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Abstract

Background: Network meta-analysis synthesises data from a number of clinical trials in order to assess the
comparative efficacy of multiple healthcare interventions in similar patient populations. In situations where clinical
trial data are heterogeneously reported i.e. data are missing for one or more outcomes of interest, synthesising such
data can lead to disconnected networks of evidence, increased uncertainty, and potentially biased estimates which
can have severe implications for decision-making. To overcome this issue, strength can be borrowed between
outcomes of interest in multivariate network meta-analyses. Furthermore, in situations where there are relatively few
trials informing each treatment comparison, there is a potential issue with the sparsity of data in the treatment
networks, which can lead to substantial parameter uncertainty. A multivariate network meta-analysis approach can be
further extended to borrow strength between interventions of the same class using hierarchical models.

Methods: We extend the trivariate network meta-analysis model to incorporate the exchangeability between
treatment effects belonging to the same class of intervention to increase precision in treatment effect estimates. We
further incorporate a missing data framework to estimate uncertainty in trials that did not report measures of
variability in order to maximise the use of all available information for healthcare decision-making. The methods are
applied to a motivating dataset in overactive bladder syndrome. The outcomes of interest were mean change from
baseline in incontinence, voiding and urgency episodes. All models were fitted using Bayesian Markov Chain Monte
Carlo (MCMC) methods in WinBUGS.

Results: All models (univariate, multivariate, and multivariate models incorporating class effects) produced similar
point estimates for all treatment effects. Incorporating class effects in multivariate models often increased precision in
treatment effect estimates.

Conclusions: Multivariate network meta-analysis incorporating class effects allowed for the comparison of all
interventions across all outcome measures to ameliorate the potential impact of outcome reporting bias, and further
borrowed strength between interventions belonging to the same class of treatment to increase the precision in
treatment effect estimates for healthcare policy and decision-making.
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Background
In a health technology assessment (HTA) setting, it is
imperative that decisions regarding healthcare policy are
formulated with consideration to all outcomes associated
with the decision question, using all relevant evidence,
and appropriately taking uncertainty in to account. In
many healthcare conditions, the effects of new inter-
ventions are reported on multiple outcomes and these
effects are correlated. Taking in to account the depen-
dence between correlated treatment effects, as well as
heterogeneous reporting of treatment effects, may have a
substantial impact on the ability to appropriately estimate
cost-effectiveness for new interventions [1], especially in
terms of capturing uncertainty.
Network meta-analysis (NMA) is widely used in an evi-

dence synthesis setting due to the attractive nature of uti-
lizing all relevant information from both direct evidence
(obtained from head-to-head trials) and indirect evidence
(obtained from trials that share a common treatment
comparator) [2–4]. Multivariate network meta-analysis
(MVNMA) builds on this framework and has the ability to
simultaneously model treatment effects for multiple out-
comes, as well as estimate the correlation between them.
Consequently, for the studies that did not report certain
outcomes of interest, it is possible to obtain a predictive
value for missing data by modelling the treatment effects
on multiple outcomes jointly, taking into account the cor-
relation between them. This methodology can not only
increase the information for decision making, but it can
also limit the potential for outcome reporting bias in the
original trials [5, 6], and consequently increase precision
and confidence in the treatment effect estimates [7].
There are two types of correlations that need to be

incorporated in the estimation of treatment effect esti-
mates for multiple outcomes - one at the between-study
level, and another at the within-study level. Between-
study correlations occur due to variability between-
studies. Between-study variability occurs in situations
with which studies have a different distribution of poten-
tial treatment effect modifiers, such as differences in
patient characteristics, trial designs, and baseline patient
severity. Within-study correlations occur between treat-
ment effects on multiple outcomes within a trial, and
are a consequence of differences in patient-level charac-
teristics. These correlations are indicative of the associ-
ation between treatment effects measured on multiple
outcomes on the same patients within a study. Within-
study correlations are often difficult to estimate and they
are seldom reported in clinical trials. Thus, estimation
is often required using individual participant data [8],
for example by bootstrapping [9], or elicited from expert
opinion [10].
The ability to simultaneously model treatment effects

on multiple outcomes in a multivariate analysis is an

appealing feature in many HTA settings, as interest fre-
quently lies in multiple and correlated outcome measures
[11]. In the last 20 years, evidence synthesis methods have
witnessed a rapid increase in methodological develop-
ments and applications of multivariate analyses to assess
interventions with two or more outcomes of interest [9,
11–19]. It is often desirable to account for the correla-
tion between treatment effects on multiple outcomes in
a meta-analysis framework as this has the ability to bor-
row strength between all reported outcomes and studies
in order to inform treatment effect estimates [9]. Such
an approach is commonly referred to as multivariate
meta-analysis. In more recent developments, multivariate
meta-analyses have been extended to incorporate multi-
ple treatment comparisons or network meta-analyses [7,
10, 20]. Ades et al. [20] simultaneously modelled mutu-
ally exclusive, competing risk outcomes, using a multi-
nomial likelihood whereby the within-study correlations
were accounted for but the between-study correlations
were assumed to be zero. Efthimiou et al. [10] proposed
a MVNMA model that accounts for both the between-
and within-study correlations of binary outcomes. Specif-
ically, Efthimiou et al. [10] incorporated the within-study
correlations at the study-specific treatment contrast level,
which can be problematic when incorporating multi-arm
trials. Achana et al. [7] used a more natural modelling
approach for arm-level data whereby the within-study cor-
relations were incorporated at the treatment-arm level.
Using this approach, Achana et al. [7] considered the
treatment arms to be independent as a consequence of
randomisation, which greatly eases computation of the
likelihood for multi-arm trials. Furthermore, Achana et
al. [7] developed this methodology to borrow information
across outcomes in order to predict an estimate for miss-
ing data. This methodology allows disconnected interven-
tions to be incorporated in to the analyses if they belong
to a connected network for one or more additional out-
comes; thereby, allowing all interventions to be evaluated
across all outcome measures.
In situations with which there are a large number of

interventions in the treatment networks and relatively few
trials informing each treatment comparison, there is a
potential issue with sparsity of data, which can lead to
substantial parameter uncertainty. Collapsing the inter-
vention arms into their respective treatment classes, also
known as “lumping" interventions, increases the evidence
base and precision in the effect estimates, but with such
a class-based approach, the direct interpretation of indi-
vidual intervention effects (especially those of dose or
formulation effects) are lost, which can hinder decision-
making. To overcome this issue, exchangeability between
the same interventions, but with different formulations
and/or treatment regimes can be incorporated in a three-
level hierarchical NMA to borrow information within
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the classes of interventions, strengthening inferences, and
potentially reducing the uncertainty around the individual
intervention effects [21].
Furthermore, in situations where clinical trial data are

heterogeneously reported and/or missing, synthesising
such data can be problematic. Meta-analysis methods
require specification of both a measure of effect and a
measure of variability in the original trial reports. In the
absence of such data, trials are often excluded from the
analysis [22]. In a decision making context, missing data
can have a detrimental impact on the overall decision, as
many of the interventions of interest have to be excluded
from the analyses. For this reason, when meta-analysing
data, it is good practice to estimate missing standard
errors for all models, based on additional measures of
uncertainty [23].
This paper extends the methodology of Achana et al.

[7] to incorporate the exchangeability between interven-
tions of the same class [21], and further accounts for
correlations between baseline and follow-up for miss-
ing measures of variability. This approach makes use of
all available data by borrowing strength within classes
of interventions as well as across outcomes. Borrowing
information in this way has the potential to increase the
precision in treatment effect estimates, as well as allow-
ing for the comparison of all interventions across all
outcome measures, to aid decision making. The remain-
der of this article is set out as follows: the first section
describes the motivating example in overactive bladder
(OAB). This is followed by a description of the multivari-
ate networkmeta-analysis methods, model developments,
and model estimation, before applying these methods to
the motivating dataset and presenting the results. The
article concludes with a discussion and final remarks.

Motivating dataset
The cardinal symptoms of OAB syndrome are urinary
incontinence, increased daytime frequency (or voiding),
and urgency. A gold standard tool for assessing the quan-
titative measure of OAB symptoms are patient-reported
bladder diaries whereby individuals with OAB record the
frequency and severity of OAB symptoms on a daily
basis [24]. These patient-reported bladder diaries are
often used as the primary outcome in trials assessing
new interventions for OAB. However, many of the key
symptoms are often under-reported. For example, in the
current literature urgency is defined as “the cardinal
symptom" of OAB [25], but there are far fewer stud-
ies evaluating interventions for urgency (n=62) compared
to incontinence (n=117) and voiding episodes (n=124).
This poses several limitations for decision makers; most
notably, it is difficult to estimate both clinical and cost-
effectiveness of interventions across the entire symptom
syndrome.

In this motivating dataset, interest lies in evaluating the
change from baseline for several symptomatic responses.
Whilst symptoms at baseline and follow-up are commonly
reported, change from baseline is often unreported; and
thus, whilst it is possible to calculate the mean change
from baseline, the variance is often missing. Table 1 illus-
trates the different scenarios for trial reporting in the
included studies. In this example, there were no trials that
reported follow-up data alone.
In total, 143 studies reported one of the three cardi-

nal symptoms of OAB. Of these, only 51 (36%) reported
treatment effects for all 3 outcomes. A total of 117, 124,
and 62 trials evaluated 101, 108, and 58 different inter-
ventions for incontinence, voiding, and urgency episodes,
respectively. Figures 1, 2 and 3 illustrate the networks of
evidence for incontinence, voiding and urgency episodes,
with corresponding treatment codes given in Additional
file 1. Nearly one third of all studies did not report mea-
sures of variability in the mean treatment effects. In total,
44 (38%), 42 (34%), and 18 (29%) studies solely reported
mean effects and gave no measure of uncertainty or vari-
ability for incontinence, voiding, and urgency episodes,
respectively.
For analyses incorporating class effects, interventions

were grouped according to expert clinical opinion (DGT).
Figure 4 demonstrates the treatment classification of each
of the individual interventions, where the central node
represents the classes of treatments and the linked arms
represent each of the individual interventions within those
classes.

