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Abstract

Background: The early warning model of infectious diseases plays a key role in prevention and control. This study
aims to using seasonal autoregressive fractionally integrated moving average (SARFIMA) model to predict the
incidence of hemorrhagic fever with renal syndrome (HFRS) and comparing with seasonal autoregressive integrated
moving average (SARIMA) model to evaluate its prediction effect.

Methods: Data on notified HFRS cases in Weifang city, Shandong Province were collected from the official website
and Shandong Center for Disease Control and Prevention between January 1, 2005 and December 31, 2018. The
SARFIMA model considering both the short memory and long memory was performed to fit and predict the HFRS
series. Besides, we compared accuracy of fit and prediction between SARFIMA and SARIMA which was used widely
in infectious diseases.

Results: Model assessments indicated that the SARFIMA model has better goodness of fit (SARFIMA (1, 0.11, 2)(1, 0,
1)12: Akaike information criterion (AIC)-631.31; SARIMA (1, 0, 2)(1, 1, 1)1, AIC: —227.32) and better predictive ability
than the SARIMA model (SARFIMA: root mean square error (RMSE):0.058; SARIMA: RMSE: 0.090).

Conclusions: The SARFIMA model produces superior forecast performance than the SARIMA model for HFRS.
Hence, the SARFIMA model may help to improve the forecast of monthly HFRS incidence based on a long-range
dataset.

Keywords: Seasonal autoregressive fractionally integrated moving average model, Seasonal autoregressive
integrated moving average model, Hemorrhagic fever with renal syndrome, Goodness of fit, Prediction

Background

The incidence of infectious diseases is subject to many
factors, and there are intricate connections between the
influencing factors. In recent years, many studies have
explored the relationship between meteorological factors
and infectious diseases [1-4]. However, the impact of
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meteorological factors account for only a small propor-
tion on infectious diseases [1], because there are many
potential unknown factors. It is especially important to
establish a dynamic model of time series according to its
own variation to predict and warn infectious diseases.
Time series analysis and modeling is widely used for
studying temporal changes in the incidence of infectious
diseases to forecast future trends [2, 5, 6]. Seasonal auto-
regressive integrated moving average (SARIMA) model
has been used to fit and predict epidemics of many
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infectious diseases, such as cryptosporidiosis [7],
scrub typhus [8], and bacterial foodborne diseases
[9], and so on [10, 11]. The data preparation and
model operation for SARIMA model are relatively
simple and easy to perform [12], and the prediction
results are accurate. Thereby, it is usually used to
predict short-term fluctuations of infectious diseases.
Compared to the SARIMA which is an integer order
model, the seasonal autoregressive fractionally inte-
grated moving average (SARFIMA) model consider-
ing both the short memory and long memory may
be more accurate when modeling the infectious dis-
eases data possessing the long memory property [13,
14]. Furthermore, the SARFIMA is as simple and
easy as the SARIMA to perform in R software now.

In many time series, although the correlation be-
tween long-range observations are small, they should
not be ignored [13]. The ARFIMA is given by
Granger and Joyeux (1980) [15], and the extension,
SARFIMA, was put forward by Porter-Hudak (1990)
[16]. Any pure ARMA stationary time series can be
considered a short memory series. Augmenting the
standard ARMA model with a long memory compo-
nent leads to the ARFIMA model. A series posses-
sing long memory has an autocorrelation function
(ACF) decaying more slowly than the geometric
decay possessed by short memory processes, what is
called hyperbolic decay (HD). Using first-order dif-
ference instead of fractional-order difference for a
series exhibits long memory will lead to over-
difference [15], and many useful features in the ori-
ginal series will be discarded, which will cause devi-
ation in parameter estimation and modeling. The
surveys of long memory models, which developed in
hydrology, meteorology and geophysics [17] have not
been widely applied in infectious diseases.

Our study applied the SARFIMA model to monthly
HERS incidence series mixing short memory (short-
range dependence) and long memory (long-range de-
pendence) for more accurate estimation. HFRS is a
natural epidemic disease and remains a serious public
health problem. There may be as many as 150,000
cases each year [18]. Moreover, the number of coun-
tries reporting human cases of HFRS is still on the
rise [19]. Weifang city, which is located in northeast-
ern China, is one of the most seriously affected areas
since the first case of HFRS was reported in 1974.
The better prediction of HFRS emergence can poten-
tially reduce the effects of infections on humans.
Therefore, comparing the prediction ability of SARF
IMA and SARIMA models, and applying the better
model to predict the trends for HFRS, conduce to
provide important support for studying in the
disease.
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Methods

Model: SARIMA model and SARFIMA model

SARIMA models are useful for modeling seasonal time
series [20], and it expressed as

@,(B)®@p(B)(1 - B)*(1 - B*)
= 04(B)Oq(B’)e; (1)

Where B is the backward operator, x, expresses series, &,
is a white noise process, and s is the seasonal period,
e.g., s=12 for monthly series. The values of d are re-
stricted to zero when the series modeled is stationary
and to be a positive integer when the series must be dif-
ferenced to eliminate nonstationary [17]. @,(B) is the
nonseasonal AR operator of order p, and 6,(B) is the
nonseasonal MA operator of order q. ®p(B°) and On(B’)
is the seasonal AR and MA operator, respectively. This
model is often called a multiplicative SARIMA model,
because the operators in the function are multiplied to-
gether rather than summed.

SARFIMA model allows for series to be fractionally in-
tegrated, generalizing the integer order of integration of
the SARIMA model to allow the d parameter to take on
fractional values [21]. If a series exhibits long memory, it
is neither stationary (I (0)) nor is it a unit root (I (1))
process; the series is an I(d) process. Consider the fol-
lowing model:

(1-B)%x, = ¢ (2)

where d is the fractionally differenced component and
lies in (-0.5,0.5). The model (2) is a direct seasonal
analogue of the simple fractional differenced model:

(1-B)% =& (3)

The generalization of (2) to an ARMA model with a
fractionally differenced seasonal component, namely, a
SARFIMA model can be expressed as:

(1-B°)%Q (B)x, = O(B)e;. (4)

Where Q (B) and ®(B) are autoregressive and moving
average polynomials, respectively (each including sea-
sonal components). The restriction of d to take only in-
teger values would simplify to an SARIMA model. For a
stationary process, d varies between — 0.5 and 0.5, with
d =0 indicating short memory, - 0.5<d <0 indicating
intermediate memory, and 0<d<0.5 indicating long
memory [22].

For ARFIMA (p, d *, q), where d * = d + dr Most com-
monly, de (- 0.5, 0.5) is the fractional part, and d> 0 al-
ways is the integer part. The Hurst exponent (H) is a
measure of long memory of time series [23]. It relates to
the autocorrelations of the time series and the rate at
which these values decrease as the lag increases. The
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relationship between df and H is: dy= H-0.5; if H>0.5,
it would indicate a long-memory time series; if H < 0.5, it
can be considered as an intermediate-memory time
series. When H =0.5, it would indicate a random walk.
The statistical efficient model estimation is based on the
method of maximum likelihood. For general long-
memory time series models, this method has been
shown to be asymptotically efficient [24].

Data

The monthly HFRS reported data between 2005 to 2018
in Weifang city was obtained from Health Commission
of Shandong Province (http://wsjkw.shandong.gov.cn/)
and Health Commission of Weifang (http://wsjkw.wei-
fang.gov.cn/) and Shandong Center for Disease Control
and Prevention. The diagnostic criteria of HFRS was the
Diagnostic Standards for Epidemic Hemorrhagic Fever
(WS278-2008) (http://www.nhc.gov.cn/wjw/s9491/2
00802/39043.shtml). The criteria remained consistent
during the study period. The HFRS incidence were cal-
culated by the disease reported data and population size
in Weifang city. The annual population size from 2005
to 2018 was extracted from Shandong Statistical Year-
book [25].

Data analysis

For constructing and validating models, the data was di-
vided into two datasets. The data from January 2005 to
December 2017 was used to build models, and the data
between January to December 2018 was regarded as the
prediction set.

Construction of the SARIMA model

The SARIMA model requires a stationary time series.
First, we drew the time series plot of the monthly HFRS
incidence. We checked stationarity and seasonality by
augmented Dickey-Fuller (ADF) test and seasonal de-
composition. The model used to decomposition is: Y, =
T, + S, + e;. The function first determined the trend com-
ponent using a moving average and removed it from the
time series. Then, the seasonal component was com-
puted by averaging for each time unit over all periods.
Finally, the remainder component was determined by re-
moving trend and seasonal component from the original
time series. If the series is not stationary, it should be
converted into a stationary series by difference (first-
order difference or seasonal difference). We depicted the
autocorrelation function (ACF) and partial autocorrel-
ation function (PACF) plots to determine the order of
model. The ACF plot shows the correlation of the series
with itself at different lags, and the PACF plot shows the
amount of autocorrelation at lag k that is not explained
by lower-order autocorrelations. We selected the opti-
mal SARIMA model with the lowest value in Akaike
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information criterion (AIC) from the candidate estab-
lished models and used model diagnostic plots with
Ljung-Box portmanteau test to assess the models.

