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Abstract

Background: Patients infected with the Human Immunodeficiency Virus (HIV) are susceptible to many diseases. In
these patients, the occurrence of one disease alters the chance of contracting another. Under such circumstances,
methods for competing risks are required. Recently, competing risks analyses in the scope of flexible parametric
models have risen to address this requirement. These lesser-known analyses have considerable advantages over
conventional methods.

Methods: Using data from Multi Centre AIDS Cohort Study (MACS), this paper reviews and applies methods of
competing risks flexible parametric models to analyze the risk of the first disease (AIDS or non-AIDS) among HIV-
infected patients. We compared two alternative subdistribution hazard flexible parametric models (SDHFPM1 and
SDHFPM2) with the Fine & Gray model. To make a complete inference, we performed cause-specific hazard flexible
parametric models for each event separately as well.

Results: Both SDHFPM1 and SDHFPM2 provided consistent results regarding the magnitude of coefficients and risk
estimations compared with estimations obtained from the Fine & Gray model, However, competing risks flexible
parametric models provided more efficient and smoother estimations for the baseline risks of the first disease. We
found that age at HIV diagnosis indirectly affected the risk of AIDS as the first event by increasing the number of
patients who experience a non-AIDS disease prior to AIDS among > 40 years. Other significant covariates had direct
effects on the risks of AIDS and non-AIDS.

Discussion: The choice of an appropriate model depends on the research goals and computational challenges. The
SDHFPM1 models each event separately and requires calculating censoring weights which is time-consuming. In
contrast, SDHFPM2 models all events simultaneously and is more appropriate for large datasets, however, when the
focus is on one particular event SDHFPM1 is more preferable.
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Background
There are a variety of possible subsequent outcomes
other than Acquired Immunodeficiency Syndrome
(AIDS) among HIV-infected patients [1–3]. When our
primary focus is on the occurrence of each of these
events separately in the presence of each other, the
problem of competing risks arises [4, 5]. Competing
risks occur when subjects can experience one or more
events, which ‘compete’ with each other and occurrence
of one event may prohibit observing the other events or
modify their chances of occurrence. With the occur-
rence of non-AIDS diseases or death prior to AIDS, the
true survival time for developing AIDS would be unob-
servable (e.g., tuberculosis, a lung infection, can exped-
ite progression to AIDS). In general, among HIV-
infected patients, diseases can affect each other through
immune system suppression. Treatment of one disease
may reduce the chance of developing another disease
[6–8]. One solution to assess an unbiased estimate of
the risk of the event of interest is restricting the ana-
lysis to competing events where the follow up for a pa-
tient ends at the onset of the first event, and not
focusing on multiple events in a patient [9–11]. In this
scenario, traditional survival analysis presumes that
only one event can occur is not valid and this calls for
special methods for competing risks, [5, 12]. Using
well-known Kaplan-Meier method, which considers
each patient experiencing a competing event as censor-
ing at the time of its occurrence, undermines an
important assumption underlying this estimator: inde-
pendent censoring. However, the subject who was cen-
sored due to failing in a competing event will never
experience the event of interest as the first event and
considering competing events to be independent cen-
sorings leads to biases and overestimates the probability
of failure [5, 12, 13]. An appropriate measure to evalu-
ate the probability of failure within a competing risk
framework is the cumulative incidence function (CIF)
[14–16]. It is defined as the probability of failure from
the event of interest in an interval of time from the be-
ginning of the study until a particular time when it is
quite clear how many subjects experienced competing
events.
To evaluate the effects of covariates in a competing

risks analysis, model-based approaches on two im-
portant measures —the cause-specific hazard and sub-
distribution hazard— are more common. The
difference between these two measures is in their risk
sets. In the cause-specific hazard, patients who experi-
enced a competing event will be excluded from the
risk set for the event of interest and considered as
censored. Modeling on cause-specific hazards provides
causal effects of covariates on the hazard of the event
of interest in a counterfactual world, where there are

no competing events and patients can only fail from
the event of interest [10, 11, 14, 16]. In contrast, in
the cause-specific subdistribution hazard a patient ex-
periencing a competing event will remain in the risk
set until the end of the study because he can never
experience the event of interest as the initial event.
Modeling on subdistribution hazard creates the effect
of covariates on the probability of failing in the event
of interest at the presence of competing events which
is a more realistic depiction of subjects who follow
the event of interest and takes into account the
chance of failing from other causes prior to the event
of interest [5, 16–18]. The choice of modeling hazard
or subdistribution hazard depends on the research
goals. For etiological goals, to investigate the effect of
covariates on the occurrence of a particular event,
cause-specific hazard models are suitable. In contrast,
for prognosis questions, to know what fraction of
subjects at a specified time are at risk of experiencing
the event of interest as the first event, considering
the fact that they can experience a competing event
as the initial event, subdistribution hazard models are
preferable [5, 11, 12]. The two most popular models
based on cause-specific hazards and subdistribution
hazards are Cox and Fine & Gray regression models
respectively [19, 20].
There are alternative approaches in modeling of

