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Abstract

Background: Statistical methods for modeling longitudinal and time-to-event data has received much attention in
medical research and is becoming increasingly useful. In clinical studies, such as cancer and AIDS, longitudinal
biomarkers are used to monitor disease progression and to predict survival. These longitudinal measures are often
missing at failure times and may be prone to measurement errors. More importantly, time-dependent survival
models that include the raw longitudinal measurements may lead to biased results. In previous studies these two
types of data are frequently analyzed separately where a mixed effects model is used for the longitudinal data and
a survival model is applied to the event outcome.

Methods: In this paper we compare joint maximum likelihood methods, a two-step approach and a time
dependent covariate method that link longitudinal data to survival data with emphasis on using longitudinal
measures to predict survival. We apply a Bayesian semi-parametric joint method and maximum likelihood joint
method that maximizes the joint likelihood of the time-to-event and longitudinal measures. We also implement the
Two-Step approach, which estimates random effects separately, and a classic Time Dependent Covariate Model. We
use simulation studies to assess bias, accuracy, and coverage probabilities for the estimates of the link parameter
that connects the longitudinal measures to survival times.

Results: Simulation results demonstrate that the Two-Step approach performed best at estimating the link
parameter when variability in the longitudinal measure is low but is somewhat biased downwards when the
variability is high. Bayesian semi-parametric and maximum likelihood joint methods yield higher link parameter
estimates with low and high variability in the longitudinal measure. The Time Dependent Covariate method
resulted in consistent underestimation of the link parameter. We illustrate these methods using data from the
Framingham Heart Study in which lipid measurements and Myocardial Infarction data were collected over a period
of 26 years.
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Conclusions: Traditional methods for modeling longitudinal and survival data, such as the time dependent
covariate method, that use the observed longitudinal data, tend to provide downwardly biased estimates. The two-
step approach and joint models provide better estimates, although a comparison of these methods may depend
on the underlying residual variance.

Keywords: Joint longitudinal and survival model, Cox model, Two-step approach, Mixed effect modeling, Time
dependent covariate models, Weibull distribution, Residual variance

Background
Statistical methods for modeling longitudinal and time-
to-event data has received much attention recently in
medical research and is becoming increasingly useful. A
common objective in this research is to characterize the
relationship between the longitudinal response and the
time-to-event [1, 2]. Typical settings where these may
occur include HIV studies in which baseline characteris-
tics are recorded and immunological measures such as
CD4+ lymphocyte counts or viral load are measured re-
peatedly to assess patients’ health until HIV conversion
[3]. We consider data from the Framingham Heart Study
in which lipid measurements and myocardial infarction
(MI) data were collected over a period of 26 years. The
F r a m i n g h a m H e a r t S t u d y ( h t t p : / / w w w .
framinghamheartstudy.org/) is a well-known longitudinal
study that identifies potential risk factors for the devel-
opment of cardiovascular disease. In this study high-
density lipoprotein (HDL), low density lipoprotein (LDL)
and triglycerides (TG) were measured at generally com-
parable time intervals over the 26-years. Time to MI was
also recorded for each participant, although some sub-
jects were censored by the end of the study period or
due to death from other causes. We assess methods that
characterize associations between the longitudinal lipid
measures and time to MI with an emphasis on precise
estimation of the parameters linking longitudinal risk
factors with time to MI.
There is extensive literature and a wide range of statis-

tical packages for jointly modeling longitudinal and sur-
vival data. Some recent work includes those of Brown
and Ibrahim [4]; Zeng and Cai [5]; Tseng, Hsieh, and
Wang [6]; Ye, Lin, and Taylor [7]; Ibrahim, Chu, and
Chen [8]; Rizopoulos [9], among others. Tsiatis and
Davidian [2] provide a comprehensive overview of earlier
articles addressing a number of methods for jointly
modeling longitudinal and survival data. These articles
include work on joint models by Robins and Tsiatis [10];
DeGruttola and Tu [11]; Tsiatis, DeGruttola, and Wulf-
sohn [12]; LaValley and Degruttola [13]; Faucett and
Thomas [14]; Wulfsohn and Tsiatis [15]; Wang and Tay-
lor [16]; Xu and Zeger [17]. Sweeting and Thompson
[18] