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Re-evaluation of the comparative
effectiveness of bootstrap-based optimism
correction methods in the development of
multivariable clinical prediction models
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Abstract

Background: Multivariable prediction models are important statistical tools for providing synthetic diagnosis and
prognostic algorithms based on patients’ multiple characteristics. Their apparent measures for predictive accuracy
usually have overestimation biases (known as ‘optimism’) relative to the actual performances for external
populations. Existing statistical evidence and guidelines suggest that three bootstrap-based bias correction methods
are preferable in practice, namely Harrell’s bias correction and the .632 and .632+ estimators. Although Harrell’s
method has been widely adopted in clinical studies, simulation-based evidence indicates that the .632+ estimator
may perform better than the other two methods. However, these methods’ actual comparative effectiveness is still
unclear due to limited numerical evidence.

Methods: We conducted extensive simulation studies to compare the effectiveness of these three bootstrapping
methods, particularly using various model building strategies: conventional logistic regression, stepwise variable
selections, Firth’s penalized likelihood method, ridge, lasso, and elastic-net regression. We generated the simulation
data based on the Global Utilization of Streptokinase and Tissue plasminogen activator for Occluded coronary
arteries (GUSTO-I) trial Western dataset and considered how event per variable, event fraction, number of candidate
predictors, and the regression coefficients of the predictors impacted the performances. The internal validity of C-
statistics was evaluated.

Results: Under relatively large sample settings (roughly, events per variable ≥ 10), the three bootstrap-based
methods were comparable and performed well. However, all three methods had biases under small sample
settings, and the directions and sizes of biases were inconsistent. In general, Harrell’s and .632 methods had
overestimation biases when event fraction become lager. Besides, .632+ method had a slight underestimation bias
when event fraction was very small. Although the bias of the .632+ estimator was relatively small, its root mean
squared error (RMSE) was comparable or sometimes larger than those of the other two methods, especially for the
regularized estimation methods.
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Conclusions: In general, the three bootstrap estimators were comparable, but the .632+ estimator performed
relatively well under small sample settings, except when the regularized estimation methods are adopted.

Keywords: Multivariable clinical prediction model, Optimism, C-statistic, Regularized estimation, Bootstrap

Background
Multivariable prediction models have been important
statistical tools to provide synthetic diagnosis and prog-
nostic algorithms based on the characteristics of mul-
tiple patients [1]. A multivariable prediction model is
usually constructed using an adequate regression model
(e.g., a logistic regression model for a binary outcome)
based on a series of representative patients, but it is well
known that their “apparent” predictive performances
such as discrimination and calibration calculated in the
derivation dataset are better than the actual performance
for an external population [2]. This bias is known as
“optimism” in prediction models. Practical guidelines
(e.g., the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis
(TRIPOD) statements [2, 3]) recommend optimism ad-
justment using principled internal validation methods,
e.g., split-sample, cross-validation (CV), and bootstrap-
based corrections. Among these validation methods,
split-sample analysis is known to provide a relatively
imprecise estimate, and CV is not suitable for some
performance measures [4]. Thus, bootstrap-based methods
are a good alternative because they provide stable estimates
for performance measures with low biases [2, 4].
In terms of bootstrapping approaches, there are three

effective methods to correct for optimism, specifically
Harrell’s bias correction and the .632 and .632+ estima-
tors [1, 5, 6]. In clinical studies, Harrell’s bias correction
has been conventionally applied for internal validation,
while the .632 and .632+ estimators are rarely seen in
practice. This is because the Harrell’s method can be
implemented by a relatively simple algorithm (it can be
implemented by rms package in R) and the two
methods were reported to have similar performances
with the Harrell’s method in previous simulation studies
[4]. These three estimators are derived from different
concepts, and may exhibit different performances under
realistic situations. Several simulation studies have been
conducted to assess their comparative effectiveness.
Steyerberg et al. [4] compared these estimators for ordin-
ary logistic regression models with the maximum likeli-
hood (ML) estimate, and reported that their performances
were not too different under relatively large sample set-
tings. Further, Mondol and Rahman [7] conducted similar
simulation studies to assess their performances under rare
event settings in which event fraction is about 0.1 or
lower. They also considered Firth’s penalized likelihood

method [8, 9] for estimating regression coefficients, and
concluded that the .632+ estimator performed especially
well. Several other modern effective estimation methods
have been widely adopted in clinical studies. Representa-
tive approaches include regularized estimation methods
such as ridge [10], lasso (least absolute shrinkage and
selection operator) [11], and elastic-net [12]. Also, conven-
tional stepwise variable selections are still widely adopted
in current practice [13]. Note that the previous studies of
these various estimation methods did not assess the
comparative effectiveness of the bootstrapping estimators.
Also, their simulation settings were not very comprehen-
sive because their simulations were conducted to assess
various methods and outcome measures, and comparisons
of the bootstrap estimators comprised only part of their
analyses.
In this work, we conducted extensive simulation