competing risks based on the decomposition of the
CIF (i.e., the joint distribution of event times and types
of events) known as mixture and vertical models. Mix-
ture models factorize the CIF as the product of the
marginal distribution of event type and the conditional
distribution of failure time given the type of the event.
A multinomial regression model is used to assess the
effects of covariates on the type of event and paramet-
ric or semi-parametric hazard regression models are
used to evaluate their effects on the conditional failure
times [21–24]. In contrast, vertical models decompose
the joint distribution of event times and types of events
as the product of the marginal distribution of time of
failure (ignoring the type of event) and conditional dis-
tribution of event type given the time of failure, which
provides relative hazards [25]. With that said, these
models have some difficulties in their estimations, and
interpretation of their results and are not practically
well-developed [26].
One important issue with Cox or Fine & Gray

models is that the baseline hazard or subdistribution
hazard functions remain unspecified and are not esti-
mated parametrically [4, 9, 20]. Their use of partial
likelihood functions and inferences are limited to the
relative rate of the two hazards or subdistribution
hazards. To capture the shape of baseline functions
more accurately, the use of parametric models in
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competing risks modeling, and generally for survival
analysis, are preferred. The ordinary forms of para-
metric models (e.g., Weibull and log-logistic have a
constraint of linear association between transforma-
tions of the survival function and log time [27]. Then
the flexibility of the models to fit adequately on the
data is limited. So, bias estimations and inaccurate
predictions result. In recent years, the application of
flexible parametric models in the competing risks
modeling for both cause-specific hazard and subdistri-
bution hazard approaches have been proposed [28–
30]. Flexible parametric models are an extension of
parametric models and can be defined on a wide class
of different scales (e.g., hazard scale, odds scale or
probit). They model a transformation of baseline sur-
vival functions on the log time scale using Natural
Cubic Splines (NCSs) instead of linear functions and
have substantial capabilities in assessing parametric
estimates of the absolute measure of hazard or sub-
distribution hazard of the event of interest at each
time point [31, 32].
The primary aim of this paper is to apply two alter-

native subdistribution hazard flexible parametric
models to the HIV-infected men population and com-
pare these models with the Fine & Gray model as a
standard model in competing risks analysis. We have
identified the competing risks as the first event
—AIDS, non-AIDS, and death prior to AIDS or non-
AIDS diseases— in an HIV-infected male population
and evaluated the covariates that are associated with
the risks of these outcomes. Furthermore, we imple-
mented a cause-specific hazard flexible parametric
model to investigate the direct (causal) and indirect
(noncausal) effects of covariates on the risk of the
competing events. In the next section, we present a de-
scription of the Multicenter AIDS Cohort Study
(MACS). In the third section, the association of the cu-
mulative incidence function with the hazard and sub-
hazard functions is explained. In the fourth section,
the Competing risks flexible parametric models
(CRFPMs) for multiple types of events are reviewed. In
the fifth section, the CRFPMs are applied to the MACS
dataset and predictions for the risks are obtained. The
last two sections contain results and conclusions.

Study description
Study population and patient selection
Multi Centre AIDS Cohort Study (MACS) is a 30–
year prospective study of HIV infection among homo-
sexual or bisexual men (HBM) who were 18 years or
older with no prior AIDS-defining illness. MACS
began in 1984 at four US sites; Chicago, Illinois;
Baltimore, Maryland; Pittsburgh, Pennsylvania; and
Los Angeles, California. It has multiple patient

recruitments. The first recruitment, which consists of
4954 HIV-infected and uninfected HBM was con-
ducted in 1984–1985. In 1987–1990, recruitment was
reopened and 668 HBM were enrolled. During 2001–
2003 another 1350 HBM were enrolled. Another
MACS expansion commenced at the beginning of
2010 and 371 HBM were recruited until April 2014.
HIV-related symptoms, demographic characteristics,
blood specimens, and behavioral history at each 6-
month follow-up visit were collected. Among 7232
HBM, seroconverter patients were selected and pa-
tients with a non-AIDS disease before seroconversion
were excluded from the study. This analysis includes
674 seroconverter or prevalent patients with a known
visit of seroconversion.

