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Abstract

Background: Two-dimensional personalized medicine (2-PM) models are tools for measuring individual benefits of
medical treatments for chronic diseases which have potential applications in personalized medicine. These models
assume normality for the distribution of random effects. It is necessary to examine the appropriateness of this assumption.
Here, we propose a graphical approach to assessing the goodness-of-fit of 2-PM models with continuous responses.

Methods: We propose benefit quantile-quantile (BQQ) plots which compare the empirical quantiles of individual benefits
from a patient sample predicted through an empirical Bayes (EB) approach versus the quantiles of the theoretical
distribution of individual benefits derived from the assumption of normality for the random effects. We examine the
performance of the approach by conducting a simulation study that compared 2-PM models with non-normal
distributions for the random effects versus models with comparable normal distributions. Cramer-von Mises discrepancies
were used to quantify the performance of the approach. The approach was illustrated with data from a clinical trial of
imipramine for patients with depression.

Results: Simulations showed that BQQ plots were able to capture deviations from the normality assumption for the
random effects and did not show any asymmetric deviations from the y = x line when the random effects were normally
distributed. For the depression data, the points of the BOQ plot were scattered around closely to the y = x line, without
presenting any asymmetric deviations. This implied the adequacy of the normality assumption for the random effects and
the goodness-offit of the 2-PM model for the imipramine data.

Conclusion: BOQ plots are sensitive to violations of the normality assumption for the random effects, suggesting that the
approach is a useful tool for examining the goodness-of-fit of random-effects linear models when the goal is to measure
individual treatment benefits.
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Background

Two-dimensional personalized medicine (2-PM) models
are tools for measuring the severity of a patient’s chronic
disease and the individual benefits of medical or behav-
joral treatments [1, 2]. The patient’s disease severity at a
specific point in time is defined as the probability of
missing the therapeutic target, and the individual’s bene-
fit is therefore measured as the reduction in disease se-
verity produced by the treatment. When the disease
severity before treatment is close to 1, the patient is
regarded as severely ill. The severity and individual ben-
efits are functions of known and unknown patient’s
characteristics. In practice, 2-PM models are built using
linear regression models with random effects that are as-
sumed to be normally distributed, and severities and
benefits are calculated with both the fixed effects and
the random effects of the model [1, 2]. In addition to be-
ing useful for measuring the individual benefits achieved
by the patients of a clinical trial, the fitted 2-PM model
can be used to measure individual benefits in potentially
new patients [1, 2].

Given the potential applications of 2-PM models in
personalized medicine, it is necessary to develop methods
for examining their goodness-of-fit with a focus on their
ability to measure individual benefits. In this article, we
propose a graphical approach to assessing the goodness-
of-fit of 2-PM models for continuous responses of severely
ill patients. The approach compares the quantiles of the
empirical Bayes (EB) predictors of individual treatment
benefits of the patient sample against the theoretical quan-
tiles of the distribution of individual benefits that are de-
rived from the normality assumption for the random
effects. We conducted a Monte Carlo simulation study
that showed that the approach is sensitive to deviations
from the normality assumption for the random effects.
Specifically, the graphical approach captures the discrep-
ancy between multivariate non-normal distributions for
the random effects and normal distributions with the
same mean and variance-covariance matrix. Since the
main purpose of a 2-PM model is to measure the individ-
ual benefits of a medical or behavioral treatment in the
patients of a clinical study or in potentially new patients
[1, 2], the shape of our proposed goodness-of-fit plot will
depend on the clinician’s therapeutic target. Therefore,
conclusions on the degree of adequacy of the model will
generally depend on the target.

Random-effects linear models (RELMs) are efficient
tools for building 2-PM models of continuous responses.
They are commonly used to understand individuals’ time
trajectories of treatment effects [1-11]. In RELMs, the
distributional assumption of the unobserved random ef-
fects is important for estimation and inference since the
marginal likelihood function, obtained by integrating out
the random effects, depends on the assumed distribution
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for the random effects. An EB approach is typically used
to predict the random effects [1-3, 12-14]. In RELMs,
the EB predictors of the random effects are estimates of
the best linear unbiased predictors (BLUPs), which have
optimality properties that do not require the normality
assumption for the random effects [13]. Thus, a BLUP is
robust to violations of the normality assumption and the
EB predictor inherit some of its robustness [15-17]. The
prediction accuracy of the BLUPs for random effects is
not substantially affected by distribution misspecifications,
as shown by both theoretical and numerical studies [16].
Traditionally and for ease of computation, in RELMs re-
searchers assume that the unobserved random effects fol-
low normal distributions. Violations of this normality
assumption are possible. For instance, omission of patient
level categorical covariates may produce multimodal dis-
tributions for the random intercept [18]. Although viola-
tions of the normality assumption have small-to-mild
effects on the maximum likelihood estimates (MLE) of the
fixed effects, they may affect the prediction of the random
effects by increasing the bias of the variance components
estimates, especially in generalized linear mixed effects
models [12, 18—22]. Therefore, assessing the goodness-of-
fit of 2-PM models with respect to the normality assump-
tion for the random effects is crucial.