studies to provide statistical evidence concerning the
comparative effectiveness of the bootstrapping estimators,
as well as to provide recommendations for their practical
use. In particular, we evaluated these methods using
multivariable prediction models that were developed with
various model building strategies: conventional logistic re-
gression (ML), stepwise variable selection, Firth’s penalized
likelihood, ridge, lasso, and elastic-net. We considered
extensive simulation settings based on a real-world clinical
study data, the Global Utilization of Streptokinase and
Tissue plasminogen activator for Occluded coronary arter-
ies (GUSTO-I) trial Western dataset [14, 15]. Note that we
particularly focused on the evaluation of the C-statistic [16]
in this work, since it is the most popular discriminant
measure in clinical prediction models, because the simula-
tion data should be too rich for the extensive studies; the
generalizations to other performance measures would be
discussed in the Discussion section.

Methods
Model-building strategies for multivariable prediction
models
At first, we briefly introduce the estimating methods for the
multivariable prediction models. We consider constructing
a multivariable prediction model for a binary outcome yi
(yi = 1: event occurring, or 0: not occurring) (i = 1, 2,…, n).
A logistic regression model πi = 1/(1 + exp(−βTxi)) is widely
used as a regression-based prediction model for the
probability of event occurrence πi = Pr(yi = 1| xi) [2, 17]. xi =
(1, xi1, xi2,…, xip)

T (i = 1, 2,…, n) are p predictor variables
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for an individual i and β = (β0, β1,…, βp)
T are the regression

coefficients containing the intercept. Plugging an appropri-
ate estimate β̂ of β into the above model, the estimated
probability π̂i (i = 1, 2,…, n) is defined as the risk score of
individual patients, and this score is used as the criterion
score to determine the predicted outcome.
The ordinary ML estimation can be easily implementable

by standard statistical software and has been widely
adopted in practice [2, 17]. However, the ML-based model-
ling strategy is known to have several finite sample prob-
lems (e.g., overfitting and (quasi-)complete separation)
when applied to a small or sparse dataset [9, 18–20]. Both
properties disappear with increasing events per variables
(EPVs), defined as the ratio of the number of events to the
number of predictor variables (p) of the prediction model.
EPV has been formally adopted as a sample size criterion
for model development, and in particular, EPV ≥ 10 is a
widely adopted criterion [21]; recent studies showed that
the validity of this criterion depended on case-by-case con-
ditions [4, 13, 22]. As noted below, the following shrinkage
estimation methods can moderate these problems.
For variable selection, backward stepwise selection has

been generally recommended for the development of
prediction models [23]. For the stopping rule, the signifi-
cance level criterion (a conventional threshold is P < .050),
Akaike Information Criterion (AIC) [24], and Bayesian In-
formation Criterion (BIC) [25] can be adopted. Regarding
AIC and BIC, there is no certain evidence which criterion
is absolutely better in practices. However, several previous
studies have reported AIC was more favorable [23, 26, 27],
and thus we adopted only AIC in our simulation studies.
Several shrinkage estimation methods such as Firth’s

logistic regression [8], ridge [10], lasso [11], and elastic-
net [12] have been proposed. These shrinkage methods
estimate the regression coefficients based on penalized
log likelihood function. These methods can deal with
(quasi-)complete separation problem [9, 17]. Also, since the
estimates of the regression coefficients are shrunk towards
zero, these methods can alleviate overfitting [17, 28, 29].
Lasso and elastic-net can shrink some regression coeffi-
cients to be exactly 0; therefore, lasso and elastic-net can
perform shrinkage estimation and variable selection simul-
taneously [11, 12]. The penalized log likelihood function of
ridge, lasso, and elastic-net include a turning parameter to
control the degree of shrinkage [10–12]. Elastic-net also
has a turning parameter to determine the weight of lasso
type and ridge type penalties [12]. Several methods, such as
CV, were proposed for selection of the tuning parameters
of ridge, lasso, and elastic-net [17, 28, 29].
In numerical analyses in the following sections, all of

the above methods were performed using R version 3.5.1
language programming (The R Foundation for Statistical
Computing, Vienna, Austria) [30]. The ordinary logistic
regression was fitted by the glm function. The stepwise

variable selections were performed using the stats and
logistf packages [31]. Firth’s logistic regression was
also conducted using the logistf package [31]. The
ridge, lasso, and elastic-net regressions were performed
using the glmnet package [32]; the turning parame-
ters were consistently determined using the 10-fold
CV of deviance.

