed by the original researchers: (a) to investi-
gate the connection between the PPARy rs1801282 vari-
ant and the risk of cancer and (b) to determine the
influence of NSAID usage on thwarting cancer. In this
work, we conducted a standard stratification analysis to
achieve these goals following the steps described below.

First, we applied a factorial stratification analysis to es-
timate the effect sizes given that the roles of both the
PPARy variant and NSAID intake were uncertain before
our analysis. The unilateral effect of the PPARy
rs1801282 variant was not statistically significantly
linked to the cancer risk (OR (95% CI) =0.932 (0.830—
1.046), P = 0.865), although NSAID usage unilaterally re-
duced this risk by a significant level (OR (95% CI) =
0.743 (0.673-0.820), P<0.001) (Table 6). This result
supported the original conclusion [4]. However, when
considering both of the above effects, the OR did not
show a significant association between the additive effect
and the risk of cancer (OR (95% CI)=0.765 (0.576—
1.015), P =0.064). These ORs implied that a potential ef-
fect of modification or interaction might occur between
these two factors since the effect of NSAIDs was covered
under the mutation of PPARy polymorphism and their
combined effect did not decrease the risk of developing
cancer.

In the above analysis, the unilateral effect of the
PPARy rs1801282 polymorphism was much weaker than
that of NSAID intake. Thus, we first investigated the ef-
fect of this genetic polymorphism. In the following ana-
lysis, our aim is to provide an accurate assessment of the
effect of this variant among the overall population but
not the unilateral effect in the population with a particu-
lar drug intake status. Therefore, NSAID intake can
serve as a potential confounder and its effect should be
controlled. As shown in Table 6, the x>-based Q test cal-
culated for a confounder-controlling stratification ana-
lysis indicated no significant variation across strata (x* =
0.01, Pz), =0.942). Therefore, we combined the effect
sizes of these two strata, and the combined OR indicated
that the PPARy rs1801282 variant did not correlate with
the risk of cancer at the overall level (OR (95% CI) =

Table 6 Standard stratification analysis by NSAID use status for the association between the PPARy rs1801282 polymorphism and

the risk of cancer

PPARy rs1801282 Non-NSAID users NSAID users Test of association and

Case Control Case Control heterogeneity (b)
CcC 2208 2773 1059 1653 0.743 (0.673-0.820) ~ 46.70%
CG + GG 664 902 338 575 0.811 (0.622-1.056) ~ 51.8%

Test of association and heterogeneity (a)

0.932 (0.830-1.046) ~ 0.00%

0.942 (0.724-1.226) ~ 58.70% 0.765 (0.576-1.015) ~ 68.30%

Number of included studies: 6
Variation across strata: P(,2), = 0.942; P(y2), = 0.543

Adjusted ORs across stratification: ORcombinea)a(95 % Cl) = 0.934 (0.840 — 1.038); ORcombinea)p(95 % Cl) = 0.751 (0.685 — 0.824)

Crude ORs: OR4(95 % Cl) = 0.927 (0.845 — 1.017); OR,(95 % Cl) = 0.799 (0.840 — 1.038)
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0.934, (0.840-1.038)). Second, considering the potential
effect of the modification or interaction between two ex-
posure factors, we further investigated the effect of
NSAID intake on the cancer risk and calculated the
pooled ORs stratified by the carrying status of the
PPARYy rs1801282 polymorphism (CC carriers: OR (95%
CI) =0.743 (0.673-0.820), P <0.001; CG or GG carriers:
OR (95% CI)=0.811 (0.622-1.056), P=0.12, shown in
Table 6). According to our statistical results, NSAID
usage was associated with a decreased risk of cancer
among PPARy rs1801282 wild-type homozygous (CC)
individuals but not among mutant-type allele carriers
(CG or GQG). Then, the X2-based Q test demonstrated
that effect sizes did not change significantly across strata
(x2:0.37, P2y, =0.543), therefore, we also combined
the effect sizes of these two strata, and the combined
OR demonstrated that NSAID intake can significantly
decrease the risk of cancer among the overall study
population (OR (95% CI)=0.751 (0.685-0.824), as
shown in Table 6).

The comparison between the results of our current
method and the original method is presented in Table
S3. It is worth noting that in the original paper, the au-
thors used the FM rather than the RM under the
between-study heterogeneity of P, = 0.065 and I = 51.8%
and obtained the different results from ours: CG or GG
carriers: OR (95% CI)=0.786 (0.663-0.932), P =0.006
(Table 3 and Table S3), possibly for the consistency of
the NSAID use effect. Nevertheless, we obtained the re-
sults by employing the RM to complete this work under
the same situation (OR (95% CI) =0.811 (0.622—1.056),
P =0.12, shown in Table 6). This phenomenon implies
that the conclusions within stratum are somewhat
“model-dependent”. In other words, the results are often
different or difficult to interpret due to diversity in the
model selection criteria. On the other hand, compared
to the approach of reporting effects within strata alone,
the approach of testing homogeneity and pooling effect
sizes across strata is more reliable and robust to assess
the gene-disease or exposure-disease associations.

In contrast, we also calculated the crude ORs for the
meta-analysis of the unilateral effects of the PPARy
rs1801282 polymorphism or NSAID intake (PPARy
rs1801282 polymorphism: OR (95% CI) = 0.927 (0.845-
1.017), P=0.11; NSAID use: OR (95% CI)=0.799
(0.840-1.038), P =0.204), which did not show any asso-
ciation of either of these two variables with cancer risk.
This result generated the same conclusion with either
the effect sizes of the PPARy rs1801282 polymorphism
within each stratum or among the overall population
but not with those of NSAID use. The difference from
the crude OR and adjusted OR of NSAID use can be
due to the residual confounding that caused wider Cls
and larger P values.

Page 9 of 14

In sum, the standard stratification analysis (a) deter-
mined the true effects of both the PPARy rs1801282
variant and NSAID usage on the risk of cancer in the
overall study population after controlling for confound-
ing factors and (b) clarified an unconventionally negative
result of NSAID use among mutant-type carriers, which
could be easily obtained but would be difficult to explain
in the conventional stratified analysis.

Example 2: MDM2 polymorphism and smoking
status in the development of lung cancer Numerous
studies have previously demonstrated that cigarette
smoking represents a widely recognized risk factor for
lung cancer [27, 28]. Therefore, when He W et al. [3] in-
vestigated the association between the MDM2 poly-
morphism and the development of lung cancer, the
effect of cigarette smoking was considered because dif-
ferent distributions of smoking individuals between
strata might represent a confounding variable.

In this meta-analysis, the authors collected the strati-
fied data for the MDM2 rs2279744 polymorphism by
smoking status from five of the nine included studies
(Table S2) and calculated the pooled OR of the homozy-
gous wild-type TT compared with the TG and GG geno-
types of MDM?2 rs2279744 among smokers, which
suggested no association between this genetic poly-
morphism and the lung cancer risk among smokers
(Table 4) [3]. In contrast, we complementally calculated
the pooled OR under the dominant model (OR (95%
CI) =1.072 (0.823-1.394), P =0.607, shown in Table 4),
which supported the result of the genetic model selec-
tion in the original paper. On the other hand, the
MDM?2 rs2279744 polymorphism showed significant as-
sociations with the risk of lung cancer among non-
smokers (OR (95% CI) =1.334 (1.125-1.581), P =0.001).
However, the limitations of this retrospective work
should be recognized: (a) in the original paper, the re-
searchers assumed that the MDM?2 rs2279744 poly-
morphism increases the risk of lung cancer among
nonsmokers but not among smokers [3], without consid-
ering the false interaction due to the confounding caused
by the stronger effect of tobacco smoking; and (b) the
original study was not able to control for this confound-
ing variable and uncover the real effect of the MDM?2
rs2279744 polymorphism at the level of the overall
population.

In the current study, we conducted a standard
stratification analysis to resolve the above issues. The
statistical results by our calculation are shown in
Table 7, and the merged table comparing the original
reported result side by side with the new results is
presented in Table S4. In the factorial stratification
analysis, the MDM?2 rs2279744 polymorphism was
statistically significantly associated with lung cancer
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Table 7 Standard stratification analysis by smoking status for the association between the MDM?2 rs2279744 polymorphism and the

risk of lung cancer

MDM2 152279744 Non-smokers Smokers Test of association and

Case Control Case Control heterogeneity (b)
1T 273 861 1393 1208 2.274 (1.015-5.094) ~ 95.50%
TG + GG 71 1057 2363 2253 1.796 (0.735-4.387) ~ 98.30%

Test of association and heterogeneity (a)

1.334 (1.125-1.581) ~ 40.50%

1.072 (0.823-1.394) ~ 83.20% 2469 (1.116-5.461) ~ 95.90%

Number of included studies: 5
Variation across strata: P2y, = 0.160; P(y2), = 0.701

Adjusted OR across stratification: OR combined)a(95 % Cl) = 1.232 (1.054 — 1.410); ORcombined)b(95 % Cl) = 2.045 (1.124 — 3.722)