Several graphical methods have been proposed for
examining the goodness-of-fit of random-effects models
for longitudinal data. The most well known graphical
approach is based on conditional residuals which are
computed with EB predictors of the random effects
[12, 23-26]. However, although conditional residuals
may detect deviations from the assumption of linear-
ity, are useful for detecting outliers and allow examin-
ing the normality assumption for the error term of
the model, they do not allow examining the normality
of the random effects. Normal quantile-quantile (QQ)
plots are also commonly used in model development
to examine the assumption of normality for the ran-
dom effects. In normal QQ plots, the sample quan-
tiles of the individual EB predictors of a random
effect are plotted against the quantiles of a normal
distribution whose mean and variance are the sample
mean and variance of the EB predictors [24, 26, 27].
A limitation of normal QQ plots is that the data ana-
lyst must conduct a separate analysis for each random
effect in the model. Moreover, there is some evidence
that the EB predictors of a random effect tend to
have a unimodal distribution, even in situations in
which the true distribution of the random effect has
two or more modes [15, 18, 19], which may artifi-
cially straighten the cloud of points of a normal QQ
plot. Verbeke and Molenberghs [28] proposed a
graphical diagnostic tool using gradient functions that
checks the appropriateness of the random effects
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distribution assumption. Similar to normal QQ plots,
a gradient function needs to be plotted for each random
effect in the model. Pan and Lin [29] proposed graphical
and numerical techniques based on cumulative sums of
residuals for checking the link function and functional
forms of covariates in generalized linear mixed models;
their approach, however, does not address the assumption
of normality for the random effects. Grady and Helms
[30] assessed the fit of the assumed covariance structure
by plotting lagged sample covariances or correlations. Diaz
et al. [31] assessed the goodness-of-fit of a random inter-
cept model by plotting random-effect-adjusted observa-
tions based on EB predictors of the random intercept
versus expected observations. Although this approach is
useful for examining the linearity assumption of RELMs
and detecting outliers, it does not allow assessing the nor-
mality assumption for the random effects. Others have
proposed formal statistical tests [32-35]. To check the
normality assumption for the random effects, Efendi et al.
[32] use a bootstrap test based on gradient functions.
Drikvandi et al. [33] propose a diagnostic test based on
Cramer-von Mises discrepancies. Alonso et al. [34]
propose tests that use the eigenvalues of the variance-
covariance matrices of fixed effects estimates obtained
from robust inference methods. Similarly, Abad et al. [35]
use information matrices to propose diagnostic tests for
generalized linear mixed effects models.

This paper is organized as follows. First, we present a
review of 2-PM models for continuous responses and
the calculation of individual treatment benefits for se-
verely ill patients. Then we present a motivation for the
graphical approach and describe it in detail. Next, the
approach is illustrated using data from a clinical trial of
the antidepressant imipramine. Then we describe the
simulation scenarios used to evaluate the performance
of the proposed graphical approach. We also describe
how Cramer-von Mises discrepancies are used to quan-
tify deviations from the normality assumption for the
random effects. The paper ends with a discussion and
conclusions.

Methods

Individual severity and treatment benefits using time
dependent 2-PM models

Time dependent 2-PM models allow understanding the
evolution of individual treatment benefits over time [1].
Let Y be a continuous measure reflecting the patient’s
disease. Before a treatment Q is initiated, the responses
for patient w are measured kg, times and modeled by

Yoo, =N+ €00,jj=1,... koo

After the treatment is initiated, the responses are mea-
sured k., times and modeled by
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Yo, =Moo+ Bgu,+ slw,/,j =1,..,kia,

where A, =a,+17X, and Bow,; = Oote+ 92@%_’}
oo+ O ot? ;- Here, X,, is a vector of patient (subject)
characteristics that do not change during the trial. For
patient w, A, is a constant number that reflects the pa-
tient’s disease state before treatment initiation and B¢,
is the individual’s (time-dependent) treatment effect
after ,; time units of treatment. We write B, (f) in
place of B, to express the treatment effect at a generic
point in time t. We view A, and S ,(¢) as individual re-
alizations of population-level random variables A" and

!

Bo(t) , respectively [1]. Also, &, and ¢, represent

@]
measurement errors or within-patient variability due to

the patient’s internal or external factors, which we as-

sume to be N (0, ¢?) and N(0, 0;2), respectively.

Here, we assume that the therapeutic target is to
achieve Y <y, where y is a value prespecified by the clin-
ician. The patient’s basal disease severity is defined as
the probability that the patient does not satisfy the
therapeutic target before treatment initiation. Thus, a
patient w has basal severity [1, 2]

-A,
o 102,
Oe

where © is the cumulative distribution function of the
standard normal distribution. The patient’s disease se-
verity after a treatment duration ¢ is

$2.0(t) = 1-@ (y‘/‘w;w)

€

That is, s5,,(¢) is the probability that the target has not
been achieved at time £. The patient’s individual benefit
from the medical treatment at the point in time ¢ is the
reduction in disease severity

b, (t) = 80,0—52,0 (t) .

By definition, a patient is severely ill if the patients’
basal severity is approximately 1. Here, we assume that
all patients are severely ill, that is, s, ~ 1 for all . It is
shown in Diaz [1] that under the reasonable assumption
that o,>0,, if the patient is severely ill, the patient’s
benefit can be computed as

bo(t) = @(M)

&€

(1)

In the following, we assume o, = g, which is usually
clinically reasonable. Here, «,, and 6, , ..., 8, are char-
acteristic constants of patient  that are viewed as reali-
zations of random coefficients a* and 67, ..., 8 that do
not necessarily have mean 0. In the terminology of
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mixed effects models, E(a”), A and E(67),...,E(6;) are
the fixed effects, and a” — E(a”) and 0;-E(0}), i=1, ..., d,
are the random effects which are usually assumed to be
jointly normally distributed. Here, we propose a graph-
ical method to examine the assumption of normality.

Quantiles of individual benefits under the normality
assumption

Under the assumption of normality for the random ef-
fects, since the patients are severely ill, the cumulative
distribution function of individual benefits for patients
with covariate value X = x at time ¢ is [1]

F(z) = F(z:%,t) = @(Q_l(yz)‘”)o <z<l, (2

where  p = pu(x,t) = HM;M

_ Varla' y(0)

and  y?=y%(t)

. Further, the p-th quantile of the probabil-

ity distribution function of individual treatment benefits
is [1]

B(p) = B(p;x,t) = ©(y® (p) +#),0<p<1. (3)

The quantities in (2) and (3) are functions of treatment
duration ¢, since g and y are. They also vary with the
fixed effects and variance components (i.e., the variances
and covariances of the random effects and the error
variance).