C-statistic and the optimism-correction methods based on
bootstrapping
C-statistic
Secondly, we review the internal validation methods
used in the numerical studies. We focused specifically
on the C-statistic in our numerical evaluations, as it is
most frequently used in clinical studies as an summary
measure of the discrimination of prediction models [2].
The C-statistic is defined as the empirical probability
that a randomly selected patient who has experienced an
event has a larger risk score than a patient who has not
experienced the event [16]. The C-statistic also corre-
sponds to a nonparametric estimator of the area under
the curve (AUC) of the empirical receiver operating
characteristic (ROC) curve for the risk score. The C-statistic
ranges from 0.5 to 1.0, with larger values corresponding to
superior discriminant performance.

Harrell’s bias correction method
The most widely applied method for bootstrapping opti-
mism correction is Harrell’s bias correction [1], which is
obtained by the conventional bootstrap bias correction
method [4]. The algorithm is summarized as follows:

� Let θapp be the apparent predictive performance
estimate for the original population.

� Generate B bootstrap samples by resampling with
replacement from the original population.

� Construct a prediction model for each bootstrap
sample, and calculate the predictive performance
estimate for it. We denote the B bootstrap estimates
as θ1, boot, θ2, boot, ⋯, θB, boot.

� Using the B prediction models constructed from the
bootstrap samples, calculate the predictive
performance estimates for the original population:
θ1, orig, θ2, orig, ⋯, θB, orig.

� The bootstrap estimate of optimism is obtained as

Λ ¼ 1
B

XB

b¼1

θb;boot − θb;orig
� �

Subtracting the estimate of optimism from the apparent
performance, the bias corrected predictive performance
estimate is obtained as θapp −Λ.
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The bias correction estimator is calculable by a rela-
tively simple algorithm, and some numerical evidence
has shown that it performs well under relatively large
sample settings (e.g., EPV ≥ 10) [4]. Therefore, this algo-
rithm is currently adopted in most clinical prediction
model studies that conduct bootstrap-based internal
validations. However, a certain proportion of patients in
the original population (on average, 63.2%) should be
overlapped in the bootstrap sample [6]. The overlap may
cause overestimation of the predictive performance [27],
and several alternative estimators have therefore been
proposed, as follows.

Efron’s .632 method
Efron’s .632 method [5] was proposed as a bias-
corrected estimator that considers overlapped samples.
Among the B bootstrap samples, we consider the “exter-
nal” samples that are not included in the bootstrap sam-
ples to be ‘test’ datasets for the developed B prediction
models. Then, we calculate the predictive performance
estimates for the external samples by the developed B
prediction models θ1, out, θ2, out, ⋯, θB, out, and we de-

note the average measure as θout ¼
PB

b¼1θb;out=B. There-
after, the .632 estimator is defined as a weighted average
of the predictive performance estimate in the original
sample θapp and the external sample estimate θout:

θ:632 ¼ 0:368� θapp þ 0:632� θout

The weight .632 derives from the approximate propor-
tion of subjects included in a bootstrap sample. Since
the subjects that are included and not included in a
bootstrap sample are independent, the .632 estimator
can be interpreted as an extension of CV [4, 7]. How-
ever, the .632 estimator is associated with overestimation
bias under highly overfit situations, when the apparent
estimator θapp has a large bias [6].

Efron’s .632+ method
Efron and Tibshirani [6] proposed the .632+ estimator
to address the problem of the .632 estimator by taking
into account the amount of overfitting. They define the
relative overfitting rate R as

R ¼ θout − θapp
γ − θapp

γ corresponds to ‘no information performance’, which
is the predictive performance measure for the original
population when the outcomes are randomly permuted.
Although the γ can be set to an empirical value, we used
γ = 0.50 that is the theoretical value for the case of the
C-statistic [4]. The overfitting rate R approaches 0 when
there is no overfitting (θout = θapp), and approaches 1

when the degree of overfitting is large. Then, the .632+
estimator [6] is defined as

θ:632þ ¼ 1 −wð Þ � θapp þ w� θout

w ¼ :632
1 − :368� R

Note that the weight w ranges from .632 (R = 0) to 1
(R = 1). Hence, the .632+ estimator approaches the .632
estimator when there is no overfitting and approaches
the external sample estimate θout when there is marked
overfitting.
In the following numerical studies, the numbers of

bootstrap resamples were consistently set to B = 2000.
Also, for the model-building methods involving variable
selections (e.g., stepwise regression) and shrinkage
methods which require tuning parameter selections
(ridge, lasso, and elastic-net), all estimation processes
were included in the bootstrapping analyses in order to
appropriately reflect their uncertainty.

