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Abstract

Background: Three-level data arising from repeated measures on individuals who are clustered within larger units
are common in health research studies. Missing data are prominent in such longitudinal studies and multiple
imputation (MI) is a popular approach for handling missing data. Extensions of joint modelling and fully conditional
specification MI approaches based on multilevel models have been developed for imputing three-level data.
Alternatively, it is possible to extend single- and two-level MI methods to impute three-level data using dummy
indicators and/or by analysing repeated measures in wide format. However, most implementations, evaluations and
applications of these approaches focus on the context of incomplete two-level data. It is currently unclear which
approach is preferable for imputing three-level data.

Methods: In this study, we investigated the performance of various MI methods for imputing three-level incomplete data
when the target analysis model is a three-level random effects model with a random intercept for each level. The MI
methods were evaluated via simulations and illustrated using empirical data, based on a case study from the Childhood to
Adolescence Transition Study, a longitudinal cohort collecting repeated measures on students who were clustered within
schools. In our simulations we considered a number of different scenarios covering a range of different missing data
mechanisms, missing data proportions and strengths of level-2 and level-3 intra-cluster correlations.

Results:We found that all of the approaches considered produced valid inferences about both the regression coefficient
corresponding to the exposure of interest and the variance components under the various scenarios within the simulation
study. In the case study, all approaches led to similar results.

Conclusion: Researchers may use extensions to the single- and two-level approaches, or the three-level approaches, to
adequately handle incomplete three-level data. The two-level MI approaches with dummy indicator extension or the MI
approaches based on three-level models will be required in certain circumstances such as when there are longitudinal data
measured at irregular time intervals. However, the single- and two-level approaches with the DI extension should be used
with caution as the DI approach has been shown to produce biased parameter estimates in certain scenarios.

Keywords: FCS, Joint modelling, Multiple imputation, Multilevel multiple imputation, Three-level data, Incomplete multilevel
data, Linear mixed model
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Background
Clustered or multilevel data, in which observations on in-
dividual units are correlated because they are nested
within clusters, are common in epidemiological research
[1]. The clustering in the data may arise due to observa-
tional units (usually individuals) being nested within nat-
urally occurring groups such as schools (i.e. cluster
correlated data) and/or due to study design such as re-
peated measurements nested within individuals (i.e. longi-
tudinal data). Clustered data have a naturally hierarchical
structure where lower level units are nested within higher
level units and there can be multiple levels in this data
hierarchy [1]; in particular here we focus on three-level
data resulting from the clustering of repeated measures on
individuals within larger units such as schools [2]. One
such example is provided by the Childhood to Adoles-
cence Transition Study (CATS), a longitudinal study of a
cohort of young people recruited just before puberty from
schools in Victoria, Australia, and followed up at multiple
waves with data collected on a range of mental health out-
comes [3].
Missing data present challenges in many studies. In

studies such as the CATS, which involve multiple waves
of data collection, missing data is a major problem.
Multiple imputation (MI), as initially proposed by
Rubin (1987), is a popular approach for handling miss-
ing data [4]. MI is a two stage process [5]. In the imput-
ation stage, missing values are imputed multiple (m > 1)
times by sampling from their posterior predictive distri-
bution (or an approximation) using an imputation
model based on the available data. In the analysis stage,
the m completed datasets are analysed using the
intended analysis model and the resulting inferences
are combined using Rubin’s rules [5]. A key consider-
ation in MI is that in order to generate valid inferences
in the substantive analysis, the imputation model needs
to preserve all the features of the analysis model such
as non-linear relationships, interactions and multilevel
features [6]. This has been referred to in the MI litera-
ture as congeniality and more recently as substantive-
model-compatibility, which is closely related to the
concept of congeniality - see Meng (1994) and Bartlett
(2015) for formal definitions of these two concepts [7,
8]. In this paper we use the term congeniality, which in
the context of a multilevel analysis means that the
multilevel structure of the data that will be modelled in
the analysis model is accounted for in the imputation
model [9, 10]. In the context of an analysis model that
is a linear mixed model (LMM), ignoring the multilevel
structure during the imputation stage may lead to
biased estimates of the regression coefficients and their
standard errors, especially when the missing data pro-
portion is large, and also may severely bias estimates of
the variance components [9, 11–13].

There are two broad model-based frameworks for
imputing missing data in multiple variables; joint
modelling (JM) and fully conditional specification
(FCS). The JM approach imputes incomplete variables
by assuming that they all follow a single joint distri-
bution, for convenience, often a multivariate normal
(MVN) distribution [14]. The FCS approach imputes
variables with missing values one at a time by using a
series of univariate conditional models for each in-
complete variable given all the other variables [15,
16]. There is also a variation of the JM approach,
which factorizes the joint distribution of the variables
into a sequence of conditional distributions [17].
However, we will not consider this approach in the
current manuscript due to reasons detailed further in
the discussion. The standard JM and FCS methods
(referred to as single-level JM and single-level FCS)
assume that observations are independent. As a result,
when the substantive analysis of interest is a multi-
level analysis, imputing using either of these ap-
proaches will not be congenial with the analysis
model [9, 18]. A simple way of extending the single-
level imputation approaches for imputing incomplete
two-level data is to include a series of dummy indica-
tors (DIs) to represent the clusters. In addition, from
a practical perspective this approach is only sensible
when the number of clusters to be represented using
DIs is not very large, as a large number of clusters
would require a large number of DIs [10], For longi-
tudinal repeated measures data, with follow-ups at
fixed intervals of time, an alternative is to arrange the
repeated measures of the same variable in wide for-
mat and treat each repeated measurement as a dis-
tinct variable in the imputation model [19].
Recently, methodologists have extended the JM and

FCS approaches to use multilevel imputation models
[13, 20–22]. The extension of the JM approach for im-
puting multilevel data uses a multivariate linear mixed
model (MLMM) as the imputation model [20]. Similarly,
the multilevel extension to the FCS approach imputes
missing values using a series of univariate LMMs [13].
Implementations of both these extensions are now avail-
able in a variety of software [23–29], but the majority of
these, as well as existing applications and evaluations,
are limited to incomplete two-level data [12, 30, 31]. To
our knowledge, only the FCS MI approach based on
multilevel models has been specifically extended to
impute three-level data, and can be implemented in
Blimp, which is a stand-alone package for conducting
imputation, and the ml.lmer function in the R package
‘miceadds’ [26, 32, 33].
To impute incomplete three-level data researchers

may use MI approaches based on three-level imput-
ation models or alternatively, extend single-level or
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two-level MI approaches by using DIs and/or by ana-
lysing repeated measures in wide format for one or
both of the levels of clustering. Meanwhile, while the
DI and/or analysing repeated measures in wide format
do take the three-level structure of the data into ac-
count, it is not clear how and when they would pro-
duce valid results. No study to date has compared the
performance of all these MI approaches in a setting
where there are three levels of hierarchy. In fact,
methodologists have pointed out that experience in
imputing three level data is lacking [34]. Therefore in
this paper, we investigate the performance of MI
methods for imputing incomplete three-level data, fo-
cusing on those that can be used within the main-
stream packages R and Stata. For the JM approaches
we focus on those assuming a MVN distribution, as
this is the most common JM fitted in most statistical
packages [35, 36]. Our focus is on multilevel data
resulting from repeated measures with follow-ups at
fixed intervals of time within an individual where
there is clustering among individuals as in the CATS.
The analysis model is a LMM with a random inter-
cept for each level of clustering.
The organization of the paper is as follows. We begin

with a brief description of the case study and the re-
search question that motivated our study, which aimed
to estimate the effect of early depressive symptoms on
academic performance. This is followed by a description
of the MI approaches we have identified for imputing in-
complete three-level data resulting from longitudinal re-
peated measures across individuals clustered within
larger clusters. We then describe a simulation study con-
ducted to evaluate and compare the performance of the
approaches, using the CATS example as basis for gener-
ating data. An illustration of the various approaches ap-
plied to the CATS case study is provided. We conclude
with a general discussion.

Methods
Motivating case study: the childhood to adolescence
transition study (CATS)
The CATS is a longitudinal population-based cohort
study conducted in Melbourne, Australia. It is a
multidisciplinary study with the long-term goal of
studying educational, emotional, social and behav-
ioural development in children from puberty through
adolescence [3]. The study recruited Grade 3 students
of 8–9 years of age in 2012 from 43 schools. Of the
2289 students enrolled at these schools, 1239 (54%)
children with informed parental/guardian consent
were recruited into the study at wave 1. Data collec-
tion was conducted annually from parent, teacher and
student self-report questionnaires along with direct
measurements (saliva samples and anthropometric

measurements). There is also linkage with the Victor-
ian Curriculum and Assessment Authority (VCAA) to
obtain National Assessment Programme – Literacy
and Numeracy (NAPLAN) results. NAPLAN, which is
administered to all students in schools across
Australia in grades 3, 5, 7 and 9 (approximate ages
8–9, 10–11, 12–13, 14–15 years), assess the student’s
academic performance on 4 domains – reading, writ-
ing, numeracy and language conventions. At the time
of this work, we had access to 7 waves of data collec-
tion. The detailed study protocol can be found else-
where [3].

Target analysis
We focus on an analysis of the effect of early depres-
sive symptoms (at waves 2, 4 and 6) on academic
outcome (at waves 3, 5 and 7) as measured by NAPL
AN numeracy scores. To account for clustering of in-
dividuals within schools and repeated measures within
individuals [37], the analysis model used to answer
this research question was a LMM for the repeated
NAPLAN outcome measures (at the 3 time points)
including random effects for school- and child. In this
paper we restrict our attention to a random intercept
model for brevity, although we note that it may be
appropriate to consider a random slope for wave in
the applied context. We return to this in the discus-
sion. A measure of depressive symptoms at the previ-
ous wave was included as a time-varying exposure
along with wave as the time variable. The model was
adjusted for potential baseline (wave 1), time-fixed
confounders: child’s NAPLAN numeracy scores, sex,
socio-economic status (SES), and age [37]:

NAPLAN zijk ¼ β0 þ β1�depressionij k − 1ð Þ
þ β2�waveijk
þ β3�NAPLAN zij1 þ β4�sexij
þ
X4

a¼1

β5;a�I SESij1 ¼ a
� �

þ β6�ageij1 þ α0i þ α0ij þ εijk ð1Þ

where i denotes the ith school (i = 1,…, 43), j denotes the
jth individual (j = 1,…1239) and k denotes the kth wave
(k = 3, 5, 7), with εijk denoting independent random
measurement errors distributed as εijk � N ð0; σ21Þ and
school and individual-level random effects α0i � Nð0; σ2

3

Þ and α0ij � Nð0; σ22 ) respectively. The I[.] in the above
model denotes an indicator function for SES being equal
to a. The rest of the notation is described in Table 1.
The main target parameter of interest in the above

model is β1, the mean change in standardized NAPLAN
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numeracy score per unit increase in the depressive
symptom score.
In the CATS, all demographic variables in the analysis

model, i.e. child’s age, sex and SES quintile, were com-
pletely observed [3]. Meanwhile, data were missing for
both time-varying variables, that is, NAPLAN numeracy
scores and the depressive symptom scores. NAPLAN nu-
meracy scores were missing for 15% (184/1239) of individ-
uals at wave 1, 16% (198/1239) at wave 3, 21% (264/1239)
at wave 5, and 30% (366/1239) at wave 7. Depressive
symptom scores were missing for 11% (137/1239) of

individuals at wave 2, 14% (173/1239) at wave 4 and 21%
(249/1239) at wave 6.

MI methods for handling incomplete three-level data
In the context of repeated measures clustered within lar-
ger higher-level clusters such as schools, there are two
sources of correlation: the correlation among individuals
belonging to the same higher-level cluster and the cor-
relation among the repeated measures of an individual.
When these two sources of correlation are accounted for
in the analysis model, they need to be accounted for in

Table 1 Description of the variables measured for the jth individual belonging to the ith school at wave k in the analysis model

Variable Type Grouping /Range Label

Child’s sex Categorical 0 = Female 1 =Male sexij

Child’s age (wave 1) Continuous Range [7–11] ageij1

SES measured by the SEIFA IRSAD quintile (wave 1) Categorical 0 = 1st quintile (most disadvantaged) SESij1

1 = 2nd quintile

2 = 3rd quintile

3 = 4th quintile

4 = 5th quintile (most advantaged)

Standardized NAPLAN numeracy score (wave 1) Continuous z-score NAPLAN _ zij1

Standardized NAPLAN numeracy score (waves 3,5 and 7) Continuous z-score NAPLAN _ zijk
a Depressive symptoms (waves 2,4 and 6) Continuous Range [0,8] depressionij(k − 1)

b Overall child behaviour reported by SDQ (waves 2,4 and 6) Continuous Range[0,40] SDQij(k − 1)

IRSAD Index of Relative Socio-Economic Advantage and Disadvantage, NAPLAN National Assessment Program - Literacy and Numeracy, SDQ Strengths and
Difficulties Questionnaire, SEIFA Socioeconomic Index for Areas, SES Socio-Economic Status
aA subset of 4 items (each ranging from 0 to 2) from the Short Mood and Feelings Questionnaire (SMFQ) was used to measure the depressive symptoms at each
wave in the CATS study [3, 38]. Depressive symptoms at each wave in our study is the total summary score of these four items
b For measuring the overall child behaviour, a total difficulties score is derived from the first 4 subscales of the Strengths and Difficulties Questionnaire (SDQ):
emotional symptoms, conduct problems, hyperactivity/inattention, peer relationship problems (each ranging from 0 to 10) [39]. This variable is not included in the
analysis but is included in the imputation model as an auxiliary variable to improve its performance

Table 2 Summary of the imputation approaches for handling incomplete three-level data

MI approach Paradigm Model Softwarea How the two sources of clustering are handled

Clustering due to
higher level clusters

Clustering due to
repeated measures

JM-1L-DI-wide JM Standard (single-level) SAS [64], SPSS [36], Stata [35],
Mplus [24], R [46]

DI Repeated measures arranged
in wide format

FCS-1L-DI-wide FCS Standard (single-level) SAS, SPSS, Stata, Mplus, R, Blimp [26] DI Repeated measures arranged
in wide format

JM-2L-wide JM Two-level MLMM SAS [28], Mplus, Realcom-impute [23],
Stat-JR [29], R

RE Repeated measures arranged
in wide format

JM-2L-wide DI RE

FCS-2L-wide FCS Two-level LMM Mplus, R, Blimp RE Repeated measures arranged
in wide format

FCS-2L-DI DI RE

JM-3L JM Three-level MLMM Stat-JR, Mplus RE RE

CS-3L FCS Three-level LMM R, Blimp RE RE

DI dummy indicators, FCS fully conditional specification, JM joint modelling, LMM linear mixed model, MLMM multivariate linear mixed model, RE random effects
aR and Blimp are the only freely available, open-source software implementations
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the imputation model [40]. In this section we outline the
MI approaches we have identified for handling incom-
plete three-level data of this sort, describing how each
approach handles these two sources of correlation. We
specifically focus on a clustering scenario similar to the
CATS where we have a moderate number of higher level
clusters and repeated measures at regular intervals of
time.

Single-level JM with DI for higher level clusters with
repeated measures imputed in wide format (JM-1L-DI-wide)
Popularized by Schafer (1997), the single-level JM ap-
proach assumes a joint multivariate normal distribu-
tion for the incomplete variables. Under this approach
imputations for the missing values are drawn from
the posterior predictive distribution of the missing
data given the observed data using an iterative data
augmentation algorithm [14]. With this approach, the
within-cluster correlation of the higher-level clusters
can be incorporated using a set of dummy variables
representing these clusters in the imputation model.
Specifically, if there are I clusters, the cluster mem-
bership of each individual is represented in the im-
putation model by (I − 1) DIs. The clustering of
repeated measures within individuals are then im-
puted in wide format (with one row per individual
and separate variables for each repeated measure),
and treating them as distinct variables in the imput-
ation model. This approach preserves the clustering
of repeated measures in the imputation model by
allowing for the correlation between repeated mea-
sures with an unstructured covariance matrix.

Single level FCS with DI for higher level clusters with
repeated measures imputed in wide format (FCS-1L-DI-
wide)
The single-level FCS approach specifies a (single-level)
univariate imputation model for each incomplete vari-
able. The imputations for the missing values in each
variable in turn will be drawn using an iterative algo-
rithm which will cycle through univariate imputation
models [16]. Similar to JM-1L-DI-wide, the correl-
ation among individuals belonging to the same
higher-level cluster can be modelled through DIs
while the correlation among the repeated measures
can be modelled by including the repeated measures
as distinct variables in the imputation model. Thus,
when imputing an incomplete repeated measure at
one time point/wave, repeated measures at all the
other waves are included as predictors preserving the
correlation of the repeated measures.

Two-level JM for higher level clusters with repeated
measures imputed in wide format (JM-2L-wide)
Schafer and Yucel (2002) extended the JM approach to
enable imputation of multilevel data by imputing from a
joint MLMM [20]. This multivariate model models the
correlation among individuals within a higher-level clus-
ter using cluster-specific random effects which are as-
sumed to follow a normal distribution. As with JM-1L-
DI-wide, the clustering of repeated measures within in-
dividuals can then be modelled by imputing the data in
wide format where repeated measures are treated as dis-
tinct variables. In this approach, the incomplete variables
are included as outcomes and the complete variables are
included as predictors in the imputation model.

Two-level FCS for higher level clusters with repeated
measures imputed in wide format (FCS-2L-wide)
Van Buuren (2011) proposed an FCS extension for im-
puting two-level data which uses a series of univariate
two-level LMMs to impute the missing values, cycling
through the incomplete variables one at a time [13].
Under this approach, repeated measures are treated as
distinct variables (imputing the data in wide format) and
a univariate two-level LMM is specified for each incom-
plete repeated measure in turn with cluster-specific ran-
dom effects to account for the correlation among
individuals of the same higher-level cluster.

Two-level JM for repeated measures with DI for higher level
clusters (JM-2L-DI)
An alternative approach using the two-level MLMM [20],
is to use the MLMM to allow for the clustering of re-
peated measures within an individual, and then model
the correlation among individuals of the same higher-
level cluster by including DIs representing the cluster
membership, imputing the data in long format (i.e. where
each repeated measure is a separate row in the dataset).