Crude ORs: OR4(95 % ClI) = 1.110 (0.871 — 1.414); OR,(95 % Cl) = 1.908 (0.793 — 4.589)

among the nonsmokers (OR (95% CI)=1.334 (1.125-
1.581), P=0.001). Additionally, cigarette smoking had
a nearly 1.70-times greater effect on increasing the
risk of developing lung cancer (OR (95% CI) =2.274
(1.015-5.094), P<0.046), compared with the MDM?2
rs2279744 polymorphism. Under the double effect of
the MDM?2 rs2279744 polymorphism and cigarette
smoking, the OR increased contrasted with that for
smoking only, thus suggesting an enhanced risk of
lung cancer (OR (95% CI) =2.469 (1.116-5.461), P =
0.026). The factorial stratification analysis provided
more information than thethe original subgroup-type
stratification analysis in that the former offered in-
sights into the influence of cigarette smoking and its
additive effect with the MDM?2 rs2279744 polymorph-
ism on the risk of lung cancer (Table S4).

As previously shown, the MDM?2 rs2279744 poly-
morphism showed a much weaker effect than smoking.
We studied the effect of the MDM?2 rs2279744 poly-
morphism and controlled for cigarette smoking as a po-
tential confounder in the analysis. In the following
confounder-controlling stratification analysis, no signifi-
cant variations were observed across strata in the exam-
ination of the difference between the two ORs (x> = 1.98,
Py2)a =0.160); therefore, an FM was utilized to
synthesize these two ORs (shown in Table 7). The com-
bined OR indicated that the MDM?2 rs2279744 poly-
morphism also correlated with an increasing risk of lung
cancer in the overall population at a significant level
(OR (95% CI)=1.232 (1.054-1.410)). However, the
crude OR failed to display that the correlation was statis-
tically significant (OR (95% CI)=1.110 (0.871-1.414),
P =0.401).

However, if we want to verify the effect of smoking on
lung cancer risk, the carrier status of the AMDM?2
rs2279744 polymorphism should be regarded as a strati-
fied moderator and then controlled as well. Among indi-
viduals with the TT genotype, smoking increased the
risk of lung cancer (OR (95% CI) =2.274 (1.015-5.094),
P =0.046), while smoking showed no association with
this risk in TG or GG carriers (OR (95% CI)=1.796
(0.735-4.387), P=0.199). The results from the

homogeneity test across strata suggested no significant
variation (x” = 0.15, Py, = 0.701). Therefore, the FM (I-
V method) was employed to combine the across-strata
effect sizes. The combined OR indicated that smoking is
a risk factor for lung cancer among the overall study
population (OR (95% CI) =2.045 (1.124-3.722)), which
is consistent with the conclusions of numerous previous
studies [27, 28]. However, the crude OR without stratifi-
cation showed no significant association between smok-
ing and lung cancer (OR (95% CI) = 1.908 (0.793-4.589),
P =0.149) and failed to reveal this relationship under the
confounding of the MDM2 rs2279744 polymorphism,
further confirming the importance of the standard strati-
fication analysis in controlling confounder effects and re-
vealing the real relationship between exposure and
outcome.

Discussion

In this paper, we provide a systemic study of stratifica-
tion analyses in ameta-analysis of molecular associations.
Based on two previous approaches [2—4, 6-10, 20], we
propose a methodology of stratification analyses and
demonstrate its application in three types of meta-
analyses: factorial stratification analysis, confounder-con-
trolling stratification analysis and standard stratification
analysis. The third method synthesizes the advantages of
the first two methods, so two examples have been used
for illustration.

In these two examples, an interesting result occurred
when we studied the influence of NSAID intake on the
cancer risk in the first meta-analysis and the effect of the
MDM?2 rs2279744 polymorphism or smoking on suscep-
tibility to lung cancer in the second meta-analysis. The
adjusted ORs by stratification suggested that these inves-
tigated factors decreased or increased the risk of diseases
at a significant level, but the crude OR showed no effect.
We consider that the adjusted ORs are more reliable
than the crude ORs, which clarify the true association
among NSAID use, the MDM?2 rs2279744 polymorph-
ism, smoking and the risk of diseases, because synthesiz-
ing the effect sizes according to the heterogeneity first
within each stratum and then across strata (“two-step”
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approach) offers better results than utilizing the overall
between-study heterogeneity (“one-step” approach) in
the meta-analysis. The statistical difference between
these two ORs indicated a residual confounding in the
first example, and smoking status was a strong con-
founder in the second example. On the other hand, the
results from the overall population (ORgompinea) had
stronger statistical power due to its larger sample size
than that in the unilateral analysis of NSAID use among
individuals carrying particular PPARy rs1801282 alleles
or the MDM?2 rs2279744 polymorphism in individuals
who never smoked in the previous meta-analyses. Based
on the given cases, the standard methodology for stratifi-
cation analyses has exhibited its importance in exploring
and controlling confounding variables in meta-research.