Real-data example: applications to the GUSTO-I trial
Western dataset
Since we consider the GUSTO-I trial Western dataset as
a model example for the simulation settings, we first
illustrate the prediction model analyses for this clinical
trial. The GUSTO-I dataset has been adopted by many
performance evaluation studies of multivariable prediction
models [4, 13, 29], and we specifically used the West re-
gion dataset [23]. GUSTO-I was a comparative clinical
trial to assess four treatment strategies for acute myocar-
dial infarction [14]. Here we adopted death within 30 days
as the outcome variable (binary). The summary of the
outcome and the 17 covariates are presented in Table 1.
Of the 17 covariates, two variables (height and weight) are
continuous, one variable (smoking) is ordinal, and the
remaining 14 variables are binary; age was dichotomized
at 65 years old. For smoking, which is a three-category
variable (current smokers, ex-smokers, and never
smokers), we generated two dummy variables (ex-smokers
vs. never smokers, and current smokers vs. never smokers)
and used them in the analyses.
We considered two modelling strategies: (1) 8-predictor

models (age > 65 years, female gender, diabetes, hypotension,
tachycardia, high risk, shock, and no relief of chest pain),
which was adopted in several previous studies [4, 33]; and (2)
17-predictor models which included all variables presented
in Table 1. The EPVs for these models were 16.9 and 7.5,
respectively. For the two modelling strategies, we constructed
multivariable logistic prediction models using the estimating
methods in the Methods section (ML, Firth, ridge, lasso,
elastic-net) and backward stepwise methods with AIC
and statistical significance (P < 0.05). We also calculated the
C-statistics and the bootstrap-based optimism-corrected
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estimates for these prediction models. The results are
presented in Table 2.
For the 8-predictor models, the lasso and elastic-net

models selected all eight variables. Also, the two back-
ward stepwise methods selected the same six variables
for the 8-predictor models; only ‘diabetes’ and ‘no relief
of chest pain’ were excluded. Further, for the 17-
predictor models, the lasso and elastic-net models
selected the same 12 variables, while ‘diabetes’, ‘height’,
‘hypertension history’, ‘ex-smoker’, ‘hypercholesterolemia’,
and ‘family history of MI’ were excluded. For the back-
ward stepwise selections, the AIC method selected nine
variables and the significance-based method selected
seven variables; see Table 2 for the selected variables.
In general, the apparent C-statistics of the 17-predictor

models were larger than those of the 8-predictor models.
Although the apparent C-statistics of all the prediction
models were comparable for the 8-predictor models
(about 0.82), the apparent C-statistics of the 17-predictor
models were ranged from 0.82 to 0.83. The optimism-
corrected C-statistics (about 0.81) were smaller than the
apparent C-statistics for all models, and certain biases
were discernible. However, among the three bootstrapping
methods, there were no differences for any of the predic-
tion models. Note that the optimism-corrected C-statistics
between the 8- and 17-predictor models were comparable.

These results indicate that the 17-predictor model had
greater optimism, possibly due to the inclusion of noise
variables.

Simulations
Data generation and simulation settings
As described in the previous section, we conducted ex-
tensive simulation studies to assess the bootstrap-based
internal validation methods based on a real-world data-
set, the GUSTO-I Western dataset. We considered a
wide range of conditions with various factors that can
affect predictive performance: the EPV (3, 5, 10, 20, and
40), the expected event fraction (0.5, 0.25, 0.125, and
0.0625), the number of candidate predictors (eight
variables, as specified in the previous studies, and all 17
variables), and the regression coefficients of the pre-
dictor variables (two scenarios, as explained below). All
combinations of these settings were covered, and a total
of 80 scenarios were investigated. The settings of the
EPV and the event fraction were based on those used in
previous studies [4, 17]. For the regression coefficients
of the predictor variables (except for the intercept β0),
we considered two scenarios: one fixed to the ML
estimate for the GUSTO-I Western dataset (scenario 1)
and the other fixed to the elastic-net estimate for the
GUSTO-I Western dataset (scenario 2). In scenario 1, all
the predictors have some effect on the risk of events,
while in scenario 2 some of the predictor effects are null
and the others are relatively small compared with
scenario 1. The intercept β0 was set to properly adjust
the event fractions. The sample size of the derivation cohort
n was determined by (the number of candidate predictor
variables × EPV) / (expected event fraction).
The predictor variables were generated as random

numbers based on the parameters estimated from the
GUSTO-I Western dataset. Three continuous variables
(height, weight, and age) were generated from a multi-
variate normal distribution with the same mean vector
and covariance matrix as in the GUSTO-I Western data;
the age variable was dichotomized at age 65 years,
similar to the analyses in the real-data example. For
smoking, an ordinal variable, random numbers were
generated from multinomial distribution using the same
proportions as in the GUSTO-I Western data; this vari-
able was converted to two dummy variables before being
incorporated into the prediction models. In addition, the
remaining binary variables were generated from a multi-
variate binomial distribution [34] using the same mar-
ginal probabilities and correlation coefficients estimated
from the GUSTO-I Western dataset. We used the
mipfp package [35] for generating the correlated bino-
mial variables. The event occurrence probability πi (i = 1,
2, …, n) was determined based on the generated predictor
variables xi and the logistic regression model πi = 1/(1 +