Methods
In this section, we begin by recalling the MVNMA model
described by Achana et al. [7] (Model 1) and develop
this framework further to incorporate the exchangeability
between interventions of the same class of interventions
(Model 2). We then describe a missing data framework to
incorporate studies with missing measures of uncertainty
or variability.

Table 1 Scenarios for trial reporting

Change from baseline Baseline Follow-up

Scenario mean variance mean variance mean variance

1 � � � � � �
2 � � � � NR NR

3 � � NR NR � �
4 � � NR NR NR NR

5 � NR � � � �
6 � NR � � NR NR

7 � NR NR NR NR NR

NR denotes not reported
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Fig. 1 Network of evidence for univariate network meta-analysis for incontinence episodes

Model 1: multivariate network meta-analysis
Following the random effects MVNMA described by
Achana et al. [7], let Yij = (yij1,yij2,yij3), be the observed
vector of effects for intervention j of the ith study (i =
1, 2, ..., ns) for each of the outcomes of interest (1 = uri-
nary incontinence, 2 = voiding frequency, 3 = urgency
episodes). Let Yij follow a multivariate normal (MVN)
distribution such that:

Yij ∼ MVN(θij, Sij)
θij = μi + δi,bkI{j=k}

where I{u} =
{
1 ifu is true
0 otherwise

(1)

where θij is a vector of true treatment effects, Sij is
the treatment-specific within-study covariance matrix
assumed known, μi is a vector of true baseline effects in
study i with baseline treatment b, and δi,bk is a vector of
treatment-specific effects in the kth arm relative to the
baseline treatment in arm 1 of study i. The elements of Sij
are expressed as:

Sij =

⎛
⎜⎜⎝

se2ij(1) ρw(12) seij(1)seij(2) ρw(13) seij(1)seij(3)
ρw(12) seij(1)seij(2) se2ij(2) ρw(23) seij(2)seij(3)
ρw(13) seij(1)seij(3) ρw(23) seij(2)seij(3) se2ij(3)

⎞
⎟⎟⎠

(2)

where seij(l) denotes the observed standard errors of inter-
vention j for outcome, l = 1, 2, 3, and ρw(qr) denotes the
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Fig. 2 Network of evidence for univariate network meta-analysis for voiding episodes

within-study correlations, for q = 1, 2 and r = 2, 3. For
2-arm trials, the treatment effect differences of δi,bk are
assumed to be normally distributed and correlated:

⎛
⎜⎝

δi,bk(1)
δi,bk(2)
δi,bk(3)

⎞
⎟⎠ ∼ MVN

⎛
⎜⎝

⎛
⎜⎝

dtibtik (1) = d1,tik(1) − d1,tib(1)
dtibtik (2) = d1,tik(2) − d1,tib(2)
dtibtik (3) = d1,tik(3) − d1,tib(3)

⎞
⎟⎠ ,�

⎞
⎟⎠

(3)

where

� =
⎛
⎝ σ 2

1 ρ12σ1σ2 ρ13σ1σ3
. σ 2

2 ρ23σ2σ3
. . σ 2

3

⎞
⎠ (4)

where dtibtik (l) represents the pooled effect of the treat-
ment in arm k relative to the treatment in arm b in study
i for each outcome, l. � is the between-study covariance
matrix under an assumption of homogeneous between-
study variances [2] and correlations across treatment con-
trasts [7]. This notation can easily be extended to account
for multi-arm trials [26], which is further described in
Additional file 2.
The relative effect of the study-specific reference treat-

ment in arm 1 (the control arm) relative to itself for
outcome l, δi,b1(l), is set to 0 and as such the set of con-
ditional univariate distributions begin with the relative
effect of the intervention in arm 2 relative to the control
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Fig. 3 Network of evidence for univariate network meta-analysis for urgency episodes

arm, δi,b2(l). The study-specific treatment comparisons,
δi,b(k−1)(l), are expressed in terms of the basic parameters
of the pooled treatment effects for the intervention in arm
k, d1,tik(l) and the basic parameters of the pooled treatment
effects for the intervention in the reference treatment
arm, d1,tib(l). For example, for trials that compare interven-
tions A and B for outcome l, the pooled treatment effect,
dtibtik(l) = dAB(l), is given by:

dtibtik(l) = dAB(l) = d1B(l) − d1A(l) (5)

For dAB where A > 1 and B > 1, the relative effects
are expressed in terms of the basic parameters described
in Eq. (5). The intervention effect of the reference treat-
ment for the entire treatment network, j = 1(l), usually

a placebo or control intervention, is set to 0 for every
outcome l, such that d11(l) = 0.
In order to predict treatment effect estimates for miss-

ing data for trials that did not report all outcomes of
interest, following Achana et al. [7], we assumed that
the pooled effects of intervention j = 2, ..., nt relative
to a reference treatment, d1j(l), for outcome, l, can be
expressed as a sum of treatment-specific effects, αj, and
outcome-specific effect, γl, such that:

d1j(l) ∼ Normal(αj + γl, ζ 2) (6)

The parameter ζ indicates the deviation of treat-
ment effect profiles across outcomes. If ζ was close



Owen et al. BMCMedical ResearchMethodology          (2020) 20:184 Page 7 of 21

Fig. 4 Classification of interventions

to zero, this would indicate a high degree of simi-
larity between outcomes. In situations where ζ was
particularly large, this would indicate a substantial
deviation between treatment effect profiles across
outcomes.
Non-informative prior distributions were specified for

μil, αj ∼ Normal(0, 103), σl ∼ Uniform(0,2), and ζ ∼
Uniform(0, 2), for l = 1, 2, 3. The spherical parameterisa-
tion technique based on Cholesky decomposition [27] was
used to express the between-studies variance-covariance

matrix, �, and discussed in more detail in Additional
file 3.

Model 2: multivariate network meta-analysis incorporating
class effects
To utilise the additional similarity between the same
interventions with different regimes, Model 1 was devel-
oped further to incorporate class effects. For study i
evaluating intervention j belonging to class m, Yijm =
(yijm1,yijm2,yijm3), denotes the observed vector of effects
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for each of the outcomes of interest, and expressed in the
following way:

Yijm ∼ MVN(θijm , Sijm)

θijm = μi + δi,bkI{jm=k}

where I{u} =
{
1 ifu is true
0 otherwise

(7)

where μi and δi,bk have the same interpretation as in
Model 1. The parameter θijm , represents a vector of
true treatment effects, and Sijm represents the within-
study covariance matrix, for intervention j belonging to a
broader class of interventionsm, for study i, such that:

Sijm =

⎛
⎜⎜⎜⎝

se2ijm(1) ρw(12) seijm(1)seijm(2) ρw(13) seijm(1)seijm(3)

ρw(12) seijm(1)seijm(2) se2ijm(2) ρw(23) seijm(2)seijm(3)

ρw(13) seijm(1)seijm(3) ρw(23) seijm(2)seijm(3) se2ijm(3)

⎞
⎟⎟⎟⎠

(8)

As in Model 1, the elements of δi,bk for 2-arm tri-
als are assumed to be drawn from a multivariate normal
distribution as described in Eq. 3 (and generalised to
multi-arm trials as described in Additional file 2). Here
δi,bk is expressed in terms of the pooled effect, dtibtik (l),
of the treatment in arm k relative to the treatment in arm
b in study i for each outcome, l. For example, when we
incorporate class effects, the pooled treatment effect of
treatment A belonging to class c, relative to the pooled
treatment effect of treatment B belonging to class g,
dAcBg (l), is given by:

dtibtik(l) = dAcBg (l) = d11Bg (l) − d11Ac(l) (9)

The intervention effect of the reference treatment for
the entire treatment network, j = 11(l), usually a placebo
or control intervention, is set to 0 for every outcome l,
such that d1111(l) = 0. The basic parameters for rel-
ative treatment effects, d11jm(l), of intervention j within
classm, relative to the reference treatment, were assumed
to follow a normal distribution with mean equal to the
treatment-specific effect, αjm , plus the outcome-specific
effect, γl, and variance, ζ 2:

d11jm(l) ∼ Normal(αjm + γl, ζ 2) (10)

where γl and ζ 2 have the same interpretation as Model 1.
In order to incorporate the exchangeability between

treatment-specific effects, αjm , within class m, αjm was
assumed to follow a normal distribution with mean equal
to the pooled effect estimate for the mth class of inter-
ventions, βm, with class specific between-intervention
variance, ν2m, [21] such that:

αjm ∼ Normal(βm, νm2) (11)

Non-informative prior distributions were specified forμil,
σl ∼ Uniform(0,2) for l = 1, 2, 3, ζ ∼ Uniform(0, 2),
βm ∼ Normal(0, 103) and νm ∼ Uniform(0, 2). The

spherical parameterisation technique based on Cholesky
decomposition [27] was used to construct a prior distri-
bution for the between-study variance-covariance matrix,
�, and discussed in more detail in Additional file 3.
In all multivariate analyses, prior distributions for the

variance parameters (i.e. σl, ζ , and νm) were restricted to a
Uniform(0,2) distribution on the standard deviation scale.
For example, a value of 2 for the class-specific between-
intervention variance, νm, suggests that for a random
pair of interventions, the difference in the mean change
from baseline could be as large as 2.2 events on average.
Uniform(0,2) prior distributions were considered for vari-
ance components in multivariate analyses in order to aid
computation of the variance-covariance matrix. However,
there is an argument to suggest that the variance param-
eters in a Bayesian model can be decomposed into the
sum of several other variance components [28]. Thus, in
hierarchical NMAs with additional variance components
at the class-level, more informative prior distributions for
variance parameters may be reasonable.