A motivation for the proposed graphical approach

Here, we estimate (predict) the individual treatment
benefits using the EB approach described in Diaz [1, 2].
The EB predictors of individual treatment benefits are
obtained by replacing the fixed effects, error variance
and individual random effects in Eq. (1) with their esti-
mates or predictors. The fixed effects and variance com-
ponents are usually estimated through maximum or
restricted maximum likelihood [4—-6, 12, 13, 36]. We
predict the random effects following an EB approach [1,
2,9, 12, 13, 19, 36-38]. Importantly, the EB predictors
of random effects are estimates of the best linear un-
biased predictors (BLUPs) and the BLUPs do not assume
normality for the random effects [13]. Moreover, the EB
predictors of random effects are relatively robust to vio-
lations of the normality assumption [13, 15, 16, 38]. Be-
cause of this, one can view the sample quantiles of the
EB-predicted individual benefits as robust estimates of
the quantiles of the probability distribution of individual
benefits. Alternatively, we can directly estimate the
quantiles by replacing the fixed effects and variance
components in Eq. (3) with their corresponding esti-
mates. Therefore, if the normality assumption is violated,
we expect the quantiles estimated with Eq. (3) to be sub-
stantially different from the sample quantiles based on
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the BLUPs because Eq. (3) is derived from the assump-
tion of normality. Thus, we propose to compare the
sample quantiles based on the BLUPs with the quantiles
calculated with Eq. (3) in order to evaluate the assump-
tion of normality for the random effects.

Goodness-of-fit plot

Suppose the sample of patients can be divided into G
subgroups. This is possible, for instance, when the pa-
tient characteristics are categorical or when a character-
istic is continuous and it is split into categories based on
published cut-off values or percentiles. Therefore, we as-
sume that X, includes only binary (dummy) covariates
and that X, has G distinct possible values x4, ..., 5. Let

N, be the number of patients in the subpopulation of pa-
G

tients for whom X, = x,, and let N = )~ N, be the total
g=1

number of patients. For a particular time ¢, let I;g,p,h ey

bg,t,Ng be the EB-predicted individual benefits for the N,
patients in group g, and l;g,t‘(l) < i?g‘p(z) <. < Eg,t,(Ng)
be the corresponding order statistics. A benefit quantile-

quantile (BQQ) plot consists of plotting in an x-y plane
the N points

~(i-0.5 2
<B<l—§xgat>7bg.t (i))’i =1..Npg=1..G.
N, ’

where B is obtained by replacing fixed effects and vari-
ance components in Eq. (3) with their maximum likeli-
hood or restricted maximum likelihood estimates
(RMLEs). Thus, a BQQ plot compares the sample quan-
tiles of individual benefits predicted with the EB ap-
proach versus estimates of the theoretical quantiles
derived from the normality assumption for the random
effects. In practice, we use the maximum point in time
available in the dataset as a value for ¢.

If the points on the BQQ plot do not deviate asym-
metrically much about the y =x line, then we conclude
that the normality assumption for the random effects of
the 2-PM model is appropriate and, therefore, that we
can have reasonable confidence in the EB predictors of
the individual benefits achieved by the patient sample.
Note that, by Egs. (1) and (3), the shape of the BQQ plot
depends on the prespecified therapeutic target and,
therefore, conclusions on the adequacy of the 2-PM
model are applicable only to the specific target used.

Application to depression study

As an illustration, we use clinical trial data from 66 pa-
tients under imipramine treatment with two types of de-
pression diagnosis [39]. The diagnoses were endogenous
(N1 = 37) or nonendogenous (N, =29). The data is avail-
able in Hedeker and Gibbons [6] and is also analyzed by
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Diaz [1]. The response variable, the Hamilton Rating
Scale (HRS) for depression, was recorded at the begin-
ning and end of the week before imipramine treatment
initiation and at the end of each of the next 4 weeks dur-
ing treatment. Diaz [1] fitted a random-effects linear
model of the HRS scores in order to predict individual
treatment benefits but did not provide evidence for the
model’s goodness-of-fit which we examine here. As co-
variates, the model included diagnosis (1 = endogenous,
0 = nonendogenous) as well as time and time-square,
where time is the number of weeks on treatment. Gen-
der was not significant after adjusting for diagnosis and
was therefore not included as a covariate. The intercept
and the linear and quadratic terms of time had random
effects in addition to the fixed effects. We assumed an
unstructured covariance matrix for the random effects
and homoscedastic independent errors. The SAS pro-
cedure MIXED, which assumes normally distributed
random effects, was used to obtain the MLEs of the fixed
effects and EB predictors for the random effects for all
patients (SAS Institute Inc. Cary, NC). All observed
baseline HRS scores were >11. For the computation of
individual imipramine benefits, we assumed that the
therapeutic target was to achieve an HRS score <7 (ie.,
y=7). Using this target and the model parameter esti-
mates, Diaz [1] calculated that the EB predictors of all
patients’ basal severities were approximately 1 and,
therefore, concluded that the patients can be assumed to
be severely ill.

Results for the application study

Parameter estimates are shown in Table 1 in Diaz [1].
Figure S1 in the Supplementary Information indicates
that for the depression data, the model satisfies reason-
ably well the normality assumption for the residuals.

Figure S2 in the Supplementary Information shows
histograms and kernel densities of EB predictors of the
random effects. The shapes of the histograms seem to
suggest approximate normality for the distribution of
the random effects. However, Verbeke and Lesaffre [19]
and Mcculloch and Neuhaus [15] have found that the
shape of the histograms for EB predictors may be mis-
leading and may not reflect the true distribution of the
random effects.