Table 1 Characteristics of the GUSTO-I Western dataset

N 2188

Outcome

30-day mortality 6.2%

Covariates

Age > 65 years 38.4%

Female gender 24.9%

Diabetes 14.3%

Hypotension (systolic blood pressure < 100mmHg) 9.6%

Tachycardia (pulse > 80 bpm) 33.4%

High risk (anterior infarct location/previous MI) 48.7%

Shock (Killip class III/IV) 1.5%

Time to relief of chest pain > 1 h 60.9%

Previous MI 17.1%

Height (cm) 172.1 ± 10.1

Weight (kg) 82.9 ± 17.7

Hypertension history 40.4%

Ex-smoker 30.8%

Current smoker 27.9%

Hypercholesterolemia 40.5%

Previous angina pectoris 34.1%

Family history of MI 47.6%

ST elevation in > 4 leads 35.6%
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exp(−βTxi)). The outcome variable yi was generated from
a Bernoulli distribution with a success probability πi.
The actual prediction performances of the developed

models were assessed by 500,000 independently gener-
ated external test samples; the empirical C-statistics for
the test datasets, which we refer to as the ‘external’ C-
statistics, were used as the estimands. The number of
simulations was consistently set to 2000 for all the sce-
narios. Based on the generated derivation cohort dataset,
the multivariable prediction models were constructed
using the seven modelling strategies (ML, Firth, ridge,
lasso, elastic-net, and backward stepwise selections with
AIC and P < 0.05). The C-statistics for the derivation co-
hort were estimated by the apparent, Harrell, .632, and
.632+ bootstrapping methods in the derivation cohort.
For the evaluation measures, biases and RMSEs (root
mean squared errors) for the estimated C-statistics from
the external C-statistic for the 500,000 test datasets were
used.
In order to assess sensitivity to involve skewed

continuous variables as predictors, the three continuous
variables were also generated from a multivariate skew
normal distribution [36] with the parameters estimated
from the GUSTO-I Western dataset. The sensitivity ana-
lyses for the skewed variables settings were conducted
only for the ML estimation.

Simulation results
In the main Tables and Figures, we present the results
of scenario 2 with event fractions of 0.5 and 0.0625; as
mentioned below, the overall trends were not very differ-
ent, and these scenarios are representative of the all
simulation results. Other simulation results are provided
in e-Appendix A in Additional file 1 because the con-
tents were too large to present in this manuscript. In the
small-sample settings (low EPVs and large event frac-
tions), the simulation results for modelling strategies in-
volving variable selections (lasso, elastic-net, and
stepwise selections) occasionally dropped all of the pre-
dictors; in such cases, only an intercept remained, yield-
ing a nonsensical prediction model. We excluded these
cases from the performance evaluations because such
models are not usually adopted in practice. As reference
information, the frequencies with which the intercept
models occurred are presented in e-Table 1 in e-
Appendix B in Additional file 1. The results of the sensi-
tivity analyses for skewed variables settings are presented
in e-Appendix C in Additional file 1.
The average values of the apparent, external, and

optimism-corrected C-statistics for 2000 simulations are
shown in Fig. 1 (for event fraction = 0.5) and Fig. 2 (for
event fraction = 0.0625). Under event fraction = 0.5, the
external C-statistics for the test datasets were 0.65–0.70

for EPV = 3 and 5, and around 0.72 for larger EPV.
These results were similar between the 8- and 17-predictor
models. For the 17-predictor models under EPV = 3, the
ridge, lasso, and elastic-net showed large external C-statis-
tics (0.67) compared with the other models. The external
C-statistics for the ML estimation, Firth regression, and
stepwise selection (AIC) were comparable (0.66). The step-
wise selection (p< 0.05) had the smallest external C-statistic
(0.65). For the 8-predictor models under EPV = 3, the
external C-statistics for the ridge, elastic-net, and Firth
regression were comparable (0.68). However, the external
C-statistic for the lasso was similar to that for the ML esti-
mation (0.67). Both stepwise selections had small external
C-statistics (0.64–0.66) compared with the other models. In
general, the shrinkage methods showed better actual pre-
dictive performances than the other methods. In particular,
for the 17-predictor models with the noise variables, the
ridge, lasso, and elastic-net had better predictive perfor-
mances compared with the Firth method. However, the
lasso did not perform well for the 8-predictor models. This
might be caused by total sample size; the scenarios for the
8-predictor models had smaller total sample size. Although
the Firth regression showed better predictive performance
compared with the ML estimation for the 8-predictor
models, the predictive performances of the Firth and ML
methods were comparable for the 17-predictor models.
Further, the predictive performances of stepwise selections
were generally worse than the other methods, as shown by
previous studies [17]. Similar trends were observed under
event fraction = 0.0625, but the external C-statistics
(around 0.75, under EPV = 3–5) were larger than those
under event fraction = 0.5. These results were caused by
the total sample sizes: the event fraction of the latter
scenario was smaller and the total sample sizes were larger
if EPV were the same. Comparing the modelling strategies,
the similar trends as those under event fraction = 0.5 were
observed.
In Figs. 3 and 4, we present the empirical biases of