Two-level FCS for repeated measures with DI for higher
level clusters (FCS-2L-DI)
Similar to JM-2L-DI, the two-level FCS approach [13]
can be used to model the clustering of repeated mea-
sures within individuals using individual specific random
effects, with the correlation among individuals of the
same higher-cluster modelled using DIs representing the
cluster membership, again imputing the data in long
format.

Three-level JM (JM-3L)
The JM approach for multilevel data [20], can be ex-
tended to three levels using a three-level MLMM where
the correlation among individuals within the same
higher-level cluster is modelled using cluster-specific
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random effects while the clustering of repeated measures
within individuals is modelled using individual-specific
random effects applied to the data in long format.

Three-level FCS (FCS-3L)
This approach is an extension of the two-level FCS ap-
proach proposed by van Buuren (2011) [13] to impute
three-level data using a series of univariate three-level
LMMs for each variable with missing values [26, 32, 33].
Similar to JM-3L, here the correlation among individuals
within the same higher-level cluster is modelled using
cluster-specific random effects while the clustering of re-
peated measures within individuals is modelled using
individual-specific random effects imputing the data in
long format.
The Table 2 summarizes the approaches discussed

above along with the software each of the approach is
available in.

Simulation study
We conducted a simulation study based on the CATS
case study to compare the performance of the above
approaches. In our simulations we did not consider
JM-3L, as to our knowledge there are no available
implementations of this method in mainstream soft-
ware. The data were generated as described below,
with 40 school cluster (i = 1,…, 40) and a total sample
size of 1200 students.

Generation of the complete data
First we generated 40 school clusters which we popu-
lated in two ways to obtain a sample of 1200
students:

1. In the first scenario we assumed that each school
contained a fixed cluster size of 30 students, which is
a typical class size observed in school setting [41].

2. In the second scenario each school contained a
varying number of students ranging from 8 to 66
students, similar to the CATS [3]. In this scenario,
the school cluster sizes (8 ≤ ni ≤ 66) were assumed
to follow a truncated log-normal distribution and
cluster size for each school i was sampled randomly
from this distribution. In order to set the total
number of students across the 40 schools to be
1200, the sampled cluster sizes were multiplied by a
factor of 1200=

P40

i¼1
ni and rounded to derive a scaled

class size. If the total of these scaled class sizes was
less than 1200, the deficit was added to the last
school cluster, if the total of scaled class size was
higher than 1200, the excess was deducted from the
last school cluster.

Under each of the two scenarios, the rest of the vari-
ables were generated sequentially as described below for
individual j in cluster i. The values of the parameters
indexing these distributions were determined by estimat-
ing the respective quantity from the CATS data and are
given in Additional file 1: Table S1.

i. Child’s age at wave 1 (ageij1) was generated from a
uniform distribution, U(a, b).

ii. Child’s sex (sexij) was generated by randomly
assigning λ% of students to be female.

iii. Child’s SES quintile at wave 1 (SESij1) was
generated by randomly assigning θ0, (θ1 − θ0), (θ2
− θ1), (θ3 − θ2) and (1 − θ3) % of respondents to SES
quintiles 1,2,3,4 and 5 respectively.

iv. The standardised NAPLAN scores at wave 1 (NAPL
AN _ zij1) were generated from a linear regression

Table 3 Point estimate (and standard error) for the effect of early depressive symptoms on subsequent standardized NAPLAN
numeracy scores, and point estimates for the variance components at levels 3, 2 and 1, from available case analysis (ACA) and 8 MI
approaches applied to the CATS data analysis

Method Regression coefficient estimate (SE) Level 3 variance component Level 2 variance component Level 1 variance component

ACA −0.022 (0.007) 0.042 0.239 0.232

JM-1L-DI-wide −0.019 (0.007) 0.043 0.243 0.231

FCS-1L-DI-wide −0.019 (0.008) 0.043 0.246 0.230

JM-2L-wide −0.020 (0.007) 0.041 0.246 0.228

FCS-2L-wide −0.022 (0.007) 0.042 0.245 0.229

JM-2L-DI −0.020 (0.008) 0.042 0.237 0.228

FCS-2L-DI – – – –

FCS-3L in ml.lmer −0.021 (0.007) 0.033 0.238 0.232

FCS-3L in Blimp −0.021 (0.007) 0.040 0.238 0.228

ACA available case analysis, DI dummy indicators, FCS fully conditional specification, JM joint modelling, NAPLAN National Assessment Program - Literacy and
Numeracy, RE random effects, SE standard error
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model conditional on child’s sex, child’s age at wave
1 and child’s SES quintile:

NAPLAN zij1 ¼ η0 þ η1� sexij ¼ 1
� �þ η2�ageij1

þ
X4

a¼1

η3;a�I SESij1 ¼ a
� �þ ψij ð2Þ

where ψij are independently and identically (iid) distrib-
uted as as ψij � N ð0; σ2φÞ and a = 0 (reference category),

1,2,3, or 4 representing the SES quintiles 1–5
respectively.

v. Child’s depression status at waves 2, 4 and 6
(depressionij(k − 1)) was generated using a LMM
conditional on child’s age at wave 1, child’s sex,
NAPLAN scores at wave 1, child’s SES quintile and
wave:

depressionijk ¼ δ0 þ δ1�ageij1 þ δ2� sexij ¼ 1
� �

þ δ3�NAPLAN zij1

þ
X4

a¼1

δ4;a�I SESij1 ¼ a
� �

þ δ5�waveijk þ u0i þ u0ij þ φijk ð3Þ

Where φijk, u0ij and u0i are iid as φijk � N ð0; σ2
φÞ, u0ij

� Nð0; σ2u2Þ; and u0i � Nð0; σ2u3Þ respectively.

vi. Child’s standardized NAPLAN score at waves 3, 5
and 7 (NAPLAN _ zijk) was generated from a LMM
as shown below:

NAPLAN zijk ¼ β0 þ β1�depressionij k − 1ð Þ
þ β2�waveijk þ β3�ageij1
þ β4� sexij ¼ 1

� �

þ β5�NAPLAN zij1

þ
X4

a¼1

β6;a�I SESij1 ¼ a
� �þ α0i

þ α0ij þ εijk ð4Þ

where εijk, α0i and α0ij are iid as εijk � N ð0; σ21Þ α0i � N
ð0; σ23Þ; and α0ij � Nð0; σ22) respectively.