Outcomes and covariates
Study outcomes were determined as the time duration
from seroconversion to the occurrence of the first
event. The midpoint of the last negative and the first
positive visits was used as the time of seroconversion.
The primary event was the occurrence of AIDS with-
out evidence of a non-AIDS disease before. The sec-
ondary event was time to a non-AIDS disease prior
to AIDS. Non-AIDSs included the following diseases:
kidney, liver, cardiovascular, cerebrovascular diseases;
lung infection, bacteremia, septicemia; malignancies,
neurologic; cancers —all cancers excluding Kaposi
sarcoma, lymphoma, and invasive cervical cancer.
Since the occurrence of death precludes observing
AIDS or non-AIDS diseases, we considered unrelated
death as the third outcome. These types of deaths
may occur for reasons unrelated to AIDS or non-
AIDS diseases (e.g., cerebral artery occlusion). Other
patients who were lost to follow-up or did not experi-
ence any failure event at the end of the study (i.e.,
April 2014) were censored. Such variables as MACS
recruitment calendar years, age at seroconversion
time, laboratory results including the number of posi-
tive CD4 cell counts, CD8 cell counts, white blood
cells, red blood cells and platelets at baseline were
considered based on the expert knowledge and previ-
ous studies on HIV/AIDS [6, 7, 33, 34]. Measure-
ments obtained at the first positive visit are referred
to as ‘baseline’. We used categorical covariates instead
of continuous to have perceptible clinical interpreta-
tions. The cut points were determined based on clin-
ical considerations and previous studies on the MACS
data [33–38]. Sparse groups were integrated with ad-
jacent categories. The study follow-up time was re-
stricted to 15 years from HIV positive diagnosis to
exclude non-AIDS diseases or causes not related to
HIV infection or death related to aging.
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Relations of risk with Hazard and subhazard
functions
Cause-specific CIF is a measure of absolute risk and de-
fined as the probability of failure from kth (k = 1 … K)
cause by time t while being at risk of failing from other
competing events [9]. So, we have:

Fk tð Þ ¼ p T ≤ t; event ¼ kð Þ ¼
Z t

0
hcsk uð Þ:S uð Þdu ð1Þ

In the above equation, Fk(t) is the CIF function, T is
the survival time i.e. the minimum of the true survival
time and censoring time, hcsk ðuÞ is the cause-specific haz-
ard functions at time u ≤ t. S is the overall survival func-
tion and is defined as.

` SðuÞ ¼ expf− PK
k¼1

R u
0 hcsk ðvÞdvg:

Equation (1) implies that the risk of the event of inter-
est is the combination of its hazard (hcsk ) and the chance
that competing events get to the event of interest to
occur as the first event (S). An increase in the hazard of
competing events will lower the risk occurrence of the
event of interest as the first event by decreasing the
overall survival function. In other words, in a competing
risks framework, a covariate can increase the risk of the
event of interest directly via increasing the hazard of the
event or indirectly by decreasing the hazards of compet-
ing events. So, a discrepancy between the hazard and
risk of the event of interest may be observed. The mag-
nitude of this discrepancy depends on the severity of
competing risks. The stronger the competing risk, the
greater the discrepancy [10, 12, 14]. The cause-specific
hazard is the instantaneous failure rate from a particular
event among patients who did not experience any prior
competing events and has the form of

hcsk tð Þ ¼ Lim
Δt→0

p t≤T < t þ Δt; event ¼ kjT ≥tð Þ
Δt

� �
:

In contrast, the cause-specific subdistribution hazard
is defined as

hsdk tð Þ ¼ Lim
Δt→0

p t < T ≤ t þ Δt; event ¼ kjT > t∪ T < t∩K≠kð Þð Þ
Δt

� �
:

Although this definition of the risk set is not practic-
ally meaningful because the patient does not actually re-
main in the risk set to experience the event of interest as
the first event; however, this can lead to the following
direct relationship between subdistribution hazard func-
tions and corresponding cause-specific CIFs:

Fk tð Þ ¼ 1− exp −
Z t

0
hsdk uð Þdu

� �

ð2Þ

So, modeling on cause-specific subdistribution hazard
will show the associations between covariates on the
cause-specific CIF. The subdistribution hazard-based
models use the information that the occurrence of com-
peting events gives about the event of interest. That is,
the event of interest never occurs as the first event if a
competing event has already occurred. So, whenever a
competing event occurs the chance of occurrence of the
event of interest as the first event will be reduced. How-
ever, to investigate whether an association is direct or in-
direct the effect of the covariate on all cause-specific
hazards should be assessed.

Models
Cause-specific Hazard flexible parametric models
The CSHFPM performs a flexible parametric model for
each type of event separately considering competing
events as censoring. It regresses the cause-specific log
cumulative hazard function on a Natural Cubic Splines
(NCSs) function of the log of time that is

lnHcs
k tjXkð Þ ¼ lnH0k tð Þ þ Xkβk

¼ NCSk lnt; γk ; d0k
� �þ Xkβk

ð3Þ

Where Hcs(t|X) is the cause-specific cumulative haz-
ard function for event k with matrix Xk of covariates at
time t, H0k (t) is the cause-specific baseline cumulative
hazard function, βk is a vector of covariates coefficients
and NCSk{lnt; γk, d0k} is a natural cubic spline function
of ln(t) with d0 knots and parameters γ for event k.
The number and position of knots in the spline func-
tion determine the complexity of the baseline cumula-
tive hazard function. However, sensitivity analysis
showed that they have little effect on the model fitting
and there is no need for optimal selection to have a
good fit [31]. Model [3] has the capability of carrying
time dependent effects of covariates, for handling non-
proportional hazards (non-PH) form, easily through in-
corporating the interactions of covariates with spline
functions [32].
Instead of separate CSHFPMs, Hinchliffe and Lam-

bert introduced a unified CSHFPM on stacked data
based on the Lunn-McNeil approach [28, 39]. In the
stacked data, each patient has one row of observa-
tions for each particular competing event to have the
opportunity of failing in that event. For each event
type, an indicator variable would be added to the
data. An additional indicator variable also would be
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created to identify the type of event for each patient.
The unified CSHFPM is fitted for all competing events
simultaneously and parameters related to each com-
peting event are jointly estimated [40]. Different base-
line hazard functions are considered for each cause of
failure. This approach has the capability of consider-
ing shared covariate effects for all competing events.
If knot positions in the unified model are the same as
those in separate CSHFPMs, covariate estimations of
this model would be equivalent to those obtained
from separate models [40, 41].

Subdistribution Hazard flexible parametric models
(SDHFPM)
In the SDHFPM, the effects of covariates directly model
on the cause-specific log cumulative subdistribution
hazard functions using NCSs as follows:

lnHsd
k tjXkð Þ ¼ ln − ln 1−Fk tjXkð Þð Þð Þ

¼ NCSk lnt; γk ; d0k
� �þ Xkβk

ð4Þ

Lambert et al. proposed a parametric version of the
Fine & Gray model [29]. Patients who experienced a
competing event are kept in the risk set and have the
chance of being censored before the end of the follow-
up. The survival time is defined as the minimum of
censoring time and true survival time. So, the censoring
probabilities should be calculated and incorporate in
the likelihood function for obtaining an unbiased esti-
mation of the subdistribution hazard for the event of
interest [40]. Fine and Gray calculated the censoring
probabilities non-parametrically and used inverse prob-
abilities of censoring weights in the partial likelihood
function [20]. In the Lambert model, the censoring dis-
tribution is estimated parametrically using FPMs. They
used a weighted likelihood where weights are condi-
tional probability of not being censored after experien-
cing a competing event which is time dependent
because the censoring probability grows over time. In
addition, they extended the Geskus approach to be able
to estimate SHDFPM using standard software of FPMs
[42]. To achieve this, the follow up time after compet-
ing event would be split into a number of intervals and
time dependent weights are applied to each interval.
Then, standard packages for FPMs can be applied for
the event of interest [29]. Lambert showed that there is
no need to have a very fine number of splits and the
bias of estimation is negligible. Like the Fine & Gray
model, the Lambert model is fitted for each event of
interest separately [29, 41].
As an alternative method, Mozumder et al. intro-

duced a unified likelihood function to obtain a direct

estimate of all cause-specific CIFs simultaneously
using FPMs [30]. This model is also on the log
cumulative subdistribution hazards scale (Eq. (4)). In
this method, however, instead of using the censoring
weights, the likelihood function is directly con-
structed based on subdistribution hazards and CIFs
[30, 43]. We hereafter refer to the former subdistri-
bution hazard model as SDHFPM1 and the latter as
SDHFPM2.

Statistical analysis
We performed a Complete Case Analysis (CCA), 629
of 674 patients, and assumed the data were Missed
Completely at Random (MCAR). However, Multiple
Imputations (MI) using the multivariate normal
regression method with 10 imputed data sets for
missing data were performed to explore the sensitivity
of the inferences to departures from MCAR
assumptions.
The possibility of a reduction in the number of ini-

tial set of covariates, generated based on the expert
(background) knowledge, was explored. We used
transcan function in R, which transforms covariates
while imputing missing values of them [44]. The trans-
formation for each covariate is conducted using ca-
nonical variates in a way that the covariate has the
maximum correlation with the optimum linear combi-
nations of other covariates. The number of knots for
baseline hazard and subhazard functions were deter-
mined using the Akaike Information Criterion (AIC)
statistic. We used main effects of covariates and
started with five degrees of freedom and identified the
complexity of models based on the lowest value of
AIC. Internal and boundary Knots for NCSs of each
competing event separately located in their equally
spaced centiles and the first and last event times re-
spectively. After determining the optimal number of
knots for each model, a forward stepwise regression
method was performed to build final models [45].
However, we did not consider variable selection on
CD4 cell count due to its important role in HIV/AIDS
studies. In SDHFPM1, for patients experiencing a com-
peting event the time was split every .1-year. The time
dependent censoring weights were estimated through
fitting an FPM on the initial set of covariates, with
three degrees of freedom. The CSHFPMs were con-
ducted for each event separately.
All significant effects were detected using the Like-

lihood Ratio (LR) tests at a 5% level. The findings
are summarized with hazard and subdistribution haz-
ard ratios and 95% Confidence Intervals (CI). Statis-
tical analyses were performed in STATA (StataCorp.
2017. Stata Statistical Software: Release 15. College
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Station, TX: StataCorp LLC.) and R (Version 3.5.2)
[46].

Results
The descriptive statistics for patients in the study are
reported in Table 1. Patients who were diagnosed with
AIDS as the first event tended to be younger, have
more prevalence in 1984–85 and 1987–90
recruitments, lower CD4, higher CD8, and higher RBC
in comparison with patients who were diagnosed with
non-AIDS diseases as the first event. The results of
transcan function showed that none of the covariates
selected by the expert (background) knowledge had
strong correlations with the others (refer to
Additional file 1: Table S1). The AICs and BICs in all
three CSHFPM, SDHFPM1 and SDHFPM2 with 3, 1, 1
knot(s) for AIDS, nonAIDS, and death respectively, had
minimum values. For all CRFPMs, Interactions between
the age with ln(t) on non-AIDS diseases was statistically
significant (LR test P-values = .05, .021 and .024, for

CSHFPM, SDHFPM1 and SDHFPM2, respectively).
More complicated time dependent effects of age had
been assessed. However, ln (t) had the lowest AIC and
BIC among them. Table 2 presents the results of multi-
variable SDHFPM1, SDHFPM2, and Fine & Gray model,
which show the effects of covariates on the subdistribu-
tion hazards or equivalently on the risk of the first ob-
served event. There was a high agreement between
estimated subhazard ratios obtained from Fine & Gray
and two SDHFPMs. The results of performing CSHFPM

also show the effects of covariates on the hazard of
each event separately (refer to Table 2). For simplicity,
we refer to 1984–85 and 1987–90 MACS recruitments
as period 1 and 2001–3 and 2010 recruitments as
period 2. The rest of this section is concentrated on the
results of SDHFPM1 and CSHFPM. However, due to the
fair agreement between models, the SDHFPM2 would
have the same interpretation. The interpretation of sub-
distribution hazard ratios is not often appealing. It
should be noted that their magnitudes are not

Table 1 Baseline Characteristics of Seroconverter HBM in the MACS Data

Variables *patients AIDS
(N = 267)

Non-AIDS
(N = 156)

Death
(N = 25)

MACS recruitment N = 674

1984–85 & 1987–90 581(86.20) 266(99.63) 132(84.62) 23(92.00)

2001–3 & 2010 93(13.80) 1(0.37) 24(15.38) 2(8.00)

Age at diagnosis N = 667

<40 473(70.91) 205(77.36) 94(60.26) 14(58.33)

≥40 194(29.09) 60(22.64) 62(39.74) 10(41.67)

Baseline CD4, per μl N = 629

< 350 51(8.11) 22(8.84) 9(6.04) 0(0.00)

350–500 102(16.22) 47(18.88) 16(10.74) 6(31.58)

≥500 476(75.68) 180(72.29) 124(83.22) 13(68.42)

Baseline CD8, per μl N = 629

< 500 91(14.47) 45(18.07) 17(11.41) 4(21.05)

500–1000 337(53.58) 129(51.81) 79(53.02) 12(63.16)

≥1000 201(31.96) 75(30.12) 53(35.57) 3(15.79)

Baseline WBC, per μl N = 663

< 5000 191(28.81) 78(29.43) 39(25.32) 10(43.48)

≥5000 472(71.19) 187(70.57) 115(74.68) 13(56.52)

Baseline RBC, × 105, per μl N = 667

<4.5 90(13.49) 25(9.43) 31(19.87) 1(4.17)

≥4.5 577(86.51) 240(90.57) 125(80.13) 23(95.83)

Baseline platelets, × 103, per μl N = 660

< 150 40(6.06) 10(3.77) 9(5.92) 6(26.09)

150–250 347(52.58) 127(47.92) 90(59.21) 8(34.78)

≥250 273(41.36) 128(48.30) 53(34.87) 9(39.13)

*Differences between the number of patients and the sum of the AIDS, Non-AIDS and Death columns indicate the number of censored patients
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equivalent to the effect of covariates on the risk of the
event of interest. However, they contain information
about the significance and direction of the effects of co-
variates on the risk of the event of interest [47]. The re-
sults of analyses on the multiply imputed data sets were
almost identical to CCA (refer to Appendix).

Associations of MACS recruitments with the risk of AIDS
prior to non-AIDS diseases, non-AIDS prior to AIDS and
unrelated death
The results showed that the hazard of AIDS occur-
rence in period 2 declined to about 96% compared to
period 1 (P-value = .002). In addition, the hazard of

Table 2 Cause-Specific and Subdistribution Hazard Ratios Estimated from the Cause-Specific Hazard (CSHFPM) and Cause-Specific
Subdistribution Hazard models (SDHFPM1, SDHFPM2 and Fine and Gray)

Event Variable SDHFPM1 SDHFPM2 Fine&Gray Model CSHFPM

SDHR (95% CI) SDHR (95% CI) SDHR (95% CI) CSHR (95% CI)

AIDS MACS recruitment

1984–85 & 1987–90 Reference Reference Reference Reference

2001–3 & 2010 .031(.004–.22) .035(.005–.25) .030(.004–.21) .039(.005–.28)