We used Eq. (3) to estimate selected p x 100% percen-
tiles of the individual benefits of imipramine as functions
of treatment duration for nonendogenous (Fig. 1a) and
endogenous (Fig. 1c) patients. For comparison purposes,
we also calculated the corresponding sample percentiles
of the EB-predicted individual benefits for nonendogen-
ous (Fig. 1b) and endogenous (Fig. 1d) patients. In gen-
eral, the sample percentiles and the estimated theoretical
percentiles seem to convey similar information. For in-
stance, for fixed values of p, both estimation methods
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show that the benefit percentiles for nonendogenous pa-
tients tended to be higher than the corresponding per-
centiles for endogenous patients, which reflects the fact
that imipramine was more beneficial in nonendogenous
than endogenous patients [1].

The BQQ plot in Fig. 2, however, displays a better
comparison of the estimated theoretical percentiles and
sample percentiles at week 4. The points in the plot are
distributed closely about the y =x line, without exhibit-
ing any considerable asymmetric deviations. Figure 2
also exhibits a relatively high concentration of patients
at the bottom left corner. The EB quantiles coincided
with the theoretical quantiles in that about 59% of the
patients achieved relatively small individual imipramine
benefits <0.13 in a probability scale. Thus, the sample
quantiles of the patients’ individual benefits matched
closely the theoretical quantiles derived from the nor-
mality assumption. This suggests the adequacy of this
assumption and the goodness-of-fit of the 2-PM model
for the imipramine data, provided the purpose of the
model is to measure individual benefits under the thera-
peutic target HRS <7.

Figure 3 compares the BQQ plot in Fig. 2 with eight
BQQ plots that were consecutively simulated with the
fitted model of HRS scores, which had normal random
effects. The plot in the middle of Fig. 3 is the BQQ plot
computed with the real data and the other plots are the
simulated ones. The parameters in Table 1 of [1] were
used to simulate the patients of the simulated BQQ plots
and, to ensure comparability with the real data, 37 simu-
lated endogenous and 29 simulated non-endogenous pa-
tients were used in each simulated plot. Note that the
plot made with the real data cannot be singled out easily
as most different from the other plots and does not seem
to have a distinguishing feature compared to the other
plots. This reinforces our conclusion that the assump-
tion of normality for the random effects of the 2-PM
model is reasonable [40, 41].

We also applied the diagnostic tests proposed by
Alonso et al. [34] to this dataset. The null hypothesis is
that the normality assumption for the random effects is
reasonable. The two determinant tests and the
determinant-trace test yielded the test statistics d,; = 2.9,
042 = 1.19 and J,3 = 1.28, with corresponding p-values of
0.085, 0.276 and 0.258. All three p-values were larger
than the chosen 0.05 significant level. This is consistent
with the conclusions from our proposed graphical ap-
proach. We include here these tests only for comparison
purposes and do not consider them as a final confirma-
tory tool (see the Discussion Section).

Simulation study
We conducted a simulation study to assess the perform-
ance of BQQ plots under violations of the normality
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methods, for p= 0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.90, 0.95. Upper panels (a, c): percentiles estimated with Eq. (3) which assumes normality for
the random effects. Lower panels (b, d): sample percentiles of EB predictors of individual benefits
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assumption for the random effects. Motivated by the ap-
plication study in Diaz [1], data from the following two
models were simulated:

Model 1: (Random intercept and random slope for time)

Ylm,j =Y+ Y1Xo + Yol + Wgtij + 700 T T20t0,;j T €o,js -
(4)

such that A, = Wo + To, + Y1%, and Bo () = (Y2 + To,)t +
wst*, N is the number of patients and # is the number
of observations per patient. Here, w = (o, Y1, Yo, ¥3)"
are the fixed effects and 7, = (¢, Tz,m)T are the random
effects with mean 0. Moreover, x,~Bernoulli(0.6) repre-
sents a patient’s time-independent characteristic (for in-
stance, gender, smoking, etc.) and the g, ; s are mutually
independent with ¢, ; ~ N (0, 0% = 10).

w=1,..,.N,j=1,...,n,

Model 2: (Random intercept and random slopes for time
and time square)

/ 2
Y, =W+ V1% + Ysto; + sl + Toe
+ Tooto) + T30ty + €0y

(5)

w=1,.,Nj=1,..,n

such that A, = ¢o + To, + Y1%, and Bo () = (Y2 + T,)E +
(ys + Tg,w)tz. In this case, 7, = (70w T2.0 Tg,m)T are the

random effects with mean 0. We assumed an unstruc-
tured variance-covariance matrix for the random effects
for both models [5, 6] and no missing responses.
Varying values for N were used and n=4 or 6. For
either model, we simulated 2 baseline measurements
and 2 or 4 measurements under medical treatment.
Thus, for all models, ko, =2, and ¢, =£,>=0. When
n=4, ki ,=2, t,3=1 and f,4=4; and when n=6,
kiw=4 tyz3=1, ty4=2, t,5=3 and ¢,¢=4. For all

models, Yo, ;= Y:wi for j=1, 2, and Yqu ;= Y;)‘Hz
for j=1, ..., k1

The therapeutic target was to achieve Y<y with y=7.
The MLEs of y and o V=

2 are denoted by
(0, U1, U, r5)" and 625 and the EB predictor of ,, by
Ty = (0.0, T20)" for Model 1 or %, = (0., 2.0, 73.0)
for Model 2. Here, we investigate BQQ plots computed
at the last time point, namely ¢ =4. We used Eq. (1) to
predict the individual benefits after replacing o, A, and
Bow(t) with their estimates 6., A, = o + Tow + V1%,
and /S’Qyw(t) = (Y, + T24)t + Y3t* for Model 1 or /S’Qyw(t)
= () + T20)t + (3 + T3,) ¢ for Model 2.