vii. Finally, child’s behavioural problems at waves 2, 4
and 6 (SDQijk), which is not included in the analysis
but will be included in the imputation model as an
auxiliary variable to improve its performance [42],

was generated using a LMM conditional on
depression symptoms at waves 2, 4 and 6 and wave:

SDQijk ¼ γ0 þ γ1�depressionijk þþγ2�waveijk
þ ν0i þ ν0ij þ ϵijk ð5Þ

where ϵijk, ν0i and ν0ij are iid as; ϵijk � N ð0; σ2ϵÞ ν0i � Nð
0; σ2v3Þ; and ν0ij � Nð0; σ2

v2 ) respectively.
Steps i-vii above were replicated 1000 times. This

number was selected to limit the Monte Carlo standard
error related to the coverage, which with 1000 replica-
tions will be approximately 0.7% [43].
In order to compare the performance of the MI ap-

proaches under different degrees of correlation at the
two levels, we considered two different intra-cluster cor-
relation (ICC) values at level 3 (high = 0.15 and low =
0.05) and at level 2 (high = 0.5 and low = 0.2). This re-
sulted in four simulation scenarios corresponding to four
pairs of ICC values: High-High, High-Low, Low-High
and Low-Low. These ICC values were chosen based on
the estimated ICC values in the CATS (level-2 ICC = 0.5
and level-3 ICC = 0.07) and the literature (an ICC of
0.05 is common in cluster randomized trials [44] and
larger ICC values such as 0.2 are seen in repeated mea-
sures designs [6, 45]). Under each of the ICC combina-
tions, the respective variance components at levels 1, 2
and 3 in the final population data generating model (Eq.
4) were obtained by equating the total variance across all
the three levels to unity (i.e. σ21 þ σ22 þ σ23 ¼ 1Þ (see
Additional file 1: Table S2).

Generation of missing data
We set data to missing in depressive symptom scores at
waves 2, 4 and 6 (the exposure of interest). Specifically,
to mimic the missing data proportions observed in the
CATS, 10, 15 and 20% of the depression symptom
scores at waves 2, 4 and 6, respectively, were set to miss-
ing. To evaluate the approaches under a more extreme
example, in a second scenario we set 20, 30 and 40% of
the depressive symptom measures at waves 2, 4 and 6 to
missing.
We set depressive symptoms to be missing completely

at random (MCAR) and according to two missing at
random (MAR) mechanisms: MAR-CATS and MAR-
inflated. Under the MCAR mechanism, the desired pro-
portion of depression symptom scores at each wave was
set to be missing using simple random sampling. Under
the MAR mechanisms, depression symptom scores at
each wave were set to be missing according to a logistic
regression model dependent on the standardized NAPL
AN scores at the subsequent wave and the SDQ measure
at the concurrent wave:
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logitðPðR depressionijk ¼ 1ÞÞ
¼ ζ0k þ ζ1�NAPLAN zijðkþ1Þ þ ζ2�SDQijk

ð6Þ
where, R _ depressionijk is an indicator variable which
takes the value 0 if depressionijk is missing and 1 if
depressionijk is observed.
For the MAR-CATS scenario we used the associations

between the probability of response and the predictors
of response observed in the CATS. For the MAR-
inflated scenario we doubled the values of ζ1 and ζ2. The
values of the intercepts ζ0k were chosen by iteration so
that the required proportions of missingness were
achieved for each of the waves (2, 4 and 6). The values
of the parameters ζ1 and ζ2, and the corresponding odds
ratios for each of the two MAR scenarios are shown in
the Additional file 1: Table S3.

MI methods and evaluation
For the 24 scenarios considered (2 cluster sizes × 4 ICC
combinations × 3 missingness mechanisms), we applied
the following 8 MI approaches: JM-1L-DI-wide, FCS-
1L-DI-wide, JM-2L-wide, FCS-2L-wide, JM-2L-DI,
FCS-2L-DI, FCS-3L in Blimp and FCS-3L in ml.lmer to
impute missing values in depressive symptom scores at
waves 2, 4 and 6 in each of the simulated data sets.
Except for FCS-3L in Blimp, all the other approaches

were implemented in R version 3.5.0 [46]. For the FCS-
3L in Blimp we used the Blimp beta version 1.1 [26]. For
the JM approaches, JM-1L-DI-wde, JM-2L-wide, JM-
2L-DI, the R package ‘jomo’ was used while for the FCS
approaches, FCS-1L-DI-wide, FCS-2L-wide, FCS-2L-
DI, the R package ‘mice’ was used. Specifically for the
single-level JM approach, the function jomo1con in the
‘jomo’ package was used while for the single-level FCS
approach, the function norm in the ‘mice’ package was
used. For the two-level JM approaches the function
jomo1rancon in the ‘jomo’ package was used and for the
two-level FCS approaches the function 2 l.pan in the
‘mice’ package was used. While there are several alterna-
tive functions in R for specifying a two-level FCS imput-
ation model, we chose the above because they have been
shown to perform well for handling incomplete longitu-
dinal data in previous simulation studies [47]. Although
the FCS-3L implementations in Blimp and ml.lmer both
impute missing values using three-level LMMs as the
imputation model, in FCS-3L in ml.lmer the three-level
model is fitted using maximum likelihood, while in
Blimp a fully Bayesian approach is used. In addition, the
FCS-3L implementation in ml.lmer can also handle non-
hierarchical cross-classified data. For regression coeffi-
cients and the variance parameters in the imputation
model for FCS-3L in Blimp, we used the default priors
specified in Blimp [26].