Construction of the SARFIMA model

The corrected R/S Hurst exponent was computed to test
the long memory of the monthly HERS incidence series
[26]. If the series has strong enough long memory, the
SARFIMA model can be constructed. The order (p, d, q)
and the seasonal components (P, D, Q) of the model was
specified same as the SARIMA above. The SARFIMA fit-
ting function based on the assumption that there will be
multiple modes. That is, the fitting function will start
the optimizations at multiple starting points. There can
be more than one mode for time series models, and the
best mode of the SARFIMA fits was found by means of
log-likelihood value [27].

After fitting models, we examine the chosen model for
possible inadequacies which could invalidate the model.
The residual plot and Ljung-Box test were determined
to evaluate the goodness of fit. Finally, we applied the
best model to forecasting the monthly incidence of
HERS in the last year of dataset.

Comparison between the two models for performance
To evaluate forecast accuracy as well as to compare
among two models, we have used the root mean square
error (RMSE), the mean absolute error (MAE) and the
mean absolute percentage error (MAPE) [28, 29].

All analyses were conducted with R (version 3.6.0),
modeling with “arfima” and “ts” packages for SARFIMA
and SARIMA models respectively.

Results

Description of time series

During from 2005 to 2018, a total of 3302 HERS cases
were reported in Weifang city. There was a median of
14 (interquartile range: 8—26) cases every month. Fig-
ure 1 shows the monthly incidence trend during the
study period, with a monthly incidence from 0.01 (1/
100,000, minimum in July 2010) to 1.31 (1/100,000,
maximum in November 2012). The series shows a no-
ticeable seasonal pattern since HFRS possess two inci-
dence peaks each year (April to June was the small peak
and October to January was the predominant peak). We
decomposed the time series, and the seasonality is
clearly visible for HERS time series.

SARIMA model

The ADF test indicates that the original series was sta-
tionary (Dickey-Fuller = - 3.95, P =0.01), do not need for
trend difference. However, the seasonal decomposition
plot shows that the HFRS monthly incidence has evident
seasonal pattern (Fig. 1b). The ACF and PACF plots of
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Fig. 1 The monthly HFRS incidence time series a and seasonal decomposition b in Weifang city, Shandong Province, 2005-2018

Year

original series clearly display slow decay at the seasonal
lags (Fig. 2a). Therefore, a lag-12 (subtract the observa-
tions after a lag of 12 periods) difference is used to re-
move the features of seasonality (Fig. S1). The ACF and
PACF of seasonal differenced series have some signifi-
cant spikes (Fig. 2b). Thus, the order of AR(p) and
MA(q) was identified. Of all the tested models showed
in Table S1 and Fig. S2, a SARIMA (1, 0, 2)(1, 1, 1)1»
model was found to best fit the data (AIC = - 227.32).
This SARIMA model is (1-0.910B)(1 +0.085B"%)(1 +
0.999B"?)x, = (1 + 0.103B + 0.286B%)¢,.

SARFIMA model

The corrected R/S Hurst exponent (H = 0.81, more than
0.5) indicated that the HFRS series exists strong long
memory. The ACF of seasonal differenced HERS series
exhibits a slow decay pattern that is typical of a frac-
tional model. The SARFIMA model was constructed
based on the appropriate order of AR(p) and MA(g).
The nonseasonal and seasonal fractional difference par-
ameter were computed, and the best mode of a SARF
IMA fit was found by removing modes with lower log-
likelihoods (SARFIMA (1, 0.11, 2)(1, 0, 1);5, AIC=-
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631.31). The SARFIMA model is (1-0.919B-)(1 +
0.973B"%)(1 +0.939B)°"*x, = (1 - 0.459B - 0.327B%)e,.
The residual plots and the Ljung-Box tests of SARIMA
and SARFIMA showed that the residuals are white noise
(Fig. S3 and Table S2). The forecast results of models
were showed in Fig. 3. As can be seen from the figure,
the prediction trend of SARFIMA model was closer to
the real values than SARIMA. The 95% confidence inter-
val of SARFIMA model was narrower than SARIMA,
and its interval included all the actual values. Therefore,
the fractional differenced model did quite well compare
to the integer differenced model. Table 1 gives the fore-
casting accuracy of two models for the HFRS series. The
SARFIMA model has lower values for RMSE, MAE and
MAPE, which means the SARFIMA is more accurate.

Discussion

Time series analysis is a method of applying mathemat-
ical models to represent the correlation of data and pre-
dicting future development trends. The SARIMA model
is a common time series analysis method and is widely
used to detect outbreaks of infectious diseases and pre-
dict their epidemics. In this study, we discussed the ef-
fect of SARFIMA model applied to HFRS series and
compared with the SARIMA model. The notable fluctu-
ations of monthly HFRS incidence were observed in the
study period, and long memory of it was measured. We
analyzed these features and constructed predictive
models.