*LR test <.0001 <.0001 .001

Age at diagnosis

<40 Reference Reference Reference Reference

≥40 .69(.51–.93) .69(.52–.93) .70(.51–0.96) .87(.64–1.18)

LR test .017 .016 .38

Baseline CD4

< 350 1.83 (1.16–2.90) 1.70(1.10–2.63) 1.82(1.14–2.90) 1.86(1.19–2.90)

350–500 1.38(.99–1.93) 1.32(.96–1.83) 1.38(1.00–1.91) 1.33(.96–1.84)

≥ 500 Reference Reference Reference Reference

LR test .016 .038 .016

Non-AIDS MACS recruitment

1984–85 & 1987–90 Reference Reference Reference Reference

2001–3 & 2010 3.33(2.04–5.46) 3.57(2.22–5.75) 3.18(1.90–5.35) 2.45(1.51–3.99)

LR test <.0001 <.0001 .0009

Age at diagnosis

<40 Reference Reference Reference Reference

≥40 2.88(1.93–4.31) 3.57(2.21–5.77) 2.51(1.72–3.68) 3.72(2.34–5.90)

LR test <.0001 <.0001 <.0001

Baseline CD4

< 350 1.13(.56–2.32) .84(.43–1.66) 1.11(.56–2.23) 1.32(.65–2.68)

350–500 .58(.30–1.13) .58(.30–1.11) .57(.29–1.12) .68(.35–1.32)

≥ 500 Reference Reference Reference Reference

LR test .19 .42 .33

Death Age at diagnosis

<40 Reference Reference Reference Reference

≥40 2.95(1.07–8.15) 3.28(1.19–8.99) 2.91(1.05–8.04) 3.71(1.34–10.28)

LR test .037 .021 .012

Baseline CD4

< 350 – – – –

350–500 1.79(.57–5.63) 1.91(.62–5.91) 1.77(.57–5.54) 2.04(.65–6.41)

≥ 500 Reference Reference Reference Reference

LR test .17 .13 .18

*LR test is the Likelihood Ratio test for evaluating the effect of each covariate in the multivariable SDHFPM1, SDHFPM2, and CSHFPM
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non-AIDS diseases among patients of period 2 was
2.45 times that of period 1 (P-value = .002). By in-
creasing the hazard of non-AIDS diseases in period 2,
fewer patients remained at risk to experience AIDS
prior to non-AIDS diseases compared to period 1.
Consequently, the risk of observing AIDS as the first
event was lower in period 2 compared to period 1 (P-
value = .0001). In a similar way, the risk of observing
a non-AIDS disease prior to AIDS increased in period
2 compared to period 1 (P-value <.0001). Therefore,
there were direct and indirect associations between
the MACS recruitments and the risk of AIDS and
non-AIDS. MACS recruitments were not associated
with the hazard and risk of unrelated death.

Associations of age at HIV diagnosis with the risk of AIDS
prior to non-AIDS diseases, non-AIDS prior to AIDS and
unrelated death
Age at HIV diagnosis was not associated with the hazard
of AIDS (P-value = .38). However, the risk of AIDS prior
to a non-AIDS disease in the ≥ 40 age group decreased
by 31% compared to 40 (P-value = .017). This discrep-
ancy between the hazard and risk of AIDS indicated an
indirect effect of age on the risk of AIDS that came from
the higher hazard rate of non-AIDS diseases and unre-
lated death among the older age group. The effects of
age groups on both the hazard and risk of non-AIDS
diseases, controlling other covariates, were time
dependent and the average effect of the ≥ 40 group on
the hazard of non-AIDS diseases was about 3.7 times
that of < 40 group (P-value <.0001 The risk of non-AIDS
diseases and unrelated death was higher among ≥ 40 age
group (P-value <.0001, .039 respectively). As a result,
fewer patients in the ≥ 40 age group remained exposed
to experience AIDS prior to non-AIDS diseases. These
findings also indicated that age at diagnosis had direct
effects on the risks of non-AIDS and unrelated death.

Associations of CD4 levels with the risk of AIDS prior to
non-AIDS diseases, non-AIDS prior to AIDS and unrelated
death
Hazard of AIDS increased about 83% for CD4 levels <
350 compared to CD4 levels≥ 500 (P-value = .018). The
risk of AIDS for patients with CD4 cells < 350 reached
statistical significance comparing to patients with ≥ 500
(P-value = .027). Levels of CD4 had no significant associ-
ation with the hazards and risks of non-AIDS diseases.
Hence, the effect of CD4 levels on the risk of AIDS was
quite direct. Levels of CD4 had no significant associa-
tions with hazards and risks of non-AIDS diseases and
unrelated death. Hence, the effect of CD4 levels on the
risk of AIDS was quite direct.
We compared risk estimations of competing events for

different patterns of covariates in a 15-year time interval

using all subdistribution hazard-based models (i.e.
SDHFPM1, 2 and Fine & Gray). Figs. 1, 2, and 3 show that
risk estimations obtained from SDHFPM1 and 2 were close
to their corresponding values in the Fine & Gray model.
The SDHFPM1 and 2 could accurately capture nonlinear
trends of the risk of AIDS in different patterns of covariates
and provide parametric estimations of them. For all pat-
terns, the risk estimations of AIDS were dramatically higher
than non-AIDS and risks of death were close to zero.
Figure 4, 5, and 6 demonstrate the stacked risk of the

first event regardless of the type of the event and sepa-
rated by the type of events. They compare risk estima-
tions obtained from SDHFPM1 between different groups
of patients. Fig. 4 compares the total risk of failure
among two patients from periods 1 and 2 with control-
ling other covariates at the baseline level (the lowest
level). The risk of experiencing the first event for a pa-
tient from period 1 was dramatically higher than period
2. In contrast, the risk of failure for a patient from
period 2 was mostly related to non-AIDS diseases. Figs. 5
and 6 also show comparisons of stacked risks between
two age groups at diagnosis and CD4 levels, respectively.
Risk of failure for a patient < 40 years was almost equiva-
lent to a patient ≥ 40 years. However, the probability that
the failure is due to AIDS is higher for younger patients.
The risk of experiencing a disease, mostly AIDS, for a
patient with the lowest level of CD4 was higher than a
patient with the highest level of CD4. The probability
that a patient fails from death prior to experiencing a
disease was near zero in all figures.

Discussion
We have presented a comparison between competing
risks flexible parametric and Fine & Gray models for the
first disease among HIV positive men using the ongoing
MACS data set. Two alternative subdistribution flexible
parametric models were used. One of them was based
on censoring weights and was performed for each com-
peting event separately. The other one was based on dir-
ect estimations of the subdistribution functions and was
performed simultaneously for all three competing risks.
All the three models were similar regarding the estima-
tions of covariate effects, their confidence intervals, and
risk estimations. The main disadvantage of the Fine &
Gray models is that the baseline risks remain unspecified
and are assessed nonparametrically in a further step.
They are, however, very flexible and do not make any as-
sumptions on the shape of baseline functions. As the
most important finding in our study, the SDHFPMs pro-
vided parametric estimations, which presented the data
at hand accurately. They captured the complicated and
nonlinear trend of the risk of AIDS using NCSs and pro-
vided smooth estimations. Among two subdistribution
hazard-based flexible parametric models, SDHFPM2 is
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more straightforward to run than SDHFPM1 and can be
directly implemented on the original data. In addition,
calculating censoring weights and splitting the data in
SDHFPM1 leads to intensive computations, which are
time-consuming and require a large computer memory
especially for large data sets. Mozumder used SEER
colorectal cancer data with more than 45,000 observa-
tions and showed that the SDHFPM2 runs fundamentally
quicker than estimating the censoring weights and split-
ting the data [41]. Furthermore, SDHFPM2 is fitted on all
three competing events simultaneously. However, if
interest is in only one event there is no need to perform
a model for all competing events and SDHFPM1 may be
preferred [30]. One shortcoming of SDHFPM2 is that the
model has some convergence problems with small sam-
ple sizes. Another problem with this model is that
though the model fits for all competing events at the
same time, there is no constraint on the sum of all
cause-specific CIFs to be less than one [30]. This is also
the case for SDHFPM1 because the models are fitted for
each event separately [29, 30].
Using SDHFPMs, we investigated which covariates are

associated with the risk of the first disease among HIV in-
fected men. However, the effect of a covariate on the risk
of an event can be misleading if not properly interpreted.
Austin and Fine [47] conducted a review in medical pa-
pers, published in 2015, and showed that many of these

papers had an incorrect interpretation of the results of the
Fine & Gray model. In our study, the risk of AIDS prior to
non-AIDS among patients with ≥ 40 age at diagnosis was
less than < 40, whereas it has no significant effect on the
occurrence of AIDS. This implies that the hazard of devel-
oping AIDS for a patient infected with HIV at the age of
60 is not statistically different from a patient infected at
the age of 30. In a competing risks framework, in which
the occurrence of the first event is raised, the unrelated
death or non-AIDS diseases among ≥ 40 are more likely
compared to < 40 and many elderly patients experience
unrelated death or non-AIDS diseases prior to AIDS. So,
fewer patients in ≥ 40 age group remain in the risk set of
experiencing AIDS as the first event and the probability of
AIDS occurrence as the first disease among them is re-
duced. As a result, we have implemented cause-specific
hazards flexible parametric models in addition to subdis-
tribution hazard flexible parametric models. We agree
with the recommendation that both cause-specific hazards
and subdistribution hazards-based models should be used
for a comprehensive inference in competing risks analyses
[10, 11]. Using CSHFPM as well as SDHFPM, we could in-
vestigate the consistency of the effects of covariates on the
hazards and risks of competing events and direct and in-
direct effects of them on the risks. The CSHFPM can be
performed for each event separately or as a unified model
on the stacked data. The advantage of the unified model