In addition to all the variables in the analysis model,
the imputation model for each of the 8 MI approaches
also included child behaviour problems (reported by
SDQ) at waves 2, 4 and 6 as auxiliary variables. For each
simulated dataset, 20 imputations were generated for
each of the MI approaches [5]. After examining trace
plots, the JM MI approaches were run after a burn-in of
1000 iterations with 100 between-imputation iterations,
and the FCS MI approaches in R a burn-in of 10 itera-
tions. The FCS approach in Blimp were run after a
burn-in of 1000 iterations with 100 thinning iterations,
as with 1000 iterations the potential scale reduction
(PSR) factor values were less than 1.10 which according
to the Blimp user guide (version 1.1) is generally accept-
able [30].
The target analysis model (Eq. 1) was then fitted to

each of the imputed data sets and the estimates were
pooled across the imputed datasets using Rubin’s rules
[5, 48]. The parameters of interest were the regression
coefficient for depressive symptoms (β1), and the esti-
mates of the variance components at levels 1, 2 and 3 (
σ21; σ

2
2; σ

2
3 respectively). We also conducted an available

case analysis (ACA) where waves of an individual with
missing values were excluded from the analysis.
The estimates of β1; σ

2
1; σ

2
2 and σ23 from the ap-

proaches were compared to the true values of these pa-
rameters that were used to simulate the data. In order to
compare the performance of the various approaches for
estimating the regression coefficient of interest we calcu-
lated the bias, the average difference between the true
value and the estimates across 1000 replications; the em-
pirical standard error, the average standard deviation of
the estimates from 1000 replications; the model-based
standard error, the average of the standard error of the
estimates across 1000 replications; and the coverage
probability, estimated by the proportion of replications
where the estimated 95% confidence interval contained
the true value [49]. For the variance component esti-
mates, we report the bias and empirical standard error.
We also report the percentage bias which is defined as
the bias relative to the true value as a percentage.

Results
Simulation study
The comparative performance of the MI approaches
were very similar for the MCAR, MAR-CATS and
MAR-inflated scenarios so we focus on the results from
the MAR-CATS scenario.
The sampling distributions of the estimated bias of the

regression coefficient of interest (β1) across the 1000
replications for each analysis approach for different sce-
narios are displayed in Fig. 1. As expected, we observed
large bias (> 10% relative bias), slightly larger standard
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errors than with the MI approaches and severe under-
coverage (< 0.90) for ACA across all ICC combinations
and missing data proportions, all of which increased
with lower ICC values and higher missing data propor-
tions. While all the MI approaches showed minimal
biases, there were slightly higher biases for FCS-3L in
ml.lmer when the ICC at level 2 was high and with JM-
2L-DI, FCS-2L-DI, and FCS-3L in Blimp when the ICC
at level 2 was low. These biases were more prominent in
the MAR-inflated scenario with higher missing data pro-
portions (Table S6). All the MI approaches resulted in
comparable empirical and model-based standard errors
with coverage probabilities close to the nominal level
(Fig. 2 and Table S5).
Figure 3 shows the estimated biases for the variance

components at level 1, 2 and 3 across different simu-
lation scenarios. All approaches resulted in similar

negligible bias (< 10% relative bias) for the variance
components at level 1, 2 and 3 across the different
simulation scenarios. For all MI approaches there were
slightly larger biases for the level 3 variance estimates
when there was a high ICC at level 3, but level 1 and
2 variance estimates were unbiased across the different
ICC combinations and missing data proportions. The
ACA approach produced slightly larger bias in the
level 2 variance whenever the ICC at level 2 was high,
and for the level 1 variance when the ICC at level 2
was low.
The performance of the approaches was similar with

variable cluster sizes (results available on request) except
when the data were MCAR, where there was slightly
higher albeit still minimal bias for FCS-2L-DI,FCS-3L in
ml.lmer and FCS-3L in blimp for some scenarios with
high missing data proportions.

Fig. 1 Distribution of the bias in the estimated regression coefficient of interest (β1, true value= − 0.025) across the 1000 simulated datasets for available case
analysis (ACA) and the 8 multiple imputation (MI) approaches under two scenarios for missing data proportions at waves 2, 4 and 6 (10%, 15%, 20% and 20%,
30%, 40%, respectively) and four ICC combinations when data are missing at random (MAR-CATS). The lower and upper margins of the boxes represent the
25th (Q1) and the 75th (Q3) percentiles of the distribution respectively. The whiskers extend to Q1–1.5*(Q3- Q1) at the bottom and Q3+ 1.5*(Q3- Q1) at the
top. The following abbreviations are used to denote different MI methods, e.g., DI: dummy indicators, FCS: fully conditional specification, JM: joint modelling
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Application to the CATS data
The MI approaches evaluated in the simulation study
were also applied to the CATS data to provide an empir-
ical comparison and these resultes are shown in Table 3.
Consistent with the simulation results, the regression co-
efficient estimates and the standard errors were very
similar irrespective of the method of analysis, with
slightly more variability in the variance component esti-
mates, especially with FCS-3L in ml.lmer where we ob-
served a considerably smaller estimate for the level 3
variance component. All the approaches suggest that an
increase in the depressive symptom score is associated
with a small decrease in the standardized NAPLAN nu-
meracy score at the subsequent wave. Of note it was not
possible to apply FCS-2L-DI for the CATS due to sparse
data. The estimated regression coefficients (and standard
errors) of the adjusting covariates were also quite similar

under the different MI approaches evaluated, and these
are shown in the Additional file 1: Table S13.

Discussion
While implementations of several MI approaches for im-
puting single- and two-level data are available in main-
stream statistical software, there are limited options for
imputing incomplete three-level data using three-level
imputation models. Further, these approaches have not
been compared with the pragmatic DI/wide adaptations
of the more readily available approaches designed for
imputing single- and two-level data presented here. We
report a comparison of all these approaches using simu-
lations and a real-data example based on the CATS. All
of the MI approaches considered resulted in approxi-
mately unbiased estimates for the coefficient of the ex-
posure with confidence intervals achieving nominal

Fig. 2 Empirical standard errors (filled circles with error bars showing ±1.96× Monte Carlo standard errors) and average model-based standard
errors (hollow circles) from 1000 simulated datasets, for available case analysis (ACA) and the 8 multiple imputation (MI) approaches under two
scenarios for missing data proportions at waves 2,4 and 6 (10%, 15%, 20% and 20%, 30%, 40%, respectively) and four ICC combinations when
data are missing at random (MAR-CATS). The following abbreviations are used to denote different MI methods, e.g., DI: dummy indicators, FCS:
fully conditional specification, JM: joint modelling
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coverage across the different ICC combinations and
missing data proportions considered in our study. We
found similar comparable performance of these ap-
proaches in our case study as well. Simulations also
showed that, when the cluster sizes varied, FCS-2L-DI,
FCS-3L in ml.lmer, and FCS-3L in Blimp showed
slightly higher biases in the setting with a high propor-
tion of missing data than the other approaches. This
suggests that the multilevel FCS approaches could be
more sensitive to sparse data resulting from small cluster
sizes and missing data than the JM approaches. As ex-
pected, severe biases and under-coverage were observed
for ACA when data were MAR, with slight gains in pre-
cision for all MI approaches compared to ACA [50]. We
observed very little bias for the estimates of the variance
components for all the approaches, including ACA,
under all simulation scenarios. Our finding that the per-
formance of the single-level approaches JM-1L-DI-wide,
FCS-1L-DI-wide was similar to the approaches using