It is generally believed that based on large enough ob-
servations, that is, more than 50 data, the time series
model constructed can obtain satisfactory prediction re-
sults. For SARFIMA model, the data selection should
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Table 1 Accuracy measures for SARIMA and SARFIMA models

RMSE MAE MAPE
SARIMA(1, 0, 2)(1, 1, )15 0.090 0.059 46.704
SARFIMA(1, 0.11, 2)(1, 0, 1)1> 0.058 0.044 32549

consider two points: First, the sample size of data is large
enough [16]. For example, the simulation results were
reported by Robinson [30] with a sample size of 64, and
the series used by Chambers [31] were 152 quarterly ob-
servations. Whereas Braun [32] suggesting that time
series with long memory should consist of around 500
observations. Second, the long-term memory of time
series should be strong. For instance, the long memory
of 5-year HERS series extracted from our dataset is not
strong enough (H =0.48 < 0.5), and the sample size (n =
60) is not large enough. In our study, the length of
monthly HERS incidence data used to analysis was 168,
and the time span of the series is form January 1, 2005
to December 31, 2018. The corrected R/S Hurst expo-
nent displays the long memory of the HFRS series is
strong. The results of model construction indicate that
the chosen models fit the observations well, and the re-
sidual series were satisfied with white noises.

For the original data, the seasonal peak of the monthly
HERS incidence is obvious, indicating that the models
should consider the seasonal components. For example,
the prevailing HFRS occurred in October to January,
and the incidence peaked in November. The plot of fore-
cast results showed that the model prediction is consist-
ent with it. The AIC values represent that the SARFIMA
model considering the fractional difference outperform
the SARIMA model in model fitting. All of three

2.04

-
4]
1

Incidence rate (1/100,000)
o

Fig. 3 Fitting and forecast results of models. Black points indicate the real observations and lines indicate the simulated time series (SARFIMA: red
solid line; SARIMA: blue dotted line). The shaded regions indicate 95% confidence intervals
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forecast accuracy measures of SARFIMA model are
smaller than SARIMA model, so the predictive effects of
SARFIMA are obviously better than SARIMA. In
addition, the 95% confidence interval of SARFIMA is
narrower than SARIMA. Generally speaking, SARFIMA
model has a better effect on predicting the trend of
monthly HFRS incidence series which possesses long-
memory and short-memory process. Therefore, on the
basis of a combination of best statistical and accuracy ef-
fect, the SARFIMA model should be chosen in prefer-
ence to the SARIMA model, although SARIMA is
relatively parsimony [33].

Granger and Joyeux [15] have reported that ARFIMA
may give better longer-term forecasts. Therefore, we
conducted a long-range prediction. The results of fit and
forecast were showed in the Fig. S4. Nevertheless, the
long-term predictions, take 3-year forecast as example,
with the increasing steps of prediction, errors on the
prediction are increasing. The prediction accuracy of
SARFIMA (RMSE: 0.084) is comparable to SARIMA
(RMSE: 0.098). The predicted values of more than 12
steps (1 year) is lower (deviation) from the true values.
The possible reasons are as follows: First, the accuracy
of a model estimated from historical data depends on
the quality of the input values. The longer the time to
predict, the less accurate the prediction becomes. Sec-
ond, there are more changes components on long-term
scales, because infectious diseases are affected by many
factors [34].

This work shows the usefulness of SARFIMA in mod-
eling the HFRS series. With the development of infec-
tious disease surveillance system, the long-term datasets
were more easily to access. In this case, there is a need
for a new model that is capable of analyzing the long-
term memory of datasets to improve the precision of the
predictions. The application of SARFIMA to a wider
range of infectious disease data is worth further
investigation.

We also have performed the SARFIMA to other sea-
sonal infectious disease to see how useful the model will
be (Fig. S5, S6, S7 and Table S3). The number of obser-
vations in the mumps series is 72, and the long memory
is strong (H =0.82), which is suitable for analysis with
SARFIMA. Therefore, SAFRIMA performs superior pre-
diction than SARIMA.

There are several limitations in our study. First, the
occurrence and prevalence of infectious diseases are af-
fected by multiple factors such as natural factors, climate
and human environment improvement, urban construc-
tion and other social factors. The time series model
often consider the characteristics of the series itself but
do not incorporate these factors into the model. Second,
we only took several infectious diseases into account in
this study, and the generalizability for the superior
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prediction of SARFIMA model still needs further re-
search to prove. Although we have not illustrated it here,
ARFIMA may also fit ARFIMA-X models with add-
itional exogenous regressors, which can be further ex-
plored in future research.

Conclusions

We explore the value of the SARFIMA model in the epi-
demic prediction research by means of comparison be-
tween SARFIMA and SARIMA models. Understanding
and incorporating the long memory features will provide
more accurate modeling and prediction for infectious
diseases. In this respect, the SARFIMA model for fore-
casting the monthly incidence of HERS are better than
the SARIMA model.
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