Let X;; be the (i, j)-th entry of the variance-covariance
matrix of 7, and ii_ j be its maximum likelihood estima-
tor. Thus, X;; is of dimension 2 x 2 for Model 1, and 3 x
3 for Model 2. The g in Eq. (3) is estimated with & = (y



Wang and Diaz BMC Medical Research Methodology (2020) 20:193

Page 8 of 20

EB quantile

0.00 0

Diagnosis:

Theoretical quantile

® Endogenous 4 Non-endogenous

Fig. 2 BQQ plot of individual treatment benefits after 4 weeks of imipramine treatment for patients with depression
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(Yo + 1% + Yot + Y5t%)) /6. for both models,
whereas y is estimated with 7 = (2,1 4 £2555 + 2t2,,)/
&2 for Model 1, and 7% = (51 + 235 + t4535 + 2315
+2t22173 -+ 2t32273)/6§ for Model 2.

Table 1 shows the “true” fixed effects employed in
simulations. These were chosen so that most simu-
lated patients were severely ill under all examined
non-normal and normal distributions for the random
effects; specifically, P(sq,, > 0.9) = 0.95.

Simulation of random effects

We implemented four simulation scenarios to repre-
sent situations in which the normality assumption for
the random effects is violated (Table 1). For compari-
son purposes, in each scenario, 7, was simulated from
both a non-normal distribution and a reference nor-
mal distribution with the same mean and variance-
covariance matrix.

Scenario 1: Model 1 with a symmetric mixture of two
bivariate normal distributions

Here, we explore the effect on the BQQ plot of the dis-
tance between the means of the two components of a
mixture of normal distributions for N € {30, 50, 100, 150,
200, 300, 500}. The true 7, was distributed as

T, ~ %N(mf = wmy, V) + %N(m; = wm,, V)

1 0.9}

where m; = (0, -1)%, m, = (0,1)" and V = [0.9 1

The distance between the mean vectors is

w-\/(ml—mz)T(ml—mz). We examined we{l,2,3,4,5}.
The reference normal distribution with the same mean
and variance-covariance matrix was N(m, D"), where
m=(0,0)" and D* =imim;" +1mim;" + V. Here, a
greater distance between the means of the two compo-
nent distributions represents a greater deviation from
normality and, therefore, we expect the BQQ plot to
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show greater departures from the diagonal line (Figs. 4,
8; Table S1).

Scenario 2: Model 1 with an asymmetric mixture of two
bivariate normal distributions for the random effects

Here, we explore how the variance of the components of
a mixture of normal distributions affects the BQQ plot,
for sample sizes N € {20, 60, 100, 160, 200, 300, 500}. The
true random effects vector 7, was distributed as

3 1
Ty ™~ —N(ml, V) + —N(I’I’Iz, V)
4 4
where m; = (0,-1)", m, =(0,3)" and V = [

o7 09
09 o3|

We examined 07 = 03€{1,2,3,4,5}. In this case, the over-

all mean and variance are m =(0,0)" and D* = mym!

3
4
+Lmym] + V. Thus, for comparison purposes, 7,, was
also simulated from the reference bivariate N(m, D"). Here,
since the mean vectors are fixed, a greater variance for the
components of the mixture implies a “less bimodal”
distribution. Therefore, we expect BQQ plots for the non-
normal cases to be more like their corresponding reference
normal cases when the variability of the components is

larger (Figs. 5, 9; Table S2).

Scenario 3: Model 2 with a trivariate t distribution for the
random effects

Here, the true random effects were simulated from a tri-
variate t distribution with degrees of freedom ve{3,5,7,

9,11,13}, location parameter m =(0,0,0)", and shape
parameter I' given in Table 1. The purpose was to study
how BQQ plots are affected by the heaviness of the tails of
the t distribution, using N € {30, 50, 100, 150, 200, 300, 500}.
The reference normal distribution with the same mean and
variance-covariance matrix was N (m, D* = (;%)I') [42]. In
this scenario, smaller degrees of freedom are associated
with heavier tails for the distribution of random effects.
Thus, we expect BQQ plots for non-normal cases to resem-
ble more the reference normal plots when v is larger (Figs. 6,
10; Table S3).

Scenario 4: Model 2 with a symmetric mixture of two
trivariate normal distributions

This scenario is analogous to Scenario 1, except that we
used trivariate normal distributions for the components
of the mixture. The goal was also to examine the effect
of the distance between the means of the two normal
components on BQQ plots. Since a greater distance rep-
resents a greater deviation from normality, we expect
the BQQ plots to show greater departures from the diag-
onal line (Figs. 7, 11; Table S4).

Cramer-von Mises discrepancy measure

We wused Cramer-von Mises discrepancy measure
(CVM) to quantify the deviation of the BQQ plot from
the y =x line under violations of the normality assump-
tion [43-45]. Let Fy,(z) = Fn,(z;t) be the empirical

distribution function of l;g,tﬁl, s ég,t,Ng and denote U,
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patient. The plots on the right panel correspond to random effects simulated from symmetric mixtures of two bivariate normal distributions
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normal distributions with the same mean and variance-covariance matrix as the corresponding non-normal distribution on the same row at the
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= F(bgr1;%,t), ...; Ugen, = F(bgen,: %, t) . The CVM
discrepancy between Fy, (z;t) and F(z %, t) was com-
puted as [44].

oo
Qe — / [ Py (2:6)~ F (20, €) Y dF (2: %, 1)

oo

N, 2
11 2k-1
=t (U5 -
1282 ' N, kl( etk 2Ng>

The overall discrepancy was computed as the weighted
average

G
Zg:lNgant

Q=
N )

where t is the maximum point in time of the last pa-
tients’ visits (¢ = 4 in the simulations). Larger values of Q

reflect more severe violations of the normality assump-
tion for the random effects.

We simulated 500 datasets for each combination of
values of N, n and random-effects distribution parame-
ters. For illustration purposes, selected BQQ plots are
presented for N =100 and n =6 (Figs. 4, 5, 6, 7). These

plots correspond to the datasets producing the Q closest

to Q, where Q is the average of the 500 values of Q.

To examine the sensitivity of BQQ plots to detect de-
viations from normality, each simulated non-normal
case was compared with its corresponding reference

normal distribution by using the ratio R = @

normal
(Figs. 8, 9, 10, 11). On average, we expect the Q obtained
from a non-normal case to be larger than that of its ref-
erence normal distribution and, therefore, R > 1. This is
because €),, measures the discrepancy between the
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empirical distribution of the sample individual benefits
and the theoretical distribution obtained under the nor-
mality assumption for the random effects. We expect
larger values of R to be associated with greater devia-
tions from normality. The SAS procedures MIXED and
IML were used to implement the simulations (SAS Insti-
tute Inc. Cary, NC; see additional file SAS CODE.dat).

Results of the simulation study

Scenario 1: symmetric mixtures of two bivariate normal
distributions

As expected, larger distances between the two compo-
nents of the mixture distribution determined more appar-
ent asymmetric departures of the points on the BQQ plot
from the y = x line (Fig. 4). By comparison, the BQQ plots
for data simulated from the corresponding reference nor-
mal distributions tended not to show asymmetric devia-
tions from the diagonal line. Figure 8 shows that the R

ratios comparing CVM discrepancies of no-normal versus
comparable normal distributions were always >1 and in-
creased with the distance between the components of the
mixture. In general, R increased with both the number of
patients N and the number of repeated measures #, sug-
gesting that the sample size contributes positively to the
sensitivity of BQQ plots. Table S1 in the Supplementary

Information shows the average CVM discrepancies Q for
all instances of Scenario 1.

Scenario 2: asymmetric mixtures of two bivariate normal
distributions

For the investigated mixtures of normal distributions,
quantiles of EB benefits from patient samples tended to
be larger than the corresponding theoretical quantiles
that assume normality for the random effects (Fig. 5).
Moreover, this pattern was more apparent with smaller
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Fig. 6 (Scenario 3). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at t =4 for N= 100 patients with n=6 measures per
patient. The plots on the right panel correspond to random effects simulated from trivariate t distributions with degrees of freedom (df) of 3, 5, 7,
9, 11 or 13. The left panels correspond to random effects simulated from trivariate normal distributions with the same mean and variance-
covariance matrix as the corresponding non-normal distribution on the same row at the right panel

variances for the components of the mixture. The pat-
tern was not observed in the BQQ plots corresponding
to the reference normal distributions. Figure 9 shows
that the ratios comparing CVM discrepancies of non-
normal to reference normal distributions decreased with
the variance of the mixture components, suggesting that
BQQ plots are sensitive to deviations from normality.
The ratios also increased with sample size N and the
number of repeated measures #n, suggesting that larger
sample sizes increase the likelihood that BQQ plots cap-
ture normality violations. Table S2 in the Supplementary
Information shows the average CVM discrepancies for
the non-normal and normal cases.

Scenario 3: trivariate t distribution

As the degrees of freedom increased, the BQQ plots for
data simulated with t distributions became more similar
to the BQQ plots for data simulated with comparable
normal distributions (Fig. 6). The theoretical quantiles of

individual benefits under the normality assumption tended
to be larger than the quantiles for EB sample benefits when
the tails of the t distribution became heavier. Figure 10
shows that the ratios R comparing CVM discrepancies
under t distributions versus their reference normal distribu-
tions increased as the degrees of freedom decreased, sug-
gesting that BQQ plots can reliably capture the heaviness
of the tails of the t distribution. The ratios tended to in-
crease as both N and # increased, implying that the larger
the sample size is the more efficient the proposed graphical
approach is for detecting tail heaviness. Table S3 in the
Supplementary Information shows average CVM discrep-

ancies Q) for the non-normal and normal cases.

Scenario 4: symmetric mixture of two trivariate normal
distributions

Analogous to scenario 1, marked departures in the ap-
pearance of BQQ plots from what is expected under
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comparable normal distributions are observed when the
random effects are distributed as a mixture of normal
distributions (Fig. 7). Greater distances between the two
mean vectors of the mixture components tended to be
associated with larger asymmetric deviations from the
y=x line. This trend can also be inferred from Fig. 11,
which shows that, compared with the reference normal
distribution, CVM discrepancies under a mixture of nor-
mal distributions increased as the distance between the
mixture components increased. Table S4 in Supplemen-
tary Information shows average CVM discrepancies for
the non-normal and normal cases.

Discussion

This article proposes a graphical approach to examining
the normality assumption of the random effects of 2-PM
models for severely ill patients. These models are based
on RELMs and allow measuring individual benefits of

medical or behavioral treatments [1, 2]. It is a common
practice to explore the normality assumption for the
random effects of RELMs by plotting separate classic
normal QQ plots that examine the normality of the EB
predictors of the random effects, for each random coeffi-
cient in the model [23, 24, 27, 46]. In the context of 2-
PM models, however, using BQQ plots has two major
advantages over normal QQ plots:

(1) Whereas a goodness-of-fit analysis using normal QQ
plots requires as many QQ plots as random
coefficients are there in the model, only one BQQ
plot is needed to examine the adequacy of the 2-PM
model. Thus, BQQ plots reduce the number of
goodness-of-fit analyses if the model has two or more
random coefficients.

(2) In contrast with normal QQ plots, BQQ plots
examine directly the predictors of the
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individual benefits achieved by the patient
sample. Therefore, BQQ plots contribute to
assess whether the 2-PM model is appropriate
for predicting individual benefits, which is the
model’s main purpose. In this regard, note that
BQQ plots may not be useful if the goal of the
RELM is not to measure individual benefits of
medical treatments. In fact, as described above,
the shape of a BQQ plot depends on the thera-
peutic target, which is prespecified in advance by
the clinician. Also note that if the 2-PM model
will be used for measuring individual benefits in
new patients, the EB predictors of individual
benefits need to be additionally evaluated using
the simulation approach described by Diaz [1].