three-level imputation models is highly relevant for
practice since the commonly used statistical packages
Stata and SPSS often used by researchers do not have
MI approaches based on multilevel imputation models
[18].
The advantage of three-level MI approaches over the

pragmatic adaptations of single- and two-level ap-
proaches is that they have much lower computational
time. In practice as only several imputations are required
(generally less than 100) [51], we do not consider this to
be a substantial practical limitation. The findings from
our study are important as FCS-3L in ml.lmer is a very
recent command that can be challenging to implement
due to limited documentation (however, see [52] for a
demonstration of its functionality), and FCS-3L in Blimp
is a standalone package. However, the single-level and
two-level approaches with DI and repeated measures im-
puted in wide format may incur convergence issues of
the imputation model when there are a large number of

Fig. 3 Estimated bias in the variance components at level 1, 2 and 3 across the 1000 simulated datasets available case analysis (ACA) and the 8
multiple imputation (MI) approaches under two scenarios for missing data proportions at waves 2, 4 and 6 (10%, 15%, 20% and 20%, 30%, 40%,
respectively) and four ICC combinations when data are missing at random (MAR-CATS). The following abbreviations are used to denote different
MI methods, e.g., DI: dummy indicators, FCS: fully conditional specification, JM: joint modelling
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clusters and/or a large number of incomplete repeated
measures, as with FCS-2L-DI in our case study. In
addition, the methods which impute repeated measures
in wide format (JM-1L-DI-wide, FCS-1L-DI-wide, JM-
2L-wide, and FCS-2L-wide) for the repeated measures
cannot be applied with repeated measures that are not
recorded at fixed intervals of time. Previous simulation
studies have shown that the DI approach can result in
inflated standard errors and biased variance components
estimates (and therefore ICCs) particularly when the
ICC is low and there are small cluster sizes [12, 18, 40].
Given all of these findings, it is suggested that DI ap-
proaches be used with caution.
In the single-level context where all variables are con-

tinuous and approximately normally distributed, JM and
FCS approaches have been shown to be equivalent [53,
54]. However in the multilevel context, even with nor-
mally distributed variables, this is not necessarily true
[10]. The multilevel JM approach by Schafer and Yucel
(2002), as implemented in R, is slightly different from
the standard multilevel FCS implementation in R as ori-
ginally proposed by van Buuren (2011), because it allows
associations between incomplete variables to vary at dif-
ferent levels [10]. The standard multilevel FCS approach
can be made equivalent to the multilevel JM approach
by including arithmetic means of the imputed variables
as cluster means in the imputation model [9]. However,
in including the cluster means this way, the FCS ap-
proaches assume that the cluster sizes are equal and it is
argued that for the FCS approaches to be formally
equivalent to the JM approaches in the multilevel con-
text, the cluster sizes should also be equal [9, 31] (Note:
the new Blimp version 2.2 also has an additional alterna-
tive approach- “latent” approach, for incorporating the
group means which do not assume equal cluster sizes)
[55]. While these differences between the multilevel JM
and FCS could be important in the context of compli-
cated multilevel analyses that assume different associa-
tions between variables at different levels, the
substantive analysis model considered in the current
manuscript does not assume such relations. Therefore as
these differences are not largely relevant in the context
of our example we do not discuss these differences in
more detail. For a detailed discussion of the formal dif-
ferences between the JM and FCS approaches in the
multilevel context, see Carpenter and Kenward (2013),
Enders et al. (2016) and Mistler (2017) [9, 10, 56].
No study to date has compared all of the available MI

approaches in a three-level data setting. However, our
results are consistent with those from similar studies
conducted in a two-level setting. In particular, Huque
et al. (2018) and Huque et al.(2019) showed that the
single-level JM and FCS approaches which impute the
repeated measures in wide format to account for the

clustering of repeated measures (labelled JM-mvni and
FCS-standard in their study) performed well compared
to several generalized linear mixed model (GLMM)
based approaches for handling incomplete longitudinal
data [47, 57]. Our results are also consistent with the
simulations result of Enders et al. (2017), who showed
that the two-level MI application in Blimp resulted in re-
gression coefficients with negligible bias even in small
samples with large proportions of missing data and min-
imal bias for the variance component estimates for a
random intercept model [30]. Several studies that have
assessed the DI approach to impute two-level data found
that with missing values in predictors, the DI approach
produces reliable estimates of the regression coefficients
while the estimates of variance components can be
biased, especially when the ICC is low coupled with very
high missing data rates and small cluster sizes [12, 13,
18, 34, 40]. Consistent with these findings, we observed
that with low ICC at level 2, the variance components at
level 2 for the JM-2L-DI and FCS-2L-DI were slightly
more biased than with the other MI approaches.
It is always difficult to draw conclusions from a single

simulation study, but the fact that our simulations were
based on a real study allowed us to incorporate complex
yet realistic associations, meaning that the findings re-
flect what could be expected in settings with a similar
clustering structure. We limited our simulations to a
random-intercept analysis model with missing data at
level 1 only for brevity. However, caution should be
taken when generalizing these results to more complex
analysis models, for example multilevel analysis models
with random slopes and/or interaction terms. It would
be interesting to compare the possible approaches in the
context of a random slope model because it is likely that
the performance of these approaches are quite different
[57]. With random slopes, the single- and two-level im-
putation models with extensions, particularly those
which use DIs, might lead to biased estimates and can
often be infeasible with a large number of clusters [58].
In addition, if explanatory variables with random slopes
or interaction effects are incomplete, MI as implemented
in standard software (the “reversed” imputation strategy)
may no longer be valid [31]. Recently introduced
substantive-model-compatible (also referred to as
model-based) MI approaches could be a potential solu-
tion for this problem but is beyond the scope of this
paper [8, 59, 60].
An alternative JM approach for imputing multilevel