Missing data framework
In situations where the observed standard errors of
treatment effects, seij, were not reported, but baseline
and follow-up variances were available (scenario 5 of
Table 1), the correlation, ξ , between variance at base-
line, sdbaselineij

2, and follow-up, sdfollowupij
2, were used to

impute estimates of the variance for change from baseline,
sdchangeij

2. This is calculated as:

sdchangeij
2 = sdbaselineij

2 + sdfollowupij
2

− 2ξ(sdbaselineij × sdfollowupij)

seij2 =
sdchangeij

2

√nij

(12)

Using external information from trials that report all
variance terms (scenario 1 of Table 1), an informative
prior distribution was placed on the correlation, ξ , using
Fisher’s Z-transformation [23]. For trials that do not
report the variability at follow-up (scenario 6 of Table 1), a
linear predictor with baseline variance as a covariate was
included such that:

sdfollowupij = υ + λ(sdbaselineij) (13)

where υ represents a constant term, and λ the regres-
sion coefficient. Trials that did not provide a measure of
variability (scenario 7 of Table 1) were excluded from the
analyses.

Model estimation
All models were estimated using Markov Chain Monte
Carlo implemented inWinBUGS 1.4.3 [29]. ExampleWin-
BUGS code for the MVNMA incorporating class effects
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and the missing data framework is given in Additional
file 4. Samples were collected for 150,000 MCMC iter-
ations with the first 10,000 iterations discarded in the
form of a ‘burn-in.’ Convergence plots were assessed for
a random sample of parameters of interest including
treatment effect estimates and between-study standard
deviations [30]. Brooks-Gelman-Rubin statistics, autocor-
relation, history, and trace plots were used to detect
non-convergence for three individual MCMC chains with
disparate starting values. Sensitivity analyses were under-
taken to assess the impact of the choice of prior dis-
tributions for variance parameter. For both variance
parameters, two alternative distributions were consid-
ered. For prior specification of the elements of V1/2, (1)
Gamma(0.001,0.001) on the precision scale, and (2) Half-
normal(0,1) on the standard deviation scale were consid-
ered. For prior specification of ζ , (1) Gamma(0.01,0.01)
on the precision scale, and (2) Half-normal(0,1) on the
standard deviation scale were considered.

Results
Multivariate network meta-analysis
A multivariate approach allowed for the inclusion of 143
studies evaluating 115 interventions for OAB across all
3 outcomes. Previously, univariate analyses of urinary
incontinence, voiding frequency and urgency episodes
included 115, 119, and 60 studies evaluating 97, 100,
and 54 interventions, respectively. Results for univariate
analyses are given in Additional file 5 for completeness.
Figure 5 illustrates the network of evidence for MVNMA
evaluating incontinence, voiding, and urgency episodes.
Incorporating a multivariate approach increased the abil-
ity to include more interventions for all three outcomes,
compared to that of univariate analyses displayed in
Figs. 1, 2 and 3. This was particularly apparent for urgency
episodes, with which all interventions evaluated for incon-
tinence and voiding could now be evaluated for urgency.
Furthermore, for interventions that were evaluated for
urgency in the original trials but disconnected from the
univariate network of evidence (Fig. 3), e.g. reflexology
(71), a MVNMA could borrow information between out-
comes for which they were connected, in order to com-
plete the network of evidence. However, eight treatments
remained disconnected from the multivariate network
of evidence: darifenacin 7.5-15mg once daily + BT (88),
tolterodine + BT (94), darifenacin ER 7.5-15mg once daily
(104), tolterodine (105), lidocaine gel 2x6ml (129), eme-
pronium bromide immediate release 200mg three times a
day (130), sacral nerve stimulation + tolterodine extended
release 2mg once daily (136), tolterodine extended release
2mg once daily (137). These interventions were discon-
nected in all networks of evidence for univariate NMAs
evaluating each of the outcomes of interest; and thus, bor-
rowing information between outcomes had little impact

on the inclusion of these particular interventions in mul-
tivariate analyses.
Table 2 displays the estimated posterior median reduc-

tion and 95% credible intervals for change from baseline
in incontinence, voiding, and urgency episodes. Treat-
ment effect estimates were first ranked according to their
effectiveness in reducing incontinence episodes, then by
voiding frequency, and finally by urgency episodes. Sacral
nerve stimulation appeared to be the most effective inter-
vention for the management of urinary incontinence,
voiding and urgency with an estimated posterior median
reduction of -7.43 (95%CrI: -9.59,-4.73), -7.64 (95%CrI:
-9.82,-4.91) and -7.96 (95%CrI: -10.19,-5.29) episodes, rel-
ative to placebo, respectively.
Adopting a multivariate approach changed the over-

all clinical decision for urgency episodes. In univariate
analyses, electrostimulation with vaginal oestrogen cream
1.25mg/day appeared to be themost effective intervention
for reducing urgency (see Additional file 5). Accounting
for the correlation between outcomes using MVNMA,
sacral nerve stimulation appeared to be the most promis-
ing intervention overall.

Multivariate network meta-analysis incorporating class
effects
Table 3 displays the estimated posterior median reduc-
tion and 95% credible intervals for change from baseline
in incontinence, voiding, and urgency episodes obtained
from multivariate network meta-analysis incorporating
class effects. Sacral nerve stimulation appeared to be
the most effective intervention for reducing incontinence,
voiding and urgency episodes with an estimated pos-
terior median reduction of -8 (95%CrI: -9.54, -6.27), -
8.19 (95%CrI: -9.69,-6.49) and -8.49(95%CrI: -10.11,-6.78)
episodes, relative to placebo, respectively.
Incorporating class effects in MVNMAs broadly

increased the precision in treatment effect estimates
(Table 3) compared to MVNMAs without incorpo-
rating class effects (Table 2). For example, for sacral
nerve stimulation incorporating a hierarchical struc-
ture further increased precision in the treatment effect
estimates by approximately 33%, 35%, and 28% for
urinary incontinence, voiding and urgency episodes,
respectively.
Borrowing information between outcomes generally

increased the precision in treatment effect estimates com-
pared to univariate analyses (Figs. 6, 7, and 8). This
finding was particularly apparent for sacral nerve stim-
ulation, with which a multivariate hierarchical approach
incorporating class effects increased precision in the esti-
mated treatment effects by approximately 60% and 160%
for urinary incontinence (Fig. 6) and voiding frequency
(Fig. 7) respectively, compared to treatment effect esti-
mates obtained from univariate NMAs (see additional
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Fig. 5 Network of evidence for multivariate network meta-analysis

file 5). For all interventions included in each of the univari-
ate analyses, point estimates obtained from multivariate
analyses were comparable with point estimates obtained
from univariate analyses for all three outcomes (Figs. 6, 7,
and 8).

Treatment profiles
Figure 9 illustrates the treatment profiles for all of
the cardinal symptoms of OAB. Use of MVNMA
allowed for the comparison of all interventions across

all outcome measures, and thus completed the interven-
tion profiles for efficacy outcomes. Generally, the treat-
ment rankings were broadly similar to those obtained
from univariate analyses (see Additional file 6). Sacral
nerve stimulation appeared to be the most effective
intervention across all three outcomes. Using multi-
variate analyses, estriol 1mg intravesically appeared to
be amongst the top ten interventions (Fig. 9). Pre-
viously, estriol 1mg intravesically was only evaluated
for voiding, and ranked amongst the top interventions
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Table 2 Estimated posterior median difference (and 95% credible intervals) in change from baseline for urinary incontinence, voiding
and urgency episodes obtained from multivariate network meta-analysis