An essential difference between normal QQ plots and
BQQ plots is that whereas normal QQ plots represent

visually the deviation of an empirical distribution from
an estimated normal distribution, BQQ plots represent
the deviation of an empirical distribution from an esti-
mate of a non-normal distribution. This non-normal dis-
tribution is the one given by Eq. (2). This feature of
BQQ plots is the reason we chose the CVM discrepancy
for evaluating the performance of BQQ plots over the
more common Shapiro-Wilk test statistic [43, 44, 47]. In
fact, although the Shapiro-Wilk statistic has been shown
to be more sensitive to deviations from linearity in nor-
mal QQ plots than the CVM and other discrepancy
measures [48], it measures deviations from linearity by
explicitly using the fact that the theoretical quantiles in
the x axis of normal QQ plots are those of a normal dis-
tribution [41]. Therefore, Shapiro-Wilk statistic cannot
be used to measure departures from linearity in BQQ
plots. In contrast, the CVM discrepancy is a direct meas-
ure of the discrepancy between the two distributions
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that are being compared in BQQ plots: the empirical cu-
mulative distribution function of the EB predictors of in-
dividual benefits of the patient sample versus an
estimate of the non-normal cumulative distribution
function of individual benefits. There are other measures
that can potentially be used to assess discrepancies be-
tween these two distributions; for instance, the
Kolmogorov-Smirnov distance and the Anderson-
Darling test statistic [42, 45, 48, 49]. However, by using
CVM discrepancies, we were able to show in the current
study that BQQ plots are sensitive to deviations from
the normality assumption of the random effects (Figs. 4,
5,6,7,8,9, 10, 11).

In addition to the aforementioned limitations of using
classic normal QQ plots that examine the normality of
the EB predictors of random effects to assess 2-PM
models, note that, in normal QQ plots, the EB predictors
are used to compute both the sample quantiles

represented in the y axis and the mean and variance of
the normal distribution used to obtain the theoretical
quantiles represented in the x axis. This circularity limits
the interpretation of the resultant plot because the EB
predictors are estimates themselves. Moreover, research
shows that the shape of the empirical distribution of the
EB predictors of the random effects does not necessarily
reflect the shape of the random-effects distribution and
tends to be unimodal [16, 19], which may make the plot
look artificially linear. Thus, QQ plots calculated with
only EB predictors of the random effects may be mis-
leading as a tool for examining the normality assump-
tion. In contrast, in our proposed approach, the
theoretical quantiles given in Eq. (3) are estimated dir-
ectly using the MLEs or RMLEs of model parameters
without the mediation of the EB predictors of random
effects or the EB predictors of individual benefits. In
addition, our simulations show that BQQ plots reliably
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perform as expected under non-normal and normal dis-
tributions. Thus, if the model will be used to make deci-
sions related with personalized medicine, we
recommend using BQQ plots as a complementary tool
for the exploration of the normality assumption for the
random effects.

When the BQQ plot suggests that the assumption of
normality for the random effects is not reasonably valid,
data modelers can utilize linear mixed models that as-
sume mixtures of normals [19], multivariate t distribu-
tions [50], multivariate Laplace distributions [51], or
skew-normal distributions [52]. Individual benefits can
still be predicted by plugging the estimates of the fixed
effects and variance components as well as the EB pre-
dictors of random effects into Eq. (2). Of these models,
those with mixtures of normals or skew-normal distribu-
tions are particularly attractive since they have closed-
form formulas for the EB predictors of the random

effects that may facilitate the measurement of individual
benefits in new patients [1]. Note that EB predictors of
random effects in these models no longer inherit the ro-
bustness properties of the BLUPs since they are distribu-
tion dependent. Research investigating the accuracy of
prospective and retrospective measures of individual
benefits in new patients based on these predictors is
needed [1].

QQ plots are widely used in statistical practice to
examine distributional assumptions for a variety of
models, not necessarily models that assume normality
[24, 27, 41, 53-56]. A common criticism of these plots is
that they are less objective than classical goodness-of-fit
tests. However, psychophysical studies have shown that
QQ plots, when visually examined in comparison with
plots simulated under the null distribution, are more
powerful for detecting deviations from the null distribu-
tion than classical tests [40, 41, 56]. This is probably
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because in QQ plots the entire sample is assessed rather
than a single test statistic [41]. We believe that this is a
strong reason for using BQQ plots in addition to ana-
lyses based on classical goodness-of-fit tests. Another
reason is that classical tests are frequently uninformative
when the sample size is very small or very large [57]. It
is well known, for instance, that powerful normality tests
conducted with sufficiently large samples reject firmly
the hypothesis of normality when the deviation from
normality is trivial. This is a limitation because useful
real-world applications of statistical models assuming
normality need only approximate normality, not perfect
normality. On the other hand, if a statistical test rejects
the null hypothesis of perfect goodness-of-fit, a QQ plot
allows assessing why there is a lack of fit and whether
the lack of fit is negligible compared to plots simulated
under the null hypothesis [41]. QQ plots also help in the
selection of appropriate transformations of the response
or transformations of covariates for model improvement.