Nomenclature of strata and subgroups

Subgroup analysis is another subtype of meta-analysis
for detecting the source of between-study heterogeneity
and comparing effects among different groups on an out-
come [17, 19]. In a subgroup analysis, an included study
is regarded as a unit and allocated to one group [19],
whereas in the stratification analysis that we address
here, an included study is separated into several parts,
which can be called “substudies”, and substudies with
identical characteristics are in the same strata. From this
point of view, most of the “subgroup analyses” applied in
the previous meta-analysis can be regarded as the special
case of the stratification analysis, in which the included
studies were of all types, such as “Study 4” in Fig. 1 (the
characteristic has several levels while each included
study only represents one of these levels, e.g., when the
subgroup moderator is ethnicity, the included studies of
association between dopamine beta-hydroxylase poly-
morphisms and neurodegenerative diseases were divided
into 25 subgroups involving Caucasian subjects and 16
subgroups involving Asian subjects [29]). However, it is
worth noting that this type of data could be used for
conducting only the confounder-controlling analysis but
not the factorial stratification analysis or the standard
stratification analysis because the ORs of interest (OR,_,
OR;, and OR,,) cannot be calculated.

Additional approaches to process stratified or subgroup
data in meta-analyses

The issue in statistical analysis is that only a small pro-
portion of included studies reported the stratified data
or the effect sizes of different strata or subgroups in the
meta-analysis. For example, in a meta-analysis evaluating
the association between erectile dysfunction (ED) and
the risk of cardiovascular disease (CVD), one of the
twelve included studies reported individual hazard ratios
for reduced erectile rigidity and severely reduced erectile
rigidity, but the other studies did not [11]. Additionally,
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two of the twelve original studies reported subgroups of
vegetable consumption (e.g., yellow, green and other) in-
cluded in a meta-analysis of the association of vegetable
intake with the gastric cancer risk [13]. Facing these is-
sues, the standard stratification analysis might not be
suitable to address confounding or interacting factors.
However, we may ask whether it is useful to combine
the original stratified data or the effect sizes of different
strata and how. Three different methods for addressing
this problem were found in previous meta-studies:

(I) Each stratum within an original study is treated as a
“independent study” and then added to the effect
model to synthesize the pooled effect size [30];

(IT) Each stratum within an original study is combined
into a summary effect size using an FM or an RM
and then these effect sizes are pooled again with
those of other studies for the main meta-analysis
(e.g., use an FM [11, 12] and use an RM [13, 14]);

(III)For meta-analyses including original studies report-
ing stratified data rather than the effect sizes in
each strata only, some researchers will add them
directly and calculated effect size, and then pool
these effect size with the other studies under an ef-
fect model for the main meta-analysis [2, 6-8, 20].

The logic to used process such rare stratified or sub-
group data is the same as that for the model selection
discussed above. Among these three methods, Method
(ITI) was the most commonly misused in previous meta-
analyses. Our previous study showed that this method
may cause aberrant results or lead to incorrect conclu-
sions due to different effects across strata [5]. For
Method (II), although the between-substudy and
between-study variance is considered, the relationship
across strata is not determined clearly in this way. For
considering the variance across strata within an original
study, due to the confounding or interacting effect, or
even other reasons, such as the sample error, the homo-
geneity test should be conducted. When the test shows
no significant heterogeneity, an FM should be chosen to
synthesize the stratified data, then the effect size would
represent the homogeneity in this study and could then
be used for pooled estimation across studies in a meta-
analysis. Otherwise, the test suggests that there is a pos-
sible interaction, and these strata should not be com-
bined for the representative effect size of their original
studies. However, for the overall estimation of the effect
of the investigated factor, Method (I) can be selected to
complete this work under some uncertainty. Simultan-
eously, interacting relationships should be reported, and
other methods, such as sensitivity analysis, should be
used to explore changes in the overall heterogeneity
among studies, alleviate the uncertainty caused by the
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interaction or other reasons, and examine the robustness
of the results.