the estimators of C-statistics derived from the exter-
nal C-statistics. Under EPV = 3 and 5, the apparent
C-statistics had large overestimation biases (0.07–0.16
for event fraction = 0.5 and 0.03–0.07 for event frac-
tion = 0.0625) compared with the three bootstrapping
methods. In particular, under smaller EPV settings,
the overestimation biases were larger. For the same
EPV settings, the overestimation biases were smaller
when the event fraction was smaller (i.e., the total
sample sizes were larger). For 17-predictor models
under event fraction = 0.5 and EPV = 3, the overesti-
mation biases of the apparent C-statistics of the ML
and Firth methods (0.16) were larger than those of
the other methods. The ridge and AIC method had
large overestimation biases (0.13) compared with the
elastic-net and lasso (0.11–0.12). The P < 0.05
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criterion had the smallest overestimation bias (0.10).
For 8-predictor models, the ML estimation showed
large overestimation bias (0.14) compared with the
other methods. The overestimation biases of the
shrinkage methods were comparable (0.13). The step-
wise selections had small overestimation biases (0.11–
0.12) compared with other methods, but the external
C-statistics were also smaller, as noted above. Gener-
ally, similar trends were observed for event fraction =
0.0625. Comparing the three bootstrapping methods
under EPV ≥ 20, the biases of all the methods were
comparable for all settings. The results for the con-
ventional ML estimation were consistent with those
of Steyerberg et al. (2001) [4], and we confirmed that
similar results were obtained for the shrinkage esti-
mation methods. Further, under small EPV settings,
unbiased estimates were similarly obtained by the
three bootstrapping methods for the 8-predictor
models with event fraction = 0.0625, since the total
sample size was relatively large, and similar trends
were observed for all estimation methods under EPV
≥ 5. Under EPV = 3, the .632+ estimator had under-
estimation biases, while for the ML estimation, the
underestimation bias was 0.02. For ridge, lasso, and
elastic-net, the underestimation biases were 0.01. For
the Firth regression and stepwise methods, the under-
estimation biases were less than 0.01. The Harrell and
.632 estimators were comparable, and they had

overestimation biases (0.01 or lower). For the 17-
predictor models, the underestimation biases of the
.632+ estimator were less than 0.01, but in general
this estimator displayed underestimation biases. The
Harrell and .632 estimators had overestimation biases
(less than 0.01). Under event fraction = 0.5, the over-
estimation biases of the Harrell and .632 estimators
were remarkably large under EPV = 3 and 5; under
the 8-predictor models, the overestimation biases
were 0.03–0.04. Although the .632+ estimator had
underestimation biases for the ML and Firth methods
(0.01 under EPV = 3), mostly unbiased estimates were
obtained for the ridge, lasso, and elastic-net estima-
tors. For the stepwise selections, the AIC method
provided mostly unbiased estimator, but the P < 0.05
criterion resulted in overestimation bias (0.02). For
the 17-predictor models, similar trends were observed.
The Harrell and .632 estimators had overestimation
biases (0.02–0.04 under EPV = 3), and the two esti-
mators were comparable for the ML, Firth, and ridge
estimators. However, for the lasso, elastic-net, and
stepwise (AIC) methods, whereas the overestimation
biases of the Harrell estimator were 0.02, those of the
.632 estimator were 0.03. For the stepwise selection
method (P < 0.05), the .632 estimator showed over-
estimation bias (0.02), but the Harrell estimator was
mostly unbiased. Further, the .632+ estimator had
underestimation biases (less than 0.01) for the ML,

Fig. 1 Simulation results: apparent, external, and optimism-corrected C-statistics (scenario 2 and event fraction = 0.5)
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Firth, and stepwise (AIC) methods; this estimator was
mostly unbiased for the ridge, lasso, elastic-net, and
stepwise (P < 0.05) methods.
The empirical RMSEs are presented in Figs. 5 and 6.