Treatment Code Incontinence episodes† Voiding episodes† Urgency episodes†

Sacral nerve stimulation (81) -7.43 (-9.59,-4.73) -7.64 (-9.82,-4.91) -7.96 (-10.19,-5.29)
OnaBoNT-A 200u trigone sparing (73) -2.38 (-3.13,-1.66) -2.61 (-3.38,-1.9) -2.9 (-3.76,-2.14)
Estradiol 3mg intravaginally (128) -1.91 (-3.6,-0.26) -2.13 (-3.82,-0.51) -2.44 (-4.18,-0.72)
Oxybutynin IR 2.5mg b.i.d + Salivary pastilles (98) -1.84 (-3.51,-0.17) -2.06 (-3.73,-0.35) -2.39 (-4.09,-0.7)
OnaBoNT-A 100u bladder base + trigone (79) -1.73 (-3.26,-0.12) -1.95 (-3.48,-0.35) -2.25 (-3.84,-0.62)
Electrostimulation + PFE + Bladder training (97) -1.6 (-2.52,-0.7) -1.8 (-2.77,-0.91) -2.13 (-3.05,-1.16)
Solifenacin/trospium + placebo injection (100) -1.64 (-2.56,-0.59) -1.85 (-2.82,-0.8) -2.14 (-3.17,-1.12)
OnaBoNTA 100u trigone sparing (72) -1.58 (-1.96,-1.21) -1.69 (-2.04,-1.36) -2.06 (-2.53,-1.64)
OnaBoNT-A 100u bladder body + trigone (78) -1.48 (-2.43,-0.48) -1.7 (-2.67,-0.69) -2.01 (-3.02,-1.05)
Oxybutynin intravesically 5mg t.i.d (14) -1.31 (-2.4,-0.07) -1.53 (-2.63,-0.28) -1.84 (-2.95,-0.54)
Tolerodine ER 4mg q.d + Neurostimulation (96) -1.35 (-1.76,-0.96) -1.6 (-2.05,-1.15) -1.9 (-2.43,-1.38)
Propiverine 30mg b.i.d (42) -1.3 (-3.48,0.7) -1.53 (-3.69,0.47) -1.87 (-4.06,0.26)
Estriol 1mg intravesival (131) -1.31 (-2.53,0.05) -1.54 (-2.72,-0.19) -1.85 (-3.11,-0.45)
Oxybutynin ER 10mg q.d (8) -1.06 (-1.53,-0.56) -1.29 (-1.8,-0.78) -1.59 (-2.18,-0.99)
Mirabegron 100mg b.i.d (48) -1.05 (-1.69,-0.43) -1.26 (-1.9,-0.64) -1.58 (-2.29,-0.83)
Solifenacin ER 10mg q.d (30) -0.87 (-1.09,-0.65) -1.13 (-1.35,-0.92) -1.41 (-1.78,-1.04)
Imidafenacin IR 0.25mg b.i.d (37) -0.88 (-1.49,-0.32) -1.11 (-1.72,-0.53) -1.42 (-2.06,-0.75)
Mirabegron 150mg b.i.d (49) -0.83 (-1.69,-0.08) -1.07 (-1.92,-0.32) -1.37 (-2.29,-0.58)
Pregabalin 150mg b.i.d + Tolterodine ER 4mg q.d (102) -0.83 (-1.57,-0.2) -1.06 (-1.78,-0.45) -1.36 (-2.15,-0.67)
Oxybutynin IR 3mg t.i.d (19) -0.83 (-1.17,-0.47) -1.02 (-1.4,-0.64) -1.35 (-1.81,-0.88)
Tolterodine ER 4mg q.d + Behaviour therapy (87) -0.78 (-1.47,-0.15) -1 (-1.71,-0.35) -1.32 (-2.03,-0.62)
Propiverine ER 30mg q.d (42) -0.76 (-1.27,-0.26) -0.99 (-1.54,-0.43) -1.3 (-1.92,-0.7)
Darifenacin ER 30mg q.d (38) -0.73 (-1.35,-0.13) -0.95 (-1.59,-0.33) -1.26 (-1.9,-0.57)
Tolterodine ER 2mg b.i.d + Oestrogen 0.625mg 2xwk (99) -0.72 (-1.22,-0.22) -0.94 (-1.5,-0.38) -1.26 (-1.88,-0.66)
Fesoterodine ER 8mg q.d (26) -0.71 (-0.9,-0.53) -0.94 (-1.14,-0.76) -1.26 (-1.62,-0.9)
Trospium IR 15mg t.i.d + Physiotherapy (91) -0.7 (-1.54,0.14) -0.95 (-1.8,-0.1) -1.24 (-2.11,-0.39)
Solifenacin ER (5mg-10mg) q.d (31) -0.67 (-0.91,-0.43) -0.85 (-1.09,-0.61) -1.18 (-1.56,-0.78)
Solabegron 125mg b.i.d (55) -0.64 (-0.92,-0.38) -0.87 (-1.16,-0.61) -1.18 (-1.58,-0.78)
Mirabegron 25mg q.d (50) -0.63 (-0.9,-0.36) -0.85 (-1.12,-0.57) -1.14 (-1.54,-0.74)
Oxybutynin vaginal ring 6mg q.d (17) -0.61 (-1.16,-0.03) -0.86 (-1.41,-0.27) -1.15 (-1.78,-0.53)
Solifenacin ER 5mg - 15mg q.d (34) -0.61 (-1.11,-0.12) -0.82 (-1.38,-0.29) -1.12 (-1.75,-0.54)
Trospium ER 60mg q.d (44) -0.6 (-0.94,-0.24) -0.81 (-1.15,-0.45) -1.12 (-1.58,-0.66)
Cizolirtine Citrate 400mg b.i.d (57) -0.58 (-1.21,-0.04) -0.83 (-1.47,-0.24) -1.14 (-1.81,-0.47)
Mirabegron 100mg q.d (52) -0.59 (-0.79,-0.4) -0.78 (-0.97,-0.57) -1.1 (-1.45,-0.75)
Solifenacin ER 5mg q.d (29) -0.57 (-0.79,-0.38) -0.73 (-0.93,-0.56) -1.09 (-1.46,-0.73)
Mirabegron 50mg q.d (51) -0.56 (-0.73,-0.4) -0.82 (-0.99,-0.65) -1.09 (-1.43,-0.74)
Oxybutynin IR (2.5-5mg) b.i.d (24) -0.53 (-1.14,0.12) -0.74 (-1.34,-0.09) -1.05 (-1.72,-0.35)
Oxybutynin IR 5mg t.i.d (7) -0.53 (-0.91,-0.14) -0.73 (-1.12,-0.34) -1.07 (-1.55,-0.53)
Mirabegron 200mg q.d (53) -0.52 (-1.11,-0.01) -0.74 (-1.38,-0.19) -1.06 (-1.72,-0.43)
Propiverine IR 15mg b.i.d (43) -0.53 (-0.94,-0.1) -0.71 (-1.15,-0.25) -1.04 (-1.56,-0.5)
Oxybutynin vaginal ring 4mg q.d (16) -0.51 (-1.12,0.12) -0.73 (-1.32,-0.1) -1.04 (-1.66,-0.39)
Pregabalin 150mg b.i.d (62) -0.49 (-1.02,0.06) -0.74 (-1.24,-0.25) -1.03 (-1.61,-0.45)
Tolterodine IR 2mg b.i.d + Pilocarpine 9mg b.i.d (101) -0.5 (-0.78,-0.21) -0.73 (-1.06,-0.41) -1.03 (-1.47,-0.6)
Fesoterodine ER 4mg q.d (25) -0.49 (-0.67,-0.33) -0.7 (-0.87,-0.55) -1.02 (-1.37,-0.68)
Oxybutynin chloride topical gel 1g q.d (13) -0.5 (-0.93,-0.06) -0.71 (-1.15,-0.28) -1.03 (-1.54,-0.5)
Tolterodine ER 4mg q.d (4) -0.49 (-0.6,-0.39) -0.64 (-0.75,-0.52) -0.98 (-1.28,-0.68)
Darifenacin ER 15mg q.d (40) -0.47 (-0.94,0.03) -0.68 (-1.18,-0.11) -1 (-1.55,-0.37)
Electromagnetic stimulation (125) -0.45 (-2.54,1.46) -0.67 (-2.73,1.22) -0.98 (-3.1,0.98)
Oxybutynin gel 84mg/day (134) -0.45 (-1.03,0.2) -0.71 (-1.28,-0.07) -1.01 (-1.64,-0.25)
Tolterodine IR 2mg b.i.d (5) -0.45 (-0.58,-0.31) -0.69 (-0.84,-0.53) -0.97 (-1.3,-0.64)
Tolterodine IR 2mg b.i.d + PFE (95) -0.44 (-1.06,0.22) -0.65 (-1.29,0.06) -0.96 (-1.62,-0.23)
Tolterodine IR 2mg b.i.d + BT (93) -0.41 (-0.96,0.11) -0.67 (-1.23,-0.13) -0.96 (-1.57,-0.37)
Propiverine ER 20mg q.d (41) -0.41 (-0.59,-0.22) -0.65 (-0.84,-0.45) -0.95 (-1.3,-0.59)
Trospium chloride 45mg t.i.d (47) -0.41 (-1.12,0.4) -0.63 (-1.31,0.13) -0.94 (-1.69,-0.08)
Elocalcitol 75mg (70) -0.39 (-0.91,0.21) -0.56 (-1.08,0.07) -0.9 (-1.53,-0.25)
Propiverine 45mg t.i.d (118) -0.38 (-2.55,1.76) -0.61 (-2.75,1.58) -0.93 (-3.13,1.32)
Fesoterodine ER (4mg-8mg) q.d (27) -0.36 (-0.57,-0.13) -0.64 (-0.84,-0.44) -0.91 (-1.27,-0.55)
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Table 2 Estimated posterior median difference (and 95% credible intervals) in change from baseline for urinary incontinence, voiding
and urgency episodes obtained from multivariate network meta-analysis. Continued

Tolterodine IR 1mg b.i.d (6) -0.34 (-0.67,-0.01) -0.57 (-0.92,-0.21) -0.88 (-1.35,-0.42)
Imidafenacin IR 0.1mg b.i.d (36) -0.35 (-0.62,-0.1) -0.53 (-0.8,-0.28) -0.86 (-1.26,-0.44)
Terodiline IR 25mg b.i.d (28) -0.35 (-0.81,0.09) -0.51 (-0.96,-0.09) -0.86 (-1.37,-0.28)
Oxybutynin transdermal 3.9mg/day (10) -0.32 (-0.64,-0.03) -0.55 (-0.87,-0.24) -0.84 (-1.28,-0.44)
Oxybutynin gel 56mg/day (135) -0.32 (-0.95,0.33) -0.48 (-1.1,0.15) -0.81 (-1.53,-0.08)
Oxbutynin patch 73.5mg (15) -0.31 (-0.65,0.05) -0.53 (-0.93,-0.11) -0.84 (-1.31,-0.34)
Imidafenacin IR 0.05mg b.i.d (35) -0.29 (-0.73,0.17) -0.53 (-0.99,-0.05) -0.82 (-1.36,-0.26)
Darifenacin ER 7.5mg q.d (39) -0.28 (-0.85,0.26) -0.5 (-1.09,0.06) -0.83 (-1.46,-0.2)
Elocalcitol 150mg (69) -0.28 (-0.82,0.33) -0.5 (-1.05,0.12) -0.8 (-1.45,-0.13)
Duloxetine IR 40mg b.i.d (65) -0.27 (-0.77,0.24) -0.5 (-1.06,0.06) -0.8 (-1.43,-0.2)
Solabegron 50mg b.i.d (54) -0.24 (-0.52,0.03) -0.47 (-0.75,-0.21) -0.77 (-1.18,-0.38)
Lipo-BoNTA (138) -0.21 (-1.06,0.64) -0.46 (-1.35,0.42) -0.77 (-1.68,0.19)
Tarafenacin 0.4mg q.d (82) -0.2 (-0.87,0.51) -0.45 (-1.1,0.27) -0.74 (-1.45,0.07)
Serlopitant 0.25mg q.d (107) -0.21 (-0.73,0.37) -0.42 (-0.91,0.09) -0.72 (-1.36,-0.12)
Serlopitant 4mg q.d (109) -0.19 (-0.76,0.36) -0.41 (-0.94,0.1) -0.71 (-1.34,-0.11)
Pregabalin 75mg b.i.d + Tolterodine ER 2mg q.d (103) -0.18 (-0.66,0.3) -0.42 (-0.9,0.04) -0.71 (-1.29,-0.17)
Oxybutynin 20mg intravesically q.d (106) -0.15 (-1.63,1.3) -0.36 (-1.83,1.05) -0.65 (-2.14,0.75)
PFMT + BT (89) -0.1 (-0.66,0.43) -0.37 (-0.97,0.2) -0.66 (-1.28,-0.04)
Cizolirtine citrate 200mg b.i.d (56) -0.12 (-1.5,1.07) -0.33 (-1.69,0.84) -0.63 (-2.03,0.52)
Oxybutynin IR 2.5mg t.i.d (21) -0.1 (-0.41,0.21) -0.42 (-0.9,-0.07) -0.63 (-1.08,-0.17)
Percutaneous tibial nerve stimulation (83) -0.09 (-1.07,1.21) -0.35 (-1.32,0.98) -0.63 (-1.61,0.71)
Electrostimulation + vaginal oestrogen cream 1.25mg/day (133) -0.07 (-0.75,0.63) -0.23 (-0.9,0.48) -0.63 (-1.35,0.13)
Electrostimulation (80) -0.03 (-0.48,0.43) -0.31 (-0.8,0.13) -0.67 (-1.26,-0.14)
ONO-8539 100mg b.i.d (60) -0.02 (-0.66,0.61) -0.22 (-0.87,0.41) -0.53 (-1.23,0.16)
Oxybutynin ER 15mg q.d (9) -0.01 (-1.17,0.83) -0.22 (-1.41,0.63) -0.54 (-1.74,0.35)
Netupitant 200mg q.d (112) -0.02 (-1.19,1.09) -0.23 (-1.42,0.82) -0.52 (-1.75,0.53)
Estradiol 25mg (68) 0.01 (-0.37,0.37) -0.21 (-0.67,0.2) -0.53 (-1.03,-0.02)
Placebo (1) NA NA NA
Netupitant 100mg q.d (111) 0.01 (-1.1,0.96) -0.2 (-1.29,0.71) -0.52 (-1.62,0.4)
PFMT (84) 0.07 (-0.63,0.64) -0.18 (-0.85,0.43) -0.48 (-1.12,0.18)
Oxybutynin transdermal 1.3mg/day (11) 0.07 (-0.46,0.6) -0.14 (-0.67,0.38) -0.45 (-1.06,0.11)
ZD0947IL 25mg/day (58) 0.07 (-0.81,0.98) -0.12 (-1.03,0.82) -0.45 (-1.39,0.52)
Serlopitant 1mg q.d (108) 0.08 (-0.45,0.66) -0.14 (-0.64,0.38) -0.44 (-1.05,0.17)
Netupitant 50mg q.d (110) 0.13 (-1.01,1.11) -0.1 (-1.19,0.87) -0.4 (-1.54,0.57)
Bladder Training (85) 0.15 (-0.37,0.66) -0.07 (-0.58,0.46) -0.4 (-0.91,0.19)
Tarafenacin 0.2mg q.d (90) 0.15 (-0.55,0.83) -0.06 (-0.77,0.64) -0.38 (-1.15,0.38)
Oxybutynin ER 2.5mg q.d + Bladder training (92) 0.22 (-0.83,1.31) 0 (-1.05,1.11) -0.32 (-1.34,0.84)
Oxybutynin transdermal 2.6mg/day (12) 0.22 (-0.3,0.74) -0.03 (-0.55,0.5) -0.32 (-0.93,0.29)
Oxybutynin ER (5-30mg) q.d (22) 0.23 (-0.34,0.85) 0.03 (-0.56,0.67) -0.29 (-0.89,0.38)
Resiniferatoxin 50nM (67) 0.27 (-0.9,1.61) 0.04 (-1.13,1.36) -0.26 (-1.48,1.07)
Vaginal oestrogen cream 1.25mg/day (132) 0.29 (-0.24,0.81) 0.03 (-0.5,0.55) -0.22 (-0.81,0.41)
Flavoxate chloride 200mg q.d (64) 0.34 (-0.36,1.05) 0.12 (-0.62,0.88) -0.2 (-0.95,0.61)
Oxybutynin IR 5mg b.i.d (18) 0.35 (-0.25,0.95) 0.13 (-0.5,0.75) -0.17 (-0.88,0.49)
Emepronium bromide 200mg q.d (63) 0.37 (-0.28,1.05) 0.15 (-0.55,0.87) -0.16 (-0.9,0.6)
ONO-8539 300mg b.i.d (61) 0.45 (-0.21,1.14) 0.22 (-0.44,0.91) -0.1 (-0.78,0.65)
Propantheline Bromide 15mg t.i.d (113) 0.45 (-0.67,2.07) 0.22 (-0.88,1.89) -0.09 (-1.26,1.73)
Oxybutynin ER 2.5mg q.d (20) 0.53 (-0.33,1.49) 0.29 (-0.61,1.25) -0.01 (-0.9,0.94)
Estradiol 1mg intravaginally (127) 0.58 (-0.74,2.02) 0.36 (-0.95,1.8) 0.04 (-1.33,1.52)
Propiverine 60mg q.d (119) 0.59 (-1.97,2.89) 0.36 (-2.19,2.69) 0.05 (-2.45,2.45)
ONO-8539 30mg b.i.d (59) 0.56 (-0.04,1.2) 0.34 (-0.27,0.96) 0.04 (-0.63,0.75)
Sham Therapy (3) 0.54 (-0.55,2) 0.35 (-0.75,1.82) 0.03 (-1.02,1.54)
Trospium IR 15mg t.i.d (46) 0.6 (-0.32,1.46) 0.43 (-0.49,1.36) 0.08 (-0.82,1.04)
Oxybutynin IR (5-20mg) (23) 0.68 (-0.66,1.94) 0.46 (-0.91,1.73) 0.16 (-1.24,1.46)
Oxybutynin ER 5-30mg/day + Behaviour therapy (22) 0.96 (-0.08,2.17) 0.72 (-0.3,1.94) 0.44 (-0.62,1.63)
Control (2) 0.99 (0.22,2.01) 0.82 (0.04,1.87) 0.47 (-0.31,1.52)
Reflexology (71) 1.03 (0.25,2.15) 0.78 (-0.05,1.88) 0.48 (-0.36,1.61)
Naftopidil 25mg q.d (114) 3.46 (1.53,5.44) 3.24 (1.29,5.2) 2.94 (0.95,4.99)
Solifenacin succinate 5mg q.d + Naftopidil 25mg q.d (115) 5.26 (2.92,7.79) 5.04 (2.71,7.54) 4.72 (2.43,7.26)

†median relative to a placebo intervention
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Table 3 Estimated posterior median difference (and 95% credible intervals) in change from baseline for urinary incontinence, voiding
and urgency episodes obtained from multivariate network meta-analysis incorporating class effects