data was described by Asparouhav and Muthén (2010).
Similar to the JM approach by Schafer and Yucel (2002),
this approach also uses a joint MLMM for imputing in-
complete variables but treats all variables, complete and
incomplete, as outcomes in the imputation model [61].
This approach is slightly less restrictive than the JM
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approach by Schafer and Yucel (2002) as it allows associ-
ations between all variables to vary at different levels,
and as a result can be congenial with more complicated
multilevel analysis models that assume different associa-
tions between variables (both complete and incomplete)
at different levels [7, 56]. We did not include this ap-
proach in our study as our substantive analysis model
did not assume such associations. Another variation of
the JM approach which can be used to impute multi-
level data is the sequential parameterization of the joint
model. Although more flexible than the commonly im-
plemented JM approach, the specification of separate
conditional models for each incomplete variable requires
more consideration by the researcher than the JM ap-
proach [17]. Also, while there is a recent implementation
of this approach that can handle two-level data, we are
not aware of any implementations of this approach that
can handle three-level data [59]. Although it would be
possible to accommodate three-level data using this ap-
proach using wide/DI adaptation due to the complexity
of this approach this is less appealing than the ap-
proaches considered here.
While our study focused on the setting with repeated

measures clustered within individuals who are in turn
clustered within large groups, the pragmatic methods
suggested in our study may be adapted to more general
three-level settings. However evaluation of the perform-
ance of these adaptations compared to the three-level
imputation models in a more general context is still an
area for future work. For example, an extension to our
study could be to explore the performance of these MI
approaches with more complex analysis models or where
there are missing data at level 2 (time-fixed variables)
and level 3 (cluster-specific variables). In our simulation
study missingness was imposed in a continuous variable.
Therefore, another extension would be to assess the per-
formance of the MI approaches for imputing mixtures of
categorical and continuous variables as the different ap-
proaches impute incomplete categorical variables in dif-
ferent ways [62]. Finally, our simulations considered
only MCAR and MAR missingness mechanisms and the
MI methods evaluated in our simulations are only guar-
anteed to produce unbiased estimates under MAR. In
practice it is possible that the data are missing not at
random (MNAR), although this does not preclude un-
biased estimation from the approaches considered [63].
Future research should examine the performance of
these methods under MNAR mechanisms.
Despite the limitations of this manuscript discussed

above, our study is the first to provide a much needed
comparison of the currently available approaches for im-
puting incomplete longitudinal data that are nested
within clusters which has important implications for the
practical researcher.

Conclusion
In conclusion, the findings from our study indicate that
both single-and two-level MI approaches can be ex-
tended with DIs and/or imputing repeated measures in
wide format to adequately handle incomplete three-level
data, performing as well as the MI approaches using
three-level imputation models. Therefore in practice, re-
searchers may choose an appropriate method based on
the substantive analysis model, computational time and
software preference. However, approaches which use the
DI extension should be used with caution as it has been
shown to produce biased parameter estimates in certain
scenarios. In the presence of longitudinal data measured
at irregular time intervals, researchers may have no
other choice than the three-level imputation approaches.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01079-8.

Additional file 1: Table S1, S2 and S3. contains the parameter values
used in the data generating and missing data generation models of the
simulation study. Table S4, S5 and S6 contains the values of
performance measures, for available case analysis (ACA) and 8 multiple
imputation (MI) approaches for estimating the regression coefficient of
depressive symptom scores at the previous wave, under the three
missing data mechanisms missing completely at random (MCAR), missing
at random similar to CATS (MAR-CATS) and inflated missing at random
(MAR-inflated) respectively. Table S7 and S8. contains the values of
performance measures, for ACA and 8 multiple imputation (MI)
approaches in estimating the variance components at level 3, 2 and 1,
when data are missing completely at random (MCAR) with low (10, 15
and 20% across waves 2, 4 and 6 respectively) and high (20, 30 and 40%
across waves 2, 4 and 6 respectively missing data percentages across
waves respectively. Table S9 and S10. contains the values of
performance measures, for ACA and 8 multiple imputation (MI)
approaches in estimating the variance components at level 3, 2 and 1,
when data missing at random (MAR-CATS) with low (10, 15 and 20%
across waves 2, 4 and 6 respectively) and high (20, 30 and 40% across
waves 2, 4 and 6 respectively missing data percentages across waves
respectively. Table S11 and S12. contains the values of performance
measures, for ACA and 8 multiple imputation (MI) approaches in
estimating the variance components at level 3, 2 and 1, when data are
missing at random (MAR-inflated) with low (10, 15 and 20% across waves
2, 4 and 6 respectively) and high (20, 30 and 40% across waves 2, 4 and
6 respectively missing data percentages respectively. Table S13. contains
the estimated regression coefficients (and standard errors) for the
adjusting covariates, from available case analysis (ACA) and 8 MI
approaches applied to the CATS data analysis. Fig. S1 and S2. shows
the distribution of the bias in the estimated regression coefficient of
interest across the 1000 replications for available case analysis (ACA) and
the 8 multiple imputation (MI) approaches under two scenarios for
missing data proportions at waves 2, 4 and 6 (10, 15, 20 and 20%, 30,
40%, respectively) and four ICC combinations when data are missing
completely at random (MCAR) and missing at random (MAR-inflated)
respectively. Fig. S3 and S4. shows the empirical standard errors (filled
circles with error bars showing ±1.96× Monte Carlo standard errors) and
average model-based standard errors (hollow circles) from 1000 replica-
tions, for available case analysis (ACA) and the 8 multiple imputation (MI)
approaches under two scenarios for missing data proportions at waves
2,4 and 6 (10, 15, 20 and 20%, 30, 40%, respectively) and four ICC combi-
nations when data are missing completely at random (MCAR) and miss-
ing at random (MAR-inflated) respectively. Fig. S5 and S6. shows the
estimated bias in the variance components at level 1, 2 and 3 across the
1000 replications available case analysis (ACA) and the 8 multiple
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imputation (MI) approaches under two scenarios for missing data propor-
tions at waves 2, 4 and 6 (10, 15, 20 and 20%, 30, 40%, respectively) and
four ICC combinations when data are missing completely at random
(MCAR) and missing at random (MAR-inflated) respectively.

Additional file 2. R syntax for the CATS data illustration
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