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Abstract

Background: The data from immuno-oncology (IO) therapy trials often show delayed effects, cure rate, crossing
hazards, or some mixture of these phenomena. Thus, the proportional hazards (PH) assumption is often violated
such that the commonly used log-rank test can be very underpowered. In these trials, the conventional hazard ratio
for describing the treatment effect may not be a good estimand due to the lack of an easily understandable
interpretation. To overcome this challenge, restricted mean survival time (RMST) has been strongly recommended
for survival analysis in clinical literature due to its independence of the PH assumption as well as a more clinically
meaningful interpretation. The RMST also aligns well with the estimand associated with the analysis from the
recommendation in ICH E-9 (R1), and the test/estimation coherency. Currently, the Kaplan Meier (KM) curve is
commonly applied to RMST related analyses. Due to some drawbacks of the KM approach such as the limitation in
extrapolating to time points beyond the follow-up time, and the large variance at time points with small numbers
of events, the RMST may be hindered.

Methods: The dynamic RMST curve using a mixture model is proposed in this paper to fully enhance the RMST
method for survival analysis in clinical trials. It is constructed that the RMST difference or ratio is computed over a
range of values to the restriction time τ which traces out an evolving treatment effect profile over time.

Results: This new dynamic RMST curve overcomes the drawbacks from the KM approach. The good performance
of this proposal is illustrated through three real examples.

Conclusions: The RMST provides a clinically meaningful and easily interpretable measure for survival clinical trials.
The proposed dynamic RMST approach provides a useful tool for assessing treatment effect over different time
frames for survival clinical trials. This dynamic RMST curve also allows ones for checking whether the follow-up time
for a study is long enough to demonstrate a treatment difference. The prediction feature of the dynamic RMST
analysis may be used for determining an appropriate time point for an interim analysis, and the data monitoring
committee (DMC) can use this evaluation tool for study recommendation.
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Background
The log-rank test is one of the commonly used methods
for survival analysis, and is considered the most powerful
tool to compare two survival curves under the PH as-
sumption. However, in the IO therapy trials, observed
data often present a clear deviation/violation of the PH

assumption due to delayed effects, cure rate, crossing
hazards, or a mixture of these phenomena [1].
The hazard ratio (HR) has been widely used to evalu-

ate the treatment effect under the PH assumption. How-
ever, when this assumption is deviated, the resulting HR
estimate as the metric for the treatment effect is difficult
to interpret [2]. In an interview, Professor David R. Cox,
the originator of the COX proportional hazard model,
stated, “Of course, another issue is the physical or
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substantive basis for the proportional hazards model. I
think that’s one of its weaknesses …” [3]. When the PH
assumption is violated, a single HR may not be a good
estimand or measurement for the treatment difference
because the HR can often be hard to understand or in-
terpret without PH [4]. In this case, the HR is not simply
an average of the true HR over time, but instead is the
weighted average of the HR over time on the log scale
[5]. In the Cox-regression model, the weights depend on
the censoring distribution and different settings of ac-
crual, follow-up, and early dropout in randomized clin-
ical trials. Thus, this could lead to different trial results
and parameter estimates even if the underline survival
curves are identical no matter how large the sample sizes
might be [5, 6]. In addition, median survival time may
not be estimable due to long-term survival. When de-
signing a clinical trial under non-PH, most likely we will
mis-specify how the difference between groups varies
over time due to a lack of PH, therefore, the HR estima-
tion procedure may not be able to effectively detect a
true difference between groups. Thus, the HR estimation
procedure is a non-robust measure of the difference be-
tween two survival curves under non-proportional haz-
ards [6]. Even when the PH assumption is a reasonable
assumption, the HR may not be a useful summary of the
treatment difference for decision making due to lack of
the reference hazard value and the same HR value may
have a completely different interpretation due to differ-
ent reference hazard values [6]. Even though alternative
methods have been suggested to replace the log-rank
test for improving the power, without resolving the HR
interpretation issue, the estimand associated with the
analysis is ambiguous, which clearly deviates from the
recommendation in ICH E-9 (R1) [7] due to a violation
of the test/estimation coherency [8].
Chappell and Zhu [9] explored many different ways in

describing differences in survival curves, including HR,
median survival, ratio of landmark survival, and ratio of
restricted mean survival time (RMST, the life expectance
within a given (restricted) time period). The authors
concluded that none of these endpoints is uniformly su-
perior and all should bear consideration. The choice of
the method to compare 2 treatment regimens depends
on scientific and clinical necessity.
The RMST offers an intuitive, clinically meaningful in-

terpretation without any pre-assumed model assump-
tions, such as the PH assumption [10–13]. However, we
need to restrict the comparison to some specified inter-
val since the censoring prevents reliable estimation of
the unrestricted mean lifetime. From a statistical point
of view, the RMST is the mean length of survival time
within a specific time window, which can be interpreted
as the area under the survival curve within the window,
and in practice, it can be viewed as the life expectancy

within the specific time window. The procedure for esti-
mating the difference in RMST between two treatment
groups is always valid without any model assumptions.
The RMST is more stable in comparison with the esti-
mation of the median survival time [3], has a valid and
clearly defined estimand, and can produce consistent re-
sults between the hypothesis testing and estimation. The
RMST captures the survival curve within the considered
time window which is more informative when a survival
plateau is present on the long term, for example in sev-
eral immunotherapy RCTs; whereas the median used in
HR estimate is unable to detect such a plateau in this
right tail of the curve [14–16].
The RMST provides an absolute measurement based

on a scale of time, whereas the HR reflects a relative par-
ameter which does not have any unit. Trinquart, et al.
[17] compared empirically the treatment effects mea-
sured by the HR and by the difference (and ratio) of
RMST in 54 oncology randomized trials. In summary,
on average, the HR provided significantly larger treat-
ment effect estimates than the ratio of RMST (as calcu-
lated at the latest follow-up time). The authors
recommend RMST-based measures be routinely re-
ported in randomized trials with time-to-event
outcomes.
Huang and Kuan [5] did extensive simulations under

various scenarios and design parameter setups and com-
pared the log-rank test and RMST-based test methods.
When there is an evident separation favoring one treat-
ment arm at most of the time points across the Kaplan-
Meier survival curves, the log-rank test is generally a
powerful test, but the RMST test has a similar perform-
ance. However, when the PH assumption is violated for
scenarios where a late separation of survival curves is
observed, the RMST-based test has better performance
than the log-rank test when the pre-specified truncation
time τ for defining the RMST is reasonably close to the
tail of the observed curves.
RMST is robust with good interpretation for any sur-

vival distribution. Zhao, et al. [18] suggested using an
RMST curve based on the RMST over time to quantify/
evaluate the difference between two RMST curves within
a specific time window. As an early noted restriction of
RMST due to right censoring, the RMST inference is
only available for the time period up to the minimum of
the latest follow-up for the two groups. The statistical
inference can be obtained for the RMST difference
within a prespecified time window. However, the choice
of the time window is crucial, and the resulting confi-
dence bands for the difference of RMST curves depends
on the choice of this time interval. Similarly, this issue
also applies to the case for the simultaneous inference
about the difference of two survival curves or hazard
ratio.
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The integration under the KM curve from the begin-
ning of the study through a pre-specified time point is
commonly used to calculate the RMST. However, the
KM method shows some limitations in practical applica-
tions. First, the curve may not be able to extrapolate to
time points beyond the follow-up time. The estimates
may have large variance at time points towards the tail
due to small numbers of patients at risk. As pointed out
by Peto, et al. [19] the standard error can be underesti-
mated in this long flat region. The curve is also esti-
mated as a step function, which is biologically
unrealistic. These drawbacks of the KM method limit
the RMST performance because the survival comparison
can only be estimated until the last event time or obser-
vation time, and a potential large variance for the esti-
mates is presented at the last time point. In a typical
clinical study, some prediction or extrapolation is
needed and can be useful, for example, determining
when the next interim analysis should be performed, or
assessing if additional follow-up time in a study is
needed to demonstrate a treatment difference. However,
the KM method cannot fulfill this goal and so a para-
metric method is more desired.
To address these challenges from KM-based RMST

method, in this paper we applied a flexible parametric
mixture model to estimate the survival curves. There-
fore, a dynamic RMST curve is constructed over any
given time window of interest for the clinical study.
A mixture model can fully take advantage of a para-
metric form for inference without limitation of the
follow-up time. Liao and Liu [20] showed that the
mixture models have good flexibility, i.e. the esti-
mated survival curves can be very close to KM
curves, to fit survival data from several oncology
studies. The paper is organized as follows. In Section
2, we introduce the RMST method, and describe how
to derive the dynamic RMST curves from the mixture
Weibull models, where the RMST difference or ratio
is computed over a range of values to the point of re-
striction τ, tracing out a curve over time. Three real
datasets are used to illustrate the performance of the
proposed dynamic RMST curves in section 3. Sum-
mary and discussions are provided in section 4 with a
conclusion in section 5.

Methods
Following Royston and Parmar [21], the RMST, μ(τ),
of a random variable T is the mean of the survival
time X =min (T, τ) limited to some horizon τ > 0. It
equals the area under the survival curve S (t) from 0
to τ:

μ(τ) = E (X) = E [min(T, τ)]=
R τ
0 SðtÞdt:

When T is years to death, we may think of μ(τ) as the
‘τ -year life expectancy’. The variance, var(X), of the re-
stricted survival time X, is calculated as

var Xð Þ ¼ RSDST 2 ¼ E X2
� �

− E Xð Þ½ �2

¼ 2
Z τ

0
tS tð Þdt −

Z τ

0
S tð Þdt

� �2

The restricted standard deviation (RSDST) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞp

. In a two-arm clinical trial with survival func-
tions S0 (t) and S1 (t) for the control and treatment arms,
respectively, the difference in RMST between arms
(treatment – control), Δ(τ), is given by

Δ τð Þ ¼
Z τ

0
S1 tð Þdt −

Z τ

0
S0 tð Þdt

¼
Z τ

0
S1 tð Þ − S0 tð Þð Þdt

i.e., Δ( ) is the area between the survival curves. The
delta method can be used to calculate the variance
var(Δ(τ)) and then construct the confidence interval for
the RMST difference Δ( ) using the normal approxima-
tion. The treatment effect estimation that corresponds
to the RMST based test can be performed by construct-
ing a pointwise two-sided 1-α interval based on the
standard normal approximation as

ΔðτÞ � z1 − α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðΔðτÞÞ

p
where z1 − α ∕ 2 is the 100(1 − α/2)-th percentile of the
standard normal distribution. Note that a simultaneous
confidence interval for RMST differences may also be
constructed using a similar procedure proposed by Zhao
et al. [18].
The ratio of RMST between arms, θ(τ), is given by

θ τð Þ ¼
R τ
0 S1 tð ÞdtR τ
0 S0 tð Þdt

Similarly, the confidence interval for θ(τ) can be con-
structed by calculating the confidence interval for
log(θ(τ)) using delta method and then transforming
back. In theory, a simple parametric model such as the
Weibull, or Gompertz, or three parameter Gamma can
be used to estimate RMST. However, a simple paramet-
ric model may not well fit the complex survival curve
often seen in recent IO development. Several methods of
estimating RMST are available [22] and discussed in lit-
erature, including direct integration of Kaplan-Meier
survival curves, a jackknife method, and the Royston and
Parmar’s modelling using a smoothing spline for the log-
hazard function, and more recently the trapezoidal rule
approach [23]. Note that KM uses a step hazard rate
function. As pointed out in Royston and Parmar’s paper,
the direct integration of Kaplan-Meier curves may be
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unreliable. The jackknife method has the advantage of
being non-parametric but the drawback of being rela-
tively slow to compute, which makes it cumbersome
when simulation with many replicates is needed. Tian’s
presentation [24] indicated that the performance of these
RMST methods depends on the selection of τ. However,
pre-specification of τ is not always easy. Using a large τ
may not always be better because the separation of sur-
vival curves may not increase over time in long-term tri-
als. In addition, a KM survival curve is not defined
beyond the largest follow-up time. Therefore, in applica-
tions we can only pre-specify the τ as the minimum of
the longest follow-up times for treatment groups, which
will be data dependent.
To avoid these difficulties, we consider a flexible sur-

vival function as defined from the mixture of three com-
ponents of Weibull [20]

S tð Þ ¼ p1 exp −
t
λ1

� �k1
" #

þ p2 exp −
t
λ2

� �k2
" #

þ 1 − p1 − p2ð Þ exp −
t
λ3

� �k3
" #

Liao and Liu [20] have demonstrated that the mixture
model with 3 components of Weibull distribution fulfills
the needs for modeling the delay effect or survival sud-
den drops, cure rate, or long term survival which are
often observed in recent IO development. The advantage
of using the mixture Weibull models includes: a) it is
flexible and can produce a survive curve almost the same
as the KM fitting; b) it is fully parametric which allows
predicting future events, survival probability, and hazard
function. In addition, the estimated hazards and survival
curves are smooth functions as compared to the step
functions from the Cox model or nonparametric estima-
tors such as the KM method. In real applications, if a
prior knowledge is available for the number of sub-
groups/components based on composition of the study
population, then this knowledge should be used to de-
termine the number of components for the mixture dis-
tribution. Huang, et al. [25] used this mixture model to
estimate the progression free survival (PFS) and overall
survival (OS) - functions based on an interim dataset
and showed that the models can predict the final PFS
and OS survival curves very well.
With the parametric components, the RMST across

the entire time space, i.e., (0,∞), can be estimated dir-

ectly from the mixture Weibull estimates using
R∞
0 e − axb

dx ¼ 1
b a

− 1
bΓð1bÞ and

R∞
0 xne − axbdx ¼ 1

b a
− nþ1

b Γðnþ1
b Þ, where

Γ(p) is a gamma function. In fact, the RMST μ(τ) can be
estimated for any given τ using the incomplete gamma
function γðs; xÞ ¼ R x

0 t
s − 1e − tdt , which can be computed

using the r-function. The standard error and pointwise

confidence intervals for μ(τ) can also be obtained from
delta method.
In applications, the estimated μ(τ) and its pointwise

confidence intervals provide dynamic views for the treat-
ment effects over a different time window τ. As com-
pared to the KM-based RMST analysis, this dynamic
RMST analysis provides several advantages such as 1) a
straightforward estimate calculation, 2) a better control
on variability since the KM method may have large vari-
ance towards the tail, 3) easy implementation when ad-
justed for covariates, and 4) the availability of using
RMST across the entire time space. Specifically, the last
point of advantages would be useful for checking
whether the follow-up time is long enough to demon-
strate a treatment difference or to reach the maximum
of the treatment effect (e.g., the estimated difference can
be better later if follow up is longer) by checking the dir-
ection of the dynamic RMST difference or RMST ratio
for a stabilized treatment effect; and it is useful for de-
termining a time point for interim analysis by picking
the time where the dynamic RMST difference or RMST
ratio crossing a pre-defined acceptable treatment effect
or for predicting future trends. In general, the timepoint
selected for the analysis is very critical and is not a
purely statistical issue. It should be chosen based on
clinical consideration for the treatment and disease area
such as how long we should follow the patients (for ex-
ample, 3 years) to obtain enough information to assess
the treatment benefit and harm. The tools mentioned
here can be used to help understanding how feasible and
reasonable of this choice. This piece of information will
be explored in the three real datasets in the next section.
It should be noted that although the RMST curves

based on the mixture models can be calculated over the
entire time space in theory but we may not want to ex-
tend the estimated RMST too far away from the study
follow-up to avoid too much extrapolation. Huang, et al.
[25] extrapolated the PFS and OS survival curves using
the mixture model based on the interim data and pre-
dicted the final PFS and OS survival curves very success-
fully. Based on the data maturity on which the mixture
model was built, the amount of extrapolation can be var-
ied. As pointed out in Liao and Liu [20], some practical
guidelines are provided by Pocock et al. [26] and Gebski
et al. [27] about curtailing the KM plot when the risk set
is too small in applications. We apply the methods to a
few real oncology trials in the next section to illustrate
the flexibility and advantage of the mixture-model-based
RMST analysis as compared to KM-based RMST.

Results
EORTC 1684 study
Consider the EORTC 1684 [28] data (re-constructed)
from a 48-week randomized controlled study of IFN
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alpha-2b versus control for patients who had histologi-
cally proven primary cutaneous melanoma without prior
systemic adjuvant therapy and without evidence of dis-
tant metastatic disease. The primary analysis of overall
survival by intent to treat (ITT) included data from 280
randomized patients (143 IFN patients and 137 observa-
tion patients). The KM survival curves for both treat-
ment arms are screenshotted in Fig. 1 from the
published paper for convenience, which shows an early
treatment separation in a good direction and feasible
log-term survival. The overall median survival time was
3.82 years (95% confidence interval [CI], 2.34 to 7.08) for
IFN recipients as opposed to 2.78 years (95% CI, 1.83 to
4.03) for the control. Based on the Cox PH model ana-
lysis, the difference between treatment and control
groups was highly significant with p = 0.0023 (one-
sided), adjusting for disease status at randomization. In
this example, the PH model is reasonable because a
check of the PH assumption using the cox.zph() test of
Grambsch and Therneau [29] had a p-value of 0.489
(p-value < 0.05 indicates violation of PH).
With the default τ= 9.496 years (the minimum of the

largest observed time on each of the two groups), the es-
timated RMST value is 4.318 years and 3.177 years for
the experimental arm and the control arm, respectively.
To assess the treatment effect, the RMST curve with its
95% pointwise confidence interval based on KM curve

using the R-package “survRM2” [30, 31] and the mixture
model method in this paper for both RMST ratio and
RMST difference are presented in Fig. 2. Note that
RMST curve using KM method can only be reached to
the min-max of the event time in the two treatment
arms mentioned in previous section. However, the
RMST curve using mixture model can be constructed in
any time interval in principle, but we do not recommend
having RMST curve to infinity. Both RMST ratio and
difference analysis in Fig. 2 indicate that the treatment
arm has benefit (based on the lower bound of CI above
1 or 0) from the beginning of the study with an early
survival curve separation and maintains the benefit trend
through all follow-up times. Note that the RMST curve
using KM method and the mixture model aligned very
well. Note that the p-value for RMST difference and ra-
tio at the default τ= 9.496 years is 0.018 and 0.020,
respectively.
Figure 2 shows the dynamic RMST ratio and differ-

ence curve, where RMST difference has an increasing
trend all the time but the RMST ratio seems plateaued
around 1.5. This implies that the treatment increases the
life expectancy about 50% comparing to the control arm.
Even though this is a positive study, if the follow-up
time for this study was a little longer, the RMST ratio
may have stabilized which could be valuable information
for the drug label. Thus, in practice we may have both

Fig. 1 The screenshot of the KM survival curves for the EORTC 1684 study data [28]
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the RMST difference and RMST ratio curves generated
for assessing the treatment effect. The RMST ratio may
provide an alternative measure for the HR commonly
used in clinical trials. Note that the RMST difference is
in a clinical meaningful scale while the RMST ratio is
unitless. All this dynamic information from RMST curve
is missed from a log-rank based approach.
The RMST constructed here is based on the re-

constructed data where the time to events or censoring
are essentially represented by the graph of the survival

curve without individual patient data. Therefore, the
quality of this reconstruction could have an impact on
the quality of the statistics carried out thereafter.

CheckMate141 OS data
Consider the re-constructed data from a randomized,
open-label, phase 3 trial of nivolumab (Opdivo®, Bristol-
Myers Squibb) for patients with recurrent squamous-cell
carcinoma of the head and neck [32]. A total of 361 pa-
tients were randomized in a 2:1 ratio: 240 patients

Fig. 2 The dynamic RMST ratio and difference curve for the re-constructed EORTC 1684 study data

Fig. 3 The screenshot of the KM survival curves for the CheckMate141 OS data [32]
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received intravenous nivolumab, and 121 patients re-
ceived a standard, single-agent therapy of the investiga-
tor’s choice (control), with stratification according to
receipt of previous cetuximab therapy (yes or no). The
primary endpoint was overall survival.
The KM survival curves for both treatment arms are

screenshotted in Fig. 3 from the published paper for
convenience, which shows a delayed treatment effect
and some signs of long-term survival. The median over-
all survival was 7.5 months (95% CI, 5.5 to 9.1) in the
nivolumab group versus 5.1 months (95% CI, 4.0 to 6.0)
in the control group. Overall survival was significantly
longer with nivolumab than with control. The hazard ra-
tio for death from Cox PH model was 0.70 with 95% CI,
0.51 to 0.96. The stratified log-rank test had a p value of
p = 0.01. In this example, while the PH model assump-
tion passed the p-value 0.05 threshold a check of the PH
assumption using the cox.zph() test of Grambsch and
Therneau [29] yielded a p-value of 0.061. Given the long
delayed effect observed in the survival curve and margin-
ally significant test of Grambsch and Therneau [29], the
PH assumption may be in doubt.
With the default τ= 15 months (the minimum of the

largest observed time on each of the two groups), the es-
timated RMST value is 8.189 months and 6.468 months
for the experimental arm and the control arm, respect-
ively. Similar to the first example, the RMST curve using
both KM and the mixture model is shown in Fig. 4.
Figure 4 indicates that there was no treatment benefit, as
a matter of fact, it was identical to the control arm, up
to about 4 or 5 months. Then it starts to demonstrate
the treatment benefit after this time point. This dynamic
feature of RMST curves clearly shows a delayed effect,

which cannot be seen using the log-rank test approach.
Note that again, the RMST curve for KM and mixture
model approaches aligned very well. Note that the p-
value for RMST difference and ratio at the default τ= 15
months is 0.004 and 0.005, respectively.
Figure 4 shows the dynamic RMST ratio and differ-

ence curve, where the RMST ratio curve does not plat-
eau at any time due to the apparent cure in treatment
group. Thus, the follow-up time is adequate for this
study.

CheckMate 057
Consider the re-constructed data from the randomized,
open-label, international phase 3 study for Nivolumab
for patients with non-squamous non–small-cell lung
cancer (NSCLC) that had progressed during or after
platinum-based doublet chemotherapy [33]. From No-
vember 2012 through December 2013, 292 patients were
randomly assigned to receive nivolumab, and 290 were
randomly assigned to receive docetaxel (SOC control
group). The primary endpoint was overall survival.
Tumor PD-L1 protein expression was assessed retro-
spectively in prospectively collected specimens. There
were 145 patients in each treatment group for PD-L1 ex-
pression level less than 10%. For illustration purpose, the
analysis was conducted on this PD-L1 expression level
less than 10% subgroup. The median OS was 9.9 and
10.3 months for SOC group and Nivo group, respect-
ively, and the HR 0.96 (95% CI: 0.74, 1.25) with a p-value
of 0.6199. The KM survival curves for both treatment
arms are screenshotted in Fig. 5 from the published
paper for convenience, which shows a crossing and
diminishing treatment effect. In this example, the PH