Here, we compared the BQQ plot computed with the
real data with plots computed with simulated data that
assume normality for the random effects in order to
gauge more objectively the deviation of the plot from
the y=x line (Fig. 3). To further prevent subjectivity in
the interpretation of BQQ plots, formal lineup statistical
tests may be conducted [40, 41, 56]. In these tests, the
BQQ plot for the real data would be lined up randomly
and blindly with several BQQ plots computed with sim-
ulated data consistent with the null hypothesis of nor-
mality for the random effects, and the data analyst
would attempt to single out the plot for the real data
from the other plots. Formal inferential procedures for
computing p-values for these types of tests have been
proposed [40, 41, 56]. Lineup tests, however, require that
the analyst does not see the plot for the real data before
conducting the test to prevent biases from preconceived
conclusions or psychophysical artifacts. Further research
is needed to formally compare the statistical power of
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lineup tests for BQQ plots with the power of statistical
tests of normality for random effects linear models based
on regular test statistics [32, 34, 35, 58, 59]. Due to the
graphical nature of BQQ plots, such comparison re-
quires the conduction of graphical perception experi-
ments in human subjects that implement methods of
visual statistical inference [40, 41, 56].

To illustrate our proposed graphical approach, we
used data from 66 subjects of an imipramine clinical trial
[6, 39]. As discussed by Diaz [1], this sample size was
the result of a careful application of strict inclusion and
exclusion criteria that ensured that the subjects were at
a stable illness state before entering the study. The inclu-
sion criteria included three numerical constraints on the
individual items of the HRS that reflected severity of the
depression. Eighteen subjects who did not satisfy these
constraints at the end of the placebo period were ex-
cluded from the study. In addition, subjects who experi-
enced clinically relevant disease or procedural changes
during the baseline period or later were also excluded
(for instance, electroconvulsive therapy, suicide attempt
or evolution to mania [39]). A total of 36 subjects were
excluded. This rigorous approach ensured that baseline
disease severity was a reliable scientific construct and
that the observed reductions in disease severity during
imipramine treatment were not the result of the natural
history of the disease.

Our simulations showed that the sensitivity of BQQ
plots for detecting non-normality increased with the
sample size. They also showed that moderate sample
sizes (50 < N < 100), which are common in clinical trials,
were enough to detect deviations from normality in
many of the investigated cases, as suggested by Figs. 8, 9,
10, 11. Moreover, with smaller sample sizes (N =30),
BQQ plots exhibited some sensitivity to non-normality
under symmetric mixtures of normal distributions,
which may occur if there are omitted categorical vari-
ables [19] (Figs. 8 and 11).

A limitation of our approach is that it requires suffi-
ciently large N, values to guarantee that sample quan-
tiles are sufficiently close to theoretical quantiles.
Moreover, the approach is not applicable when N,=1
for some g, which may occur if the model has a relatively
high number of covariates. Future research must investi-
gate how to overcome these limitations. A possible solu-
tion is to treat X as a stochastic covariate vector and to
work with the marginal cumulative distribution function
of the individual benefits F,,(z) = F,,(z; t) = E[F(z; X, t)],
where the expected value is taken with respect to the
joint probability mass function of X. A reasonable esti-

mate of F,,(z) is F,u(z) = N’lzglegf’(z;xg,t), where

F is obtained by replacing fixed effects and variance
components in Eq. (2) with their corresponding
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estimates. An estimate of the marginal p-th quantile

function is, therefore, B,,(p) = B,.(p;t) = f:;nl (p), which
can be obtained through numerical inversion. Thus, the
BQQ plot can be computed as the points (B,,(=32;¢),
l;t.(i))’ i=1, ..., N, where Et,(l) < gt,(Z) <. < Z’t‘(N) are
the order statistics of the combined sample of EB-
predicted individual benefits. Future research must
examine the extent to which this plot is sensitive to de-
viations from normality.

Another limitation of our approach is that it requires
that continuous or ordinal covariates be categorized be-
fore implementing Eq. (3). Future research must exam-
ine how to incorporate continuous covariates to BQQ
plots. The extension of BQQ plots to 2-PM models with
non-continuous responses also needs further research.
The influence of missing observations on the perform-
ance of BQQ plots must also be investigated.

Diaz [1] showed that when the patients are severely ill,
a closed-form formula for the probability distribution of
individual benefits can be obtained. This facilitates both
the statistical analyses of individual benefits and the
evaluation of the overall performance of the predictors
of individual benefits in new patients. Some clinical
studies, however, may include patients who are not se-
verely ill. Further research must investigate how to ex-
tend the definition of BQQ plots to these other studies.
Since there is no closed-form formula in this case, add-
itional numerical or Monte Carlo integration may be
needed.

Conclusions

This paper proposes a graphical approach to evaluate
the goodness-of-fit of random effects models for con-
tinuous responses when the purpose of the model is to
estimate individual benefits of medical treatments. In
our approach, empirical quantiles of individual benefits
estimated with an empirical Bayes approach are plotted
against the quantiles of the distribution of individual
benefits calculated under a normality assumption for the
random effects. The rationale underlying our approach
is that EB predictors of the random effects are robust to
violations of the normality assumption [15-17]. In fact,
EB predictors are also estimates of the BLUPs, whose
optimality properties do not require the normality as-
sumption [13].

If the normality assumption is valid, we expect empirical
quantiles to be close to the theoretical quantiles. Thus, we
can infer the goodness-of-fit of the 2-PM model if the
BQQ plot does not show obvious asymmetric deviations
from the y=x diagonal line. We evaluated the perform-
ance of this approach using the CVM discrepancy which
measures the discrepancy between an empirical and a the-
oretical probability distribution. CVM discrepancies
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confirmed that our graphical approach captures accurately
deviations from the normality assumption. Importantly,
we found that the ratios R of average CVM discrep-

ancies (Q), which compared non-normal distributions
with closely comparable normal distributions, were not
smaller than 1 in all simulations. This suggests that BQQ
plots are powerful tools for detecting deviations from nor-
mality of the distribution of the random effects in 2-PM
models and for a visual confirmation of the normality as-
sumption as well, when the goal is to evaluate the ability
of the model to gauge individual treatment benefits.
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