Under EPV = 3 and 5, the apparent C-statistics had large
RMSEs (0.08–0.16 for event fraction = 0.5 and 0.04–0.08
for event fraction = 0.0625) compared with the three
bootstrapping methods; these large RMSEs of the ap-
parent C-statistics were caused by their large overesti-
mation biases under small EPV, as noted above. The
RMSEs of the three bootstrapping methods were gen-
erally comparable. An exception is that under event
fraction = 0.5 and EPV = 3 and 5, the RMSEs of the
.632+ estimators of the 8-predictor models with ridge,
lasso, and elastic-net (0.07–0.10) were larger than
those of the other two estimators (0.05–0.08). As
mentioned above, under these conditions the absolute
biases of the .632+ estimators were smaller, reflecting
these estimators’ standard errors. For the 17-predictor
models, the RMSEs were comparable. Under event
fraction = 0.0625, the .632+ estimators for ridge,
lasso, and elastic-net had large RMSEs (0.06–0.07)
compared with the other two estimators (0.05) for the
8-predictor models under EPV = 3. These results re-
flect the fact that under these conditions, the absolute
biases of the .632+ estimators were larger than those
of the other two estimators. In addition, under the
other settings with small EPV, there were many

scenarios in which the biases of the .632+ estimator
were smaller than those of the other two estimators,
and in these cases the RMSEs were comparable with
those of the Harrell and .632 estimators. These results
indicate the .632+ estimator had large standard errors
compared with the other two estimators when EPV
were small.
The results described above are mostly consistent with

those derived under the other settings presented in the
e-Appendix A in the Additional file 1.

Discussion
Bootstrapping methods for internal validations of dis-
criminant and calibration measures in developing
multivariable prediction models have been increas-
ingly used in recent clinical studies. The Harrell, .632,
and .632+ estimators are asymptotically equivalent
(e.g., they have same biases and RMSEs under large
sample setting), but in practice they might have dif-
ferent properties in finite sample situations (e.g., the
directions and sizes of biases of these estimators are
inconsistent in small sample setting). This fact may
influence the main conclusions of relevant studies,
and conclusive evidence of these estimators’ compara-
tive effectiveness is needed to ensure appropriate re-
search practices. In this work, we conducted extensive
simulation studies to assess these methods under a
wide range of situations. In particular, we assessed

Fig. 2 Simulation results: apparent, external, and optimism-corrected C-statistics (scenario 2 and event fraction = 0.0625)
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their properties in the context of the prediction
models developed by modern shrinkage methods
(ridge, lasso, and elastic-net), which are becoming
increasingly more popular. We also evaluated stepwise
selections, which are additional standard methods of
variable selection, taking into consideration the uncer-
tainties of variable selection processes.
Conventionally, the rule-of-thumb criterion for sample

size determination in prediction model studies is EPV ≥
10 [21]. In our simulations, the internal validation
methods generally worked well under these settings.
However, several counterexamples were reported in
previous studies [4, 13, 22], so this should not be an
absolute criterion. There were certain conditions in
which the standard logistic regression performed well
under EPV < 10; relative bias (percentage difference from
true value) of the standard logistic regression was 15%
or lower [22]. Also, EPV ≥ 10 criterion might not be
sufficient for the stepwise selections [13]. The external
C-statistics of the stepwise selections were smaller than
those of ML estimation under certain situations, as
previously discussed [13], and variable selection methods
might not be recommended in practice. Moreover,
the shrinkage regression methods (ridge, lasso, and
elastic-net) provided larger C-statistics than ML esti-
mation and Firth’s method under certain settings, and
were generally comparable. Further investigations are
needed to assess the practical value of these methods
in clinical studies.

Among the bootstrapping optimism-correction
methods, we showed that the Harrell and .632 methods
had upward biases at EPV = 3 and 5. The biases in these
methods increased when the event fraction became lar-
ger. As mentioned in the Methods section, the overlap
between the original and bootstrap samples under small
sample settings could cause these biases. Therefore,
these methods should be used with caution in cases of
small sample settings. When the event fraction was 0.5,
the .632 estimator often had a greater upward bias than
the Harrell method for the shrinkage estimating
methods and stepwise selections. Similarly, the .632+ es-
timator showed upward biases at EPV = 3 for the step-
wise selection (P < 0.05) for the 8-predictor model. Since
the .632+ estimator is constructed by a weighted average
of the apparent performance and the out-of-sample per-
formance measures, it cannot have a negative bias when
the resultant prediction model has extremely low pre-
dictive performance, i.e., when the apparent C-statistics
are around 0.5. However, if such a prediction model is
obtained in practice, we should not adopt it as the final
model. Note that these results did not commonly occur
in the simulation studies. For example, the cases that the
apparent C-statistics were less than 0.6 did not been ob-
served for the settings EPV ≥ 10. For the ridge, lasso,
elastic-net, and stepwise methods, the frequencies these
cases occurred were ranged 0.1–2.1% (median: 0.2%) for
EPV = 5 settings, and 0.1–3.6% (median: 0.4%) for EPV
= 3 settings.