Fig. 1 Comparisons of estimated risks of observing AIDS, non-AIDS and unrelated death as the first events among two groups of recruitments
(1984–85 & 1987–90 as period 1 and 2001–3 & 2010 as period 2) obtained from Fine & Gray and two alternative subdistribution hazard flexible
parametric models. The nonproportionality of hazards and subdistribution hazards were assumed for the effect age on the risk of non-AIDS
diseases. Other covariates were controlled at age < 40 and CD4 < 350
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over separate CSHFPMs is that there is no need to imple-
ment FPMs on each event separately. However, using a
unified CSHFPM has some drawbacks. The unified model,
by default, considers the same knot positions for all
events. Also, the model is more complicated than separate
CSHFPM and convergence problems may occur.
Another important aspect of this study was investigating

the occurrence of different types of events among HIV
positive patients at the presence of each other. Recently,
Pettit et.al [48]. showed that the risk of non-AIDS mortal-
ity among patients with an AIDS-defining event was twice
higher than patients without an AIDS-defining event.
However, most of the HIV studies were focused on AIDS
and non-AIDS separately. Baker et.al [6]. examined the as-
sociation of baseline CD4 cell counts on the AIDS and
non-AIDS separately. They showed that the higher CD4
levels at baseline were associated with a lower risk of non-
AIDS diseases (HR = .84, 95% CI (.74–.96)). However,
considering an AIDS-prior event as a confounder, there
was no significant association between baseline CD4 and
non-AIDS diseases. This is consistent with our findings,
which indicated that the risk of the occurrence of non-

AIDS prior to AIDS is not associated with baseline CD4
levels at the presence of AIDS.
One of the limitations of this study was the challenge

of Events-Per-Variable (EPV) for deaths prior to AIDS
or non-AIDS disease, which may lead to sparse data
biases and overfitting problem [49]. However, the main
focus of this study was on AIDS and non-AIDS events.
So, unrelated death was considered as a competing event
that precludes the occurrence of AIDS/non-AIDS dis-
eases. Another limitation was the lack of goodness of fit
tests that be able to compare SDHFPM1 with SDHFPM2.
SDHFPMs are newly developed approaches and probably
the next step would be developing goodness of fit cri-
teria for comparing them.

Conclusion
This paper presents an application of flexible parametric
models on multiple event types when each event alters the
probability of occurrence of the other events. The choice of
an appropriate model depends on the goals of the research
and computational challenges. A review of these models
and their required packages are summarized in Table 3.

Fig. 2 Comparisons of estimated risks of AIDS, non-AIDS and unrelated death as the first events among <40 and ≥ 40 age groups of
seroconversion obtained from Fine & Gray and two alternative subdistribution hazard flexible parametric models. The nonproportionality of
hazards and subdistribution hazards were assumed for the effect of age on non-AIDS diseases. Other covariates were controlled at period 1
(1984–85 & 1987–90) of MACS recruitments and CD4 < 350
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Fig. 4 A comparison of stacked risks among MACS recruitments (1984–85 & 1987–90 as period 1 and 2001–3 & 2010 as period 2) for patients
with age < 40 and CD4 < 350

Fig. 3 Comparisons of estimated risks of AIDS, non-AIDS and unrelated death as the first events among three levels of CD4 obtained from Fine &
Gray and two alternative subdistribution hazard flexible parametric models. The nonproportionality of hazards and subdistribution hazards were
assumed for the effect of age on non-AIDS diseases. Other covariates were controlled at period 1 (1984–85 & 1987–90) of MACS recruitments
and age < 40
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Fig. 5 A comparison of stacked risks between two groups of age at diagnosis for patients in period 1 (1984–85 & 1987–90) of MACS recruitments
with CD4 < 350

Fig. 6 A comparison of stacked risks between two levels of baseline CD4 for patients in Period 1 (1984–85 & 1987–90) of MACS recruitments
with age < 40
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Appendix
sensitivity analysis
The data contained covariate missing values (7.6% of in-
dividuals had at least one missing value in their covari-
ates). To address the impact of missing data, we used
MI to examine whether the associations estimated in the
standard analyses (Fine & Gray models) could have been
biased due to exclusion of patients with missing data
(CCA). Age at diagnosis, CD4, CD8, WBC, RBC, and
platelets were registered for imputation. Survival out-
comes consist of survival time and type of the event (as
a factor with 4 categories for AIDS, non-AIDS, death
and censoring), and MACS recruitment years were con-
sidered as predictors of the imputation models. In
addition, we used hemoglobin as axillary information.
For imputation, the multivariate normal regression
method was used and n = 10 imputed data set were cre-
ated. Univariate analyses on multiply imputed data sets
were fairly close to CCA. Additional file 2: Table S2. in-
cludes the pooled results of final Fine & Gray models on
the imputed data. The results are almost identical to
CCA.
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1186/s12874-020-0900-z.

Additional file 1: Table S1. Results of Transforming and Imputing
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