Scopes of application of the standard stratification
analysis and its two subtype analyses

The application scopes of standard stratification analysis,
factorial ~ stratification analysis and confounder-
controlling stratification analysis should be recognized in
meta-research. On the one hand, the standard stratifica-
tion analysis is comprehensive and powerful. However,
in order for this method to be used, the stratified data
from original studies should be sufficient, or the method
will not be appropriate for elucidating confounding or
interacting effects.

On the other hand, when stratified data are rare in the
included studies and/or there is no occurrence of abnor-
mal results, we may simply use the two subtype analyses
rather than the standard stratification analysis. Whether
the factorial stratification analysis or the confounder-
controlling stratification analysis should be used depends
on the purpose of the stratified analysis. The former
method aims to elucidate the roles of exposure or con-
founding factors and their additive effects and thus help
to provide a multilevel perspective of the gene-disease
association. This analysis can be performed separately
when the sample size within each comparison is large
enough. To our knowledge, numerous studies have
adopted this practice [2, 6, 20]. Additionally, the ICR
and OR;,; can also be calculated to estimate the inter-
action strength. The latter method aims to reveal the
true effects of exposure factors or to determine whether
interacting relationships exist between exposure and
confounding variables. This analysis can be conducted
separately to control for confounders when the effect of
the stratified moderator is clear and the test of homo-
geneity across strata indicates no interaction. Many
meta-analysis studies have conducted this kind of ana-
lysis but did not employ a test of homogeneity or com-
bine the effect sizes across strata [3, 4, 7-10]. The
procedure for selecting among these three approaches is
not absolutely standardized; instead, it can be adjusted
by the authors as required for the specific analysis at
hand.

Further applications of stratification analyses

In the current paradigm of genetic epidemiology, a
single complicated disease is considered to be associ-
ated with multiple pathways, multiple genes and mul-
tiple polymorphisms. Each single locus frequently has
a significant but small effect on the occurrence and
development of disease [31]. As a consequence, such
a small effect will require large sample sizes to detect
its impact and is more easily covered up by stronger
factors. It is difficult to control such confounding
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through individual matching. Therefore, the applica-
tion of stratification analyses will effectively improve
the utilization of published data and enlarge the study
sample sizes in meta-studies.

Additionally, although these stratification analyses
were applied only for meta-analyses of observational
studies with categorical outcomes here, this method can
refer to meta-studies with other methodological designs,
such as experimentally designed studies or those includ-
ing contiguous data (e.g., the meta-analysis on the asso-
ciation of neprilysin mRNA levels and enzyme activity
with risk of AD [32], or MGMT promoter methylation
levels risk with ovarian cancer [33]). In such studies, the
effect sizes of the standardized mean difference (SMD)
or weighted mean difference (WMD) instead of the OR
or risk ratio (RR) will be selected for estimating the
strength of association, but the logic of the arithmetic is
the same.

Moreover, as is commonly considered, the occurrence
and development of complicated diseases are not only
regulated by genomic or epigenomic variations but also
influenced by environmental factors. These three types
of stratification analyses also offer advantages for discov-
ering the potential gene-gene, gene-environment or
gene-drug interactions or effect modification by a simple
approach and provide follow-up studies with more per-
spectives. This approach can also be a methodological
supplement to other methods of meta-analysis besides
meta-regression [34] and logistic regression [35].

In summary, with the rising number of genome-wide
association studies (GWASs) or epigenome-wide associ-
ation studies (EWASs) conducted, stratification analyses
will be helpful for controlling confounding factors and
for further exploration of the influences of their modifi-
cations on the occurrence of complex diseases at a
multivariate level.

Conclusion

Our study systematically presented the statistical
methodology, theoretic algorithm, computing pro-
cesses and applications of stratification analyses for
meta-analyses. The major contributions of this paper
include the following: (a) describing the computing
processes and applications of three types of stratifica-
tion analyses in meta-analysis, including factorial
stratification analysis, confounder-controlling stratifi-
cation analysis and standard stratification analysis; (b)
establishing a detailed statistical algorithm and an in-
terpretation of this method; (c) providing a template
table for presenting the statistical results of the stand-
ard stratification analysis; and (d) discussing and re-
solving other methods for managing stratified data
that are frequently utilized in previous meta-research.
The two cases shown in this study provide a good
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perception of the methodology for standard stratifica-
tion analyses, and these examples also indicate that
this method plays an important role in confounder
control when studying the associations of genetic
polymorphisms with the risks of diseases. More multi-
center studies designed to resolve gene-environment,
gene-drug and gene-gene interactions or modifications
are required to validate this method in the future.
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