Treatment Code Incontinence episodes† Voiding episodes† Urgency episodes†

Sacral nerve stimulation (81) -8 (-9.54,-6.27) -8.19 (-9.69,-6.49) -8.49 (-10.11,-6.78)
OnaBoNT-A 200u trigone sparing (73) -2.04 (-3.09,-1.29) -2.26 (-3.31,-1.51) -2.55 (-3.6,-1.74)
Oxybutynin IR 2.5mg b.i.d + Salivary pastilles (98) -2.07 (-3.42,0.03) -2.3 (-3.62,-0.22) -2.64 (-3.85,-0.64)
Electrostimulation + PFMT + BT (97) -1.78 (-2.58,-1.06) -1.97 (-2.8,-1.25) -2.3 (-3.21,-1.58)
Solifenacin/trospium + placebo injection (100) -1.8 (-2.45,-0.79) -2.01 (-2.67,-0.94) -2.33 (-3.08,-1.22)
OnaBoNT-A 100u bladder base + trigone (79) -1.78 (-3.31,-0.92) -2.01 (-3.54,-1.14) -2.35 (-4,-1.36)
OnaBoNT-A 100u bladder body + trigone (78) -1.68 (-2.6,-0.92) -1.89 (-2.85,-1.11) -2.23 (-3.24,-1.4)
OnaBoNTA 100u trigone sparing (72) -1.66 (-2.05,-1.3) -1.73 (-2.07,-1.41) -2.14 (-2.66,-1.7)
Tolterodine ER 4mg q.d + Neurostimulation (96) -1.32 (-1.7,-0.95) -1.57 (-2.05,-1.14) -1.88 (-2.44,-1.43)
Estriol 1mg intravesically (131) -1.52 (-2.88,-0.31) -1.76 (-3.07,-0.58) -2.06 (-3.4,-0.91)
Trospium IR 15mg t.i.d + Physiotherapy (91) -1.16 (-1.95,-0.43) -1.4 (-2.22,-0.62) -1.74 (-2.58,-0.93)
Estradiol 3mg intravaginally (128) -0.87 (-2.13,1.08) -1.08 (-2.31,0.82) -1.41 (-2.64,0.53)
Solifenacin ER 10mg q.d (30) -0.82 (-1.06,-0.61) -1.09 (-1.3,-0.9) -1.37 (-1.74,-1.03)
Tolterodine ER 2mg b.i.d + Oestrogen 0.625mg 2xwk (99) -0.68 (-1.23,-0.22) -0.89 (-1.48,-0.39) -1.22 (-1.88,-0.66)
Tolterodine ER 4mg q.d + BT (87) -0.68 (-1.31,-0.07) -0.88 (-1.61,-0.25) -1.23 (-1.96,-0.57)
Pregabalin 150mg b.i.d + Tolterodine ER 4mg q.d (102) -0.85 (-1.42,-0.2) -1.09 (-1.65,-0.46) -1.41 (-2.05,-0.69)
Fesoterodine ER 8mg q.d (26) -0.69 (-0.87,-0.49) -0.92 (-1.1,-0.72) -1.25 (-1.6,-0.9)
Imidafenacin IR 0.25mg b.i.d (37) -0.72 (-1.32,-0.17) -0.96 (-1.55,-0.34) -1.28 (-1.98,-0.62)
Solifenacin ER (5mg-10mg) q.d (31) -0.68 (-0.9,-0.42) -0.84 (-1.06,-0.61) -1.2 (-1.54,-0.87)
Solifenacin ER 5mg - 15mg q.d (34) -0.64 (-1,-0.27) -0.87 (-1.29,-0.45) -1.2 (-1.66,-0.75)
Mirabegron 100mg b.i.d (48) -0.68 (-1.06,-0.4) -0.87 (-1.27,-0.6) -1.2 (-1.68,-0.88)
Solabegron 125mg b.i.d (55) -0.62 (-0.9,-0.34) -0.84 (-1.12,-0.59) -1.16 (-1.58,-0.79)
Propiverine ER 30mg b.i.d (42) -0.61 (-1.81,-0.1) -0.85 (-2.06,-0.37) -1.18 (-2.42,-0.6)
Darifenacin ER 30mg q.d (38) -0.59 (-1.15,-0.05) -0.8 (-1.41,-0.2) -1.15 (-1.73,-0.54)
Mirabegron ER 25mg q.d (50) -0.63 (-0.87,-0.42) -0.85 (-1.05,-0.64) -1.16 (-1.48,-0.84)
Mirabegron IR 150mg b.i.d (49) -0.61 (-0.91,-0.29) -0.87 (-1.14,-0.55) -1.18 (-1.53,-0.81)
Mirabegron ER 100mg q.d (52) -0.62 (-0.81,-0.44) -0.8 (-0.96,-0.61) -1.15 (-1.47,-0.87)
Mirabegron ER 200mg q.d (53) -0.62 (-0.91,-0.27) -0.83 (-1.13,-0.47) -1.17 (-1.53,-0.79)
Oxybutynin ER 10mg q.d (8) -0.58 (-1.09,-0.25) -0.81 (-1.27,-0.47) -1.14 (-1.57,-0.7)
Propiverine ER 30mg q.d (42) -0.56 (-1.05,-0.17) -0.76 (-1.33,-0.37) -1.08 (-1.72,-0.66)
Oxybutynin IR 3mg t.i.d (19) -0.6 (-0.94,-0.3) -0.75 (-1.12,-0.45) -1.09 (-1.56,-0.7)
Mirabegron ER 50mg q.d (51) -0.59 (-0.78,-0.42) -0.84 (-0.99,-0.67) -1.15 (-1.45,-0.84)
Solifenacin ER 5mg q.d (29) -0.6 (-0.8,-0.38) -0.74 (-0.92,-0.58) -1.14 (-1.48,-0.83)
Tolterodine IR 2mg b.i.d + BT (93) -0.57 (-1,0) -0.86 (-1.28,-0.2) -1.15 (-1.7,-0.47)
Cizolirtine Citrate 400mg b.i.d (57) -0.56 (-1.1,-0.05) -0.8 (-1.37,-0.25) -1.16 (-1.78,-0.56)
Trospium ER 60mg q.d (44) -0.55 (-0.92,-0.21) -0.75 (-1.13,-0.41) -1.08 (-1.59,-0.61)
Propiverine IR 45mg t.i.d (118) -0.52 (-1.14,0.1) -0.73 (-1.35,-0.15) -1.06 (-1.73,-0.39)
Tolterodine IR 2mg b.i.d + Pilocarpine 9mg b.i.d (101) -0.5 (-0.81,-0.23) -0.74 (-1.11,-0.43) -1.07 (-1.53,-0.68)
Fesoterodine ER 4mg q.d (25) -0.49 (-0.66,-0.32) -0.7 (-0.86,-0.53) -1.03 (-1.38,-0.72)
Pregabalin 150mg b.i.d (62) -0.5 (-1.08,0.12) -0.75 (-1.3,-0.18) -1.06 (-1.74,-0.35)
Darifenacin ER 15mg q.d (40) -0.46 (-0.83,0) -0.65 (-1.05,-0.17) -0.99 (-1.48,-0.47)
Propiverine IR 15mg b.i.d (43) -0.46 (-0.88,-0.1) -0.62 (-1.07,-0.27) -0.98 (-1.56,-0.58)
Tolterodine ER 4mg q.d (4) -0.5 (-0.6,-0.4) -0.62 (-0.74,-0.52) -0.99 (-1.29,-0.75)
Oxybutynin IR 5mg t.i.d (7) -0.45 (-0.78,-0.18) -0.64 (-0.93,-0.36) -0.98 (-1.37,-0.61)
Propiverine ER 20mg q.d (41) -0.42 (-0.6,-0.22) -0.65 (-0.84,-0.48) -0.98 (-1.35,-0.67)
Tolterodine IR 2mg b.i.d (5) -0.44 (-0.57,-0.3) -0.67 (-0.82,-0.53) -0.98 (-1.31,-0.7)
Propiverine ER 60mg q.d (119) -0.41 (-0.89,0.72) -0.6 (-1.09,0.44) -0.92 (-1.55,0.23)
Oxybutynin intravesically 5mg t.i.d (14) -0.41 (-0.97,-0.02) -0.61 (-1.17,-0.23) -0.96 (-1.52,-0.52)
Oxybutynin IR 2.5-5mg b.i.d (24) -0.46 (-0.8,-0.16) -0.63 (-0.95,-0.38) -1 (-1.36,-0.6)
Oxybutynin chloride topical gel 1g q.d (13) -0.43 (-0.78,-0.13) -0.64 (-0.97,-0.35) -0.99 (-1.35,-0.59)
Oxybutynin vaginal ring 6mg q.d (17) -0.39 (-0.78,0.01) -0.63 (-1.01,-0.23) -0.95 (-1.4,-0.44)
Tolterodine IR 2mg b.i.d + PFMT (95) -0.44 (-0.98,0.42) -0.65 (-1.23,0.2) -0.98 (-1.62,-0.2)
PFMT + BT (89) -0.38 (-0.83,0.03) -0.66 (-1.16,-0.18) -0.95 (-1.55,-0.44)
Tolterodine IR 1mg b.i.d (6) -0.39 (-0.64,-0.08) -0.62 (-0.91,-0.31) -0.94 (-1.35,-0.58)
Fesoterodine ER 4mg-8mg q.d (27) -0.37 (-0.59,-0.17) -0.67 (-0.86,-0.46) -0.96 (-1.33,-0.62)
Oxybutynin gel 84mg/day (134) -0.37 (-0.76,0) -0.63 (-0.99,-0.28) -0.96 (-1.33,-0.51)
Oxybutynin transdermal 3.9mg/day (10) -0.38 (-0.63,-0.14) -0.61 (-0.86,-0.35) -0.94 (-1.29,-0.58)
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Table 3 Estimated posterior median difference (and 95% credible intervals) in change from baseline for urinary incontinence, voiding
and urgency episodes obtained from multivariate network meta-analysis incorporating class effects. Continued