Fig. 4 The dynamic RMST ratio and difference curve for re-constructed CheckMate141 OS data
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model may not be appropriate because a check of the
PH assumption using the cox.zph() test of Grambsch
and Therneau [29] had a p-value of 0.016.
With the default τ= 27.752 months (the minimum of

the largest observed time on each of the two groups),
the estimated RMST value is 12.667 months and 16.605
months for the experimental arm and the control arm,
respectively. Figure 6 shows the dynamic RMST ratio
and difference curve, where the RMST curve for prior to
about 10 months shows the control arm has a better per-
formance. Then, the treatment arm improves the benefit
and in the long run, there is no clear difference between
the two treatments. Note again, the RMST curve for KM
and mixture model approaches aligned very well. Note
that the p-value for RMST difference and ratio at the de-
fault τ= 27.752 months is 0.955 and 0.955, respectively.
Figure 6 clearly indicates a crossing effect at approxi-

mately 10 months with control arm being better. RMST

ratio and difference indicates the plateau since all pa-
tients died. It also indicates the follow-up time can be a
few months shorter but reach the same conclusion.
Again, this very useful information cannot be obtained
from the log-rank HR approach.

Discussions
RMST provides a clinically meaningful and easily inter-
pretable measure for survival clinical trials. Unlike the
log-rank HR summary which heavily relies on the PH as-
sumption, the RMST is always valid regardless of the PH
assumption. The RMST always aligns well with the esti-
mand associated with the analysis from the recommen-
dation in ICH E-9 (R1), and the test/estimation
coherency. The method has been recommended in re-
cent publications [3, 5, 17, 18]. Traditionally, the RMST
is estimated from KM curves, therefore it is limited to
the time window up to the study follow-up. In this

Fig. 5 The screenshot of the KM survival curves for the CheckMate 057 data [33]

Fig. 6 The dynamic RMST ratio and difference curve for the re-constructed CheckMate 057 data
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paper, a mixture Weibull model is considered to esti-
mate the survival curve which allows for construction of
dynamic RMST at any given time point. This dynamic
approach provides a useful tool for assessing treatment
effect over different time frames for survival clinical
trials.
Compared to the KM-based RMST analysis, this dy-

namic RMST approach provides advantages on compu-
tation for estimation and variance control. With
parametric components, the estimated RMST curves can
be extended to any time points. In applications, both
RMST ratio and RMST difference were evaluated. As il-
lustrated in the examples, when the RMST ratio reaches
a plateau, it can be useful for checking whether the
follow-up time for a study is long enough to demon-
strate treatment difference. The prediction feature of the
dynamic RMST analysis may also be useful for deter-
mining an appropriate time point for interim analysis,
and an evaluation tool for study recommendation from
DMC.
With the mixture model approach, the parametric

form allows easy adjustment of covariates. It is common
that the treatment effect can be impacted by baseline
factors [34]. The ability to perform covariate-adjusted
comparisons of two groups with respect to survival is
important [35]. Due to the nature of the parametric for-
mat of the mixture model, it is relatively straightforward
to accomplish covariate-adjusted comparisons of two
groups for the RMST curve. With the mixture model ap-
proach, one may need to pay additional attention to se-
lect appropriate starting parameter values for the
nonlinear fitting. Some suggestions for selecting the
starting values can be found in Liao and Liu [20] and
Liu and Liao [36].
When the event rate is low, the RMST ratio may result

in extreme value close to 1 and therefore is not very in-
tuitive. Instead, the ratio of restricted mean times lost,
RMTL(τ)= τ −

R τ
0 SðtÞdt can be used [37]. Similar proce-

dures can be used for RMTL(τ). In this paper, the confi-
dence interval instead of p-value was used to make
inference. However, the hypothesis testing approach can
be used following the testing format in Royston and Par-
mar [21], or simultaneous testing with multiple time
points [8], or the simultaneous CI approach with a fixed
longest time point.

Conclusions
The RMST provides a clinically meaningful and easily
interpretable measure for survival clinical trials and it is
also robust to be used for a survival distribution without
any model assumptions such as the proportional haz-
ards. As demonstrated in the examples, the proposed dy-
namic RMST approach provides rich information and is

a useful tool for assessing treatment effect over different
time frames for survival clinical trials. This dynamic
RMST curve provides an innovated way for checking
whether the follow-up time for a study is long enough to
demonstrate a treatment difference. The prediction fea-
ture of the dynamic RMST analysis can also be applied
to determine an appropriate time point for an interim
analysis which is a useful evaluation tool for study rec-
ommendation from DMC.
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