Fig. 3 Simulation results: bias in the apparent and optimism-corrected C-statistics (scenario 2 and event fraction = 0.5)
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Also, since the .632+ estimator was developed to over-
come the problems of the .632 estimator under highly
overfitted situations, the .632+ estimator is expected to
have smaller overestimation bias compared with the
other two methods. However, the .632+ estimator
showed a slight downward bias when the event fraction
was 0.0625; the relative overfitting rate was overesti-
mated in that case, since a small number of events was
discriminated well by less overfitted models. This ten-
dency was clearly shown for the ML method, which has
the strongest overfitting risk.
Although the bias of the .632+ estimator was relatively

small, its RMSE was comparable or sometimes larger
than those of the other two methods. Since the .632+
estimator adjusts the weights of apparent and out-of-
sample performances using the relative overfitting
rate, the .632+ estimator has variations due to the
variability of the estimated models under small sam-
ple settings. Also, the RMSE of the .632+ estimator
was particularly large in the shrinkage estimation
methods; the penalty parameters were usually selected
by 5- or 10-fold CV and we adopted the latter in our
simulations. Since the 10-fold CV is unstable with
small samples [37], the overfitting rate often has large
variations. We attempted to use the leave-one-out CV
instead of the 10-fold CV, and this decreased the
RMSE of the .632+ estimator (see e-Table 2 in e-
Appendix B in Additional file 1). On the other hand,

the RMSE in the Harrell method became larger.
These results indicate that the performances of the
optimism-corrected estimators depend on the
methods of penalty parameter selections. Since the
external C-statistics of lasso using the 10-fold CV and
the leave-one-out CV were comparable, the leave-
one-out CV showed no clear advantage in terms of
penalty parameter selections.
In this work, we conducted simulation studies based

on the GUSTO-I study Western dataset. We consid-
ered a wide range of settings by varying several fac-
tors to investigate detailed operating characteristics of
the bootstrapping methods. A limitation of the study
is that settings for the predictor variables were based
only on the case of the GUSTO-I study Western
dataset which evaluated mortality in patients with
acute myocardial infarction, and these settings were
adopted throughout all scenarios. Thus, the results
from our simulation studies cannot be generalized to
other cases straightforwardly. Also, we considered
only the 8- and 17-predictor models that were
adopted in many previous studies [4, 13, 29]. Al-
though other scenarios could be considered, the
computational burden of the simulations studies was
quite enormous; it requires total 4,000,000 iterations
(2000 replication × 2000 bootstrap resampling) in
each scenario. Considerations of other scenarios or
datasets would be further issues in future studies. In

Fig. 4 Simulation results: bias in the apparent and optimism-corrected C-statistics (scenario 2 and event fraction = 0.0625)
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Fig. 5 Simulation results: RMSE in the apparent and optimism-corrected C-statistics (scenario 2 and event fraction = 0.5)

Fig. 6 Simulation results: RMSE in the apparent and optimism-corrected C-statistics (scenario 2 and event fraction = 0.0625)
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addition, we assessed only the C-statistic in this
study. Other measures such as the Brier score and
calibration slope can also be considered for the evalu-
ation of optimism corrections. However, in previous
simulation studies, these measures showed similar
trends [4]. Also, the partial area under the ROC curve
is another useful discriminant measure that can assess
the predictive performance within a certain range of
interest (e.g., small false positive rate or high true
positive rate) [38, 39]. Its practical usefulness for mul-
tivariable prediction models has not been well investi-
gated, and extended simulation studies would also be
a further issue in future studies.

Conclusions
In conclusion, under certain sample sizes (roughly,
EPV ≥ 10), all of the internal validation methods
based on bootstrapping performed well. However,
under small sample settings, all the methods had
biases. For the ridge, lasso, and elastic-net methods,
although the bias of the .632+ estimator was rela-
tively small, its RMSE could become larger than
those of the Harrell and .632 estimators. Under small
sample settings, the penalty parameter selection strat-
egy should be carefully considered; one possibility is
to adopt the leave-one-out CV instead of the 5- or
10-fold CV. For the other estimation methods, the
three bootstrap estimators were comparable in general,
but the .632+ estimator performed relatively well under
certain settings. In addition, developments of new
methods to overcome these issues are future issues to be
investigated.
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