Oxybutynin vaginal ring 4mg q.d (16) -0.37 (-0.67,-0.03) -0.56 (-0.87,-0.22) -0.92 (-1.31,-0.48)
Imidafenacin 0.1mg b.i.d (36) -0.38 (-0.69,-0.1) -0.55 (-0.81,-0.29) -0.9 (-1.3,-0.5)
Terodiline 25mg b.i.d (28) -0.37 (-0.78,0.14) -0.51 (-0.9,-0.05) -0.88 (-1.44,-0.3)
Darifenacin ER 7.5mg q.d (39) -0.35 (-0.81,0.19) -0.58 (-1.08,0.02) -0.92 (-1.46,-0.29)
Oxybutynin gel 56mg/day (135) -0.35 (-0.69,0.06) -0.52 (-0.82,-0.1) -0.88 (-1.3,-0.38)
Oxbutynin patch 73.5mg (15) -0.34 (-0.57,-0.02) -0.56 (-0.86,-0.15) -0.89 (-1.27,-0.45)
Elocalcitol 75mg (70) -0.37 (-0.89,0.06) -0.5 (-1.06,-0.07) -0.89 (-1.57,-0.38)
Oxybutynin 20mg intravesically q.d (106) -0.33 (-0.75,0.42) -0.55 (-0.95,0.27) -0.9 (-1.34,-0.05)
Imidafenacin 0.05mg b.i.d (35) -0.32 (-0.76,0.23) -0.57 (-1.03,0.03) -0.9 (-1.42,-0.22)
Oxybutynin ER 15mg q.d (9) -0.31 (-0.78,0.12) -0.53 (-0.98,-0.07) -0.88 (-1.32,-0.31)
Oxybutynin IR 5-20mg (23) -0.29 (-0.67,0.26) -0.52 (-0.9,0.07) -0.85 (-1.32,-0.13)
Oxybutynin ER 5-30mg q.d (22) -0.3 (-0.63,0.02) -0.5 (-0.88,-0.12) -0.87 (-1.27,-0.39)
Trospium chloride IR 45mg t.i.d (47) -0.33 (-0.81,0.18) -0.55 (-0.95,-0.12) -0.89 (-1.38,-0.35)
Cizolirtine citrate 200mg b.i.d (56) -0.22 (-1.26,0.73) -0.46 (-1.48,0.54) -0.77 (-1.87,0.26)
Pelvic floor muscle training (PFMT)/Physiotherapy (84) -0.33 (-0.82,0.15) -0.59 (-1.17,-0.01) -0.89 (-1.54,-0.35)
Oxybutynin transdermal 1.3mg/day (11) -0.27 (-0.56,0.14) -0.48 (-0.78,-0.04) -0.82 (-1.26,-0.29)
Elocalcitol 150mg (69) -0.34 (-0.78,0.19) -0.55 (-1.05,-0.04) -0.86 (-1.48,-0.27)
Oxybutynin ER 2.5mg q.d (20) -0.27 (-0.68,0.36) -0.54 (-0.95,0.15) -0.86 (-1.33,-0.04)
Duloxetine 40mg b.i.d (65) -0.3 (-0.86,0.26) -0.52 (-1.16,0.09) -0.86 (-1.56,-0.16)
Bladder Training (BT)/ Behaviour Therapy (85) -0.26 (-0.56,0.05) -0.45 (-0.8,-0.13) -0.8 (-1.24,-0.4)
Solabegron IR 50mg b.i.d (54) -0.24 (-0.52,0.05) -0.46 (-0.74,-0.18) -0.79 (-1.22,-0.4)
Oxybutynin IR 2.5mg t.i.d (21) -0.19 (-0.45,0.1) -0.58 (-0.99,-0.17) -0.77 (-1.17,-0.34)
Oxybutynin transdermal 2.6mg/day (12) -0.18 (-0.52,0.35) -0.43 (-0.75,0.16) -0.77 (-1.2,-0.11)
Pregabalin 75mg b.i.d + Tolterodine ER 2mg q.d (103) -0.24 (-0.67,0.24) -0.48 (-0.9,-0.04) -0.78 (-1.33,-0.25)
Oxybutynin ER 2.5mg q.d + BT (92) -0.35 (-1.14,0.48) -0.57 (-1.35,0.27) -0.88 (-1.75,0.03)
Oxybutynin IR 5mg b.i.d (18) -0.15 (-0.49,0.35) -0.39 (-0.78,0.15) -0.75 (-1.19,-0.09)
Lipo-BoNTA 200U (138) -0.04 (-0.92,0.78) -0.26 (-1.21,0.61) -0.57 (-1.53,0.29)
Serlopitant 0.25mg q.d (107) -0.08 (-0.56,0.45) -0.31 (-0.79,0.23) -0.64 (-1.2,-0.01)
Serlopitant 4mg q.d (109) -0.07 (-0.61,0.44) -0.3 (-0.81,0.24) -0.63 (-1.21,0.01)
Tarafenacin 0.4mg q.d (82) -0.19 (-0.82,0.53) -0.43 (-1.04,0.29) -0.75 (-1.4,-0.02)
Electrostimulation + vaginal oestrogen cream 1.25mg/day (133) -0.08 (-0.77,0.61) -0.22 (-0.91,0.5) -0.68 (-1.51,0.16)
Electrostimulation (80) -0.05 (-0.48,0.37) -0.35 (-0.89,0.15) -0.76 (-1.44,-0.16)
Serlopitant 1mg q.d (108) 0.06 (-0.48,0.61) -0.15 (-0.63,0.39) -0.5 (-1.08,0.15)
Estradiol 25mg (68) 0.01 (-0.4,0.51) -0.19 (-0.68,0.32) -0.53 (-1.09,0.04)
Placebo (1) NA NA NA
Netupitant 200mg q.d (112) -0.09 (-0.98,0.74) -0.3 (-1.23,0.51) -0.63 (-1.54,0.2)
Netupitant 100mg q.d (111) -0.04 (-0.84,1.06) -0.25 (-1.08,0.84) -0.59 (-1.48,0.47)
Tarafenacin 0.2mg q.d (90) 0.01 (-0.66,0.7) -0.18 (-0.89,0.51) -0.52 (-1.25,0.14)
Trospium IR 15mg t.i.d (46) -0.03 (-0.74,0.71) -0.18 (-1.02,0.58) -0.54 (-1.39,0.27)
ZD0947IL 25mg/day (58) 0.07 (-0.61,0.87) -0.1 (-0.84,0.67) -0.42 (-1.28,0.24)
Netupitant 50mg q.d (110) 0.06 (-0.61,0.81) -0.14 (-0.83,0.51) -0.48 (-1.33,0.22)
Electromagnetic stimulation (125) -1.25 (-4.03,0.42) -1.47 (-4.25,0.17) -1.85 (-4.57,-0.06)
Oxybutynin ER 5-30mg/day + Behaviour therapy (22) 0.19 (-0.63,1.05) -0.04 (-0.92,0.84) -0.4 (-1.24,0.6)
ONO-8539 100mg b.i.d (60) 0.15 (-0.43,0.77) -0.04 (-0.62,0.55) -0.37 (-1,0.3)
Percutaneous tibial nerve stimulation (83) -0.42 (-1.06,0.4) -0.65 (-1.33,0.13) -0.95 (-1.74,-0.22)
Vaginal oestrogen cream 1.25mg/day (132) 0.28 (-0.22,0.75) 0 (-0.57,0.52) -0.26 (-0.91,0.34)
Flavoxate chloride 200mg q.d (64) 0.28 (-0.35,1.19) 0.05 (-0.59,0.97) -0.29 (-0.93,0.64)
Resiniferatoxin 50nM (67) 0.08 (-1.43,1.12) -0.15 (-1.68,0.88) -0.47 (-2.07,0.63)
Emepronium bromide ER 200mg q.d (63) 0.36 (-0.65,1.17) 0.15 (-0.86,0.98) -0.21 (-1.17,0.65)
ONO-8539 300mg b.i.d (61) 0.43 (-0.11,1.07) 0.2 (-0.31,0.85) -0.17 (-0.67,0.61)
Propantheline Bromide 15mg t.i.d (113) 0.69 (-0.88,1.59) 0.46 (-0.99,1.35) 0.11 (-1.41,1.12)
Estradiol 1mg intravaginally (127) 1.02 (-0.45,2.47) 0.82 (-0.61,2.26) 0.46 (-0.95,1.94)
ONO-8539 30mg b.i.d (59) 0.58 (-0.1,1.2) 0.35 (-0.32,0.98) 0.02 (-0.67,0.7)
Control (2) 0.49 (0,1.09) 0.33 (-0.1,0.94) -0.02 (-0.62,0.6)
Reflexology (71) 0.46 (-0.12,1.22) 0.22 (-0.45,0.97) -0.06 (-0.79,0.7)
Sham Therapy (3) 0.2 (-0.45,0.96) 0 (-0.65,0.73) -0.34 (-1.08,0.34)
Naftopidil 25mg q.d (114) 4.06 (2.41,5.02) 3.8 (2.21,4.79) 3.48 (1.81,4.49)
Solifenacin ER 5mg q.d + Naftopidil 25mg q.d (115) 5.19 (3.67,7.37) 4.95 (3.47,7.15) 4.6 (3.22,6.91)
†median relative to a placebo intervention
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Fig. 6 Comparison of the estimated posterior median difference (and 95% credible intervals) in change from baseline in incontinence episodes
relative to placebo between individual-intervention, hierarchical, and multivariate hierarchical NMA models for the top 10 interventions

(see Additional file 5). Borrowing information between
outcomes allowed for estimation of treatment effects
for both urinary incontinence and urgency episodes,
and consequently estriol 1mg intravesically was ranked
in tenth place across all outcome measures. How-
ever, the remaining top ten interventions remained
unchanged.

Convergence diagnostics
Convergence diagnostic plots for a small selection of basic
parameters, d1j, the pooled effect estimate of intervention
j relative to placebo, are given in Additional file 7. Both
the between andwithin chain variability appeared to reach
stability, and the ratio appeared to converge to 1. All plots
appeared to show reducing autocorrelation with increased
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Fig. 7 Comparison of the estimated posterior median difference (and 95% credible intervals) in change from baseline in voiding episodes relative to
placebo between individual-intervention, hierarchical, and multivariate hierarchical NMA models for the top 10 interventions

lag. History and trace plots took the appearance of ran-
dom noise, with no obvious difference between multiple
MCMC chains with very different starting values. Overall
all diagnostic plots appeared to suggest that there was no
evidence of non-convergence and both d1j and ζ were esti-
mated from samples which appeared to have a reasonable
degree of mixing of the chains.

Sensitivity analysis
Sensitivity analyses assessing different choices of prior
distributions for the between-study standard deviations,
the elements of the matrix V1/2, and the variability of
treatment effect profiles across outcomes, ζ , are given
in Additional file 8. Different choices of prior distribu-
tions for variance parameters had very little impact in
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Fig. 8 Comparison of the estimated posterior median difference (and 95% credible intervals) in change from baseline in urgency episodes relative
to placebo between individual-intervention, hierarchical, and multivariate hierarchical NMA models for the top 10 interventions

the treatment effect estimates for all three outcomes, and
therefore the overall clinical decisions regarding interven-
tions effectiveness remained the same. Thus suggesting
that treatment effect estimates were robust to choice of
prior distribution.

Discussion
This paper extends the MVNMA framework described
by Achana et al. [7], to incorporate the exchangeability of

interventions belonging to the same class of interventions.
This approach makes use of the correlations between
multiple outcomes in order to predict and impute treat-
ment effect estimates for missing data, and therefore, has
the potential to limit the impact of outcome reporting
bias, as well as, borrows strength between interventions
belonging to the same class of treatment, which has the
potential to increase precision in the treatment effect
estimates.
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Fig. 9 Heatmap of intervention profiles for the cardinal symptoms of
OAB

In the OAB example, the datasets used in univariate
analyses for each outcome independently, included 115,
119 and 60 studies evaluating 97, 100, and 54 interven-
tions for incontinence, voiding, and urgency episodes,
respectively. Despite urgency being documented as “the

cardinal symptom" of OAB [25], it was sufficiently under-
reported in the original trials, and consequently fewer
interventions were able to be evaluated in univariate anal-
yses. Adopting a multivariate approach, we were able to
borrow information across outcomes and consequently
included 143 studies evaluating all 115 interventions for
the management of incontinence, voiding and urgency.
Using this methodology completed the treatment pro-
files for all prominent symptoms of OAB, which in turn
allows decision makers to make inferences regarding the
potential treatment benefit for all interventions, across
all salient outcomes. In doing so, sacral nerve stimula-
tion appeared to be the most effective intervention for
reducing incontinence, voiding and urgency episodes with
an estimated posterior median reduction of -8 (95%CrI: -
9.54, -6.27), -8.19 (95%CrI: -9.69,-6.49) and -8.49(95%CrI:
-10.11,-6.78) episodes, relative to placebo, respectively.
However, due to the limited number of studies and par-
ticipants in which sacral nerve stimulation was evaluated,
these results should be interpreted with caution.
Sacral nerve stimulation was not evaluated for urgency

in the original trials and thus could not be assessed in uni-
variate analyses. Using a multivariate approach therefore
changed the overall clinical decision for the management
of urgency, where electrostimulation in combination with
vaginal oestrogen cream 1.25mg/day was found to be the
most effective intervention from univariate analyses. Sim-
ilarly, from univariate analyses, estriol 1mg intravesically
appeared to be a promising intervention for voiding, but
there was no data for all other outcomes. Using a multi-
variate approach, estriol 1mg intravesically ranked in the
top 10 interventions for all three cardinal symptoms of
OAB.
A key assumption of MVNMA is that the data is mul-

tivariately normally distributed. In situations with which
we wish to synthesise multiple binomial outcomes, or a
mixture of binomial and continuous outcomes, it is com-
mon to assume a normal approximation of binomial data
on the log odds ratio (or log odds) scale [9]. This assump-
tion has been shown to hold well when the proportions of
events are close to 0.5, but poorly when the proportions
of events are close to 0 or 1 [31]. In situations such as
these more sophisticated methods, such as copula mod-
els, are required to appropriately capture the within-study
variability using binomial data directly [32].
In this paper, we describe a missing data framework to

incorporate estimates of uncertainty for trials that did not
report any measure of variability in the mean treatment
effects. It could be argued that trials reporting incomplete
outcome data are at a higher risk of bias [33], and the
impact of including such trials in meta-analyses should be
thoroughly explored in sensitivity analyses.
A further assumption of MVNMA is that all data are

assumed to be missing at random [17], which in the case
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of the OAB example may not be plausible [34]. It is likely
that there is an element of selective reporting in the orig-
inal trials, such that outcomes with which interventions
perform particularly well are more likely to be reported
[35]. In this situation, treatment effects may be exagger-
ated [17], though recent simulation studies suggest that a
multivariate meta-analysis can lead to a more appropriate
estimate of treatment effect in the presence of outcome
reporting bias [5, 6] under a variety of missing data sce-
narios, including missing at random and missing not at
random [6]. In order to obtain more accurate estimates
of treatment effects for decision making, data are needed
for all interventions, across all outcomemeasures. Follow-
ing the Core Outcome Measures in Effectiveness Trials
(COMET) initiative [36], there is a clear need to define a
core outcome set (COS) for the future reporting of OAB
trials [34].
Previous simulation studies in multivariate meta-

analysis have shown that in situations when there
are a large proportion of missing data, a multivariate
approach results in increased borrowing of information
and increased precision in treatment effect estimates [6,
16]. Thus, multivariate methods are of most use in sce-
narios with a larger proportion of missing data, and less
use in scenarios with complete data. In a Bayesian frame-
work, with non-informative prior distributions specified
for hyper-parameters (as described in this paper), it has
previously been shown that the total number of missing
values must not exceed ((J − 1) × N) − ((J − 1) + N), for
J interventions and N outcomes. In situations with which
the total number of missing values exceeds this num-
ber, the hyper-parameters will become unidentifiable and
informative prior distributions will be required to improve
model convergence [7].
To ameliorate the impact of outcome reporting bias, the

correlation between outcomes were used to obtain a pre-
dictive value for missing data. In order to achieve this,
an assumption of constant relative effectiveness across
outcomes was assumed for the basic parameters of the
pooled treatment effect estimates, d(1j)l and d(11jm)l, as
described in Eqs. (6) and (10) for MVNMA and MVNMA
incorporating class effects, respectively. If interest lies in
the difference between active interventions, this may be
a strong assumption as the outcome-specific effect, γl,
will cancel. For example, the relative treatment effects of
intervention A relative to intervention B obtained from
MVNMA are expressed in terms of the basic parameters
such that dAB = (d(1B)l −d(1A)l) ∼ Normal(αB −αA, 2ζ 2).
Thus, in these situations, alternative methods should be
explored. An assumption of constant relative effective-
ness across outcomes is of less importance if interest lies
in the relative rankings of the interventions, as these are
calculated based on the basic parameters, d(1j)l.

As with all random effects models, in situations when
the deviation of treatment effect profiles across outcomes,
ζ , is large, it may not be sensible to combine data across all
outcomes. In this scenario, we encourage the use of sen-
sitivity analyses to; i) assess the impact of potentially out-
lying observations in univariate and multivariate analyses,
and ii) assess the difference in mean treatment effects,
and variability in mean treatment effects across outcomes,
using a series of univariate analyses. Reducing the model
to a bivariate or univariate analysis in sensitivity analy-
ses will allow investigation of the impact of outcomes on
the magnitude of ζ , as well as the influence of missing
outcome data on the robustness of the overall conclusions.
In this example, the outcome-specific effect, γl, was

assumed to be constant across all interventions. Fur-
ther work could extend this model to incorporate the
exchangeability of outcome-specific effects within classes
of interventions, such that γlm ∼ Normal(κm,�2

m), where
κm denotes the pooled outcome effect for the mth class of
interventions, and �2

m denotes the class-specific between
intervention variance. However this approach is likely to
substantially increase the number of parameters to be esti-
mated in the model and could lead to computational dif-
ficulties. Furthermore, if there is evidence to suggest that
there is a disparity in outcome-specific effects between
classes, the assumption of homogeneous between-study
correlations is also unlikely to be satisfied and alternative
parameterisations of the between-study covariancematrix
would need to be considered.
One limitation of implementing MVNMA in Win-

BUGS, is the difficultly in calculating deviance statistics
for the assessment of model fit and comparison. Residual
deviance could be calculated by monitoring the estimated
true treatment effects, θij, for each study i = 1, ..., ns and
intervention j = 1, ..., nt , and calculating the difference
of these true treatment effects relative to the observed
treatment effects, Yij, using the following equation: total
residual deviance =

∑i=ns,j=nt
i=1,j=1 (Yij − θij)2Sij, where Sij

denotes the treatment-specific within-study covariance
matrix. In this paper, the within-study correlations were
incorporated at the treatment-arm level in order to appro-
priately account for multi-arm trials [7], thus the within-
study model was parametrised at the arm-level whereas
the between-study model, with which θij is estimated,
was parametrised at the study-level. This makes calcu-
lation of residual deviances more difficult, especially in
the presence of large amounts of missing data. In the
OAB example, there were a large number of observed
data-points with intermittently missing data, therefore,
such an approach would be both computational-, and
time-intensive. Further work is needed to explore re-
parameterisation of MVNMA models, and alternative
methods in order to adequately assess model fit and
comparison.
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In this example, use of a MVNMA incorporating class
effects was illustrated using the three cardinal symptoms
of OAB (incontinence, voiding, and urgency). However,
interest lies in both efficacy and safety outcomes. Incor-
porating additional outcomes results in an exponential
increase in the number of parameters to be estimated
in the model. This is particularly true for estimation
of the parameters involved in both the within-study,
and between-study covariance matrix. This substantial
increase in the number of parameters can often result in
computational difficulties for complex multivariate mod-
els such MVNMAs. Furthermore, estimating the within-
study correlation structures can be particularly difficult
for mixed [9] and binary outcomes [18]. This is because an
analytic solution is not possible [18]. A further limitation
of using MVNMA for imputing missing data with mixed
outcomes, is the assumption that intervention effects are
exchangeable across outcomes. This assumption may not
be reasonable if the outcomes differ in an important way,
e.g, if the outcomes were measured on different scales. For
example, binary outcomes on a log-odds scale and con-
tinuous outcomes on a mean difference scale will differ in
terms of the uncertainty with which they were estimated.
In this analysis, a homogeneity of correlations assump-

tion was used to simplify the number of parameters in the
model and to aid computation. In situations with which
there are fewer interventions, and more information for
each treatment comparison, it may be desirable to incor-
porate treatment-specific between-study correlations. It
may also be desirable to incorporate treatment-specific
within-study correlations, however, data for every pair of
treatment comparisons may be difficult to obtain, and
thus within-study correlations may be difficult to esti-
mate. In this example, the within-study correlations were
estimated from individual patient data obtained from the
RELAX trial [37]. Uncertainty in estimating the within-
study correlations needs to be further accounted for. For
continuous outcomes that follow a multivariate normal
distribution, it would be possible to obtain estimates of
the within-study correlations directly from the covariance
matrix [9]. Estimates of the within-study correlations,
together with their uncertainty, could be incorporated in
to the MVNMA model by applying prior distributions
to the within-study correlation parameters, pwxy, using a
bootstrapping method [9].

Conclusions
Accounting for the correlation between outcomes, MVN-
MAs incorporating class effects allowed for the evalu-
ation of all interventions across all outcome measures.
In the OAB example, including this additional informa-
tion changed the overall clinical conclusions. Estriol 1mg
intravesically was ranked in the top 10 interventions for
the management of all cardinal symptoms of OAB, and

sacral nerve stimulation was found to be themost effective
intervention for reducing urgency. Borrowing informa-
tion across outcomes usingMVNMAs generally increased
the precision in the treatment effect estimates. This pre-
cision was further increased by incorporating a hierar-
chical structure where similarities between interventions
that belong to the same class of interventions were also
accounted for. Overall, MVNMAs can provide a flexible
framework to model a mixture of outcomes and are of
most use in situations when there is a large proportion of
missing data, ameliorating the impact of outcome report-
ing bias. MVNMAs incorporating class effects, applied
judiciously, have proven to be a useful methodology.
These methods have the potential to aid health technol-
ogy assessment decision making by increasing precision
in treatment effect estimates, as well as allowing for the
complete evaluation of all outcomes and interventions of
interest for multi-morbid, or syndromic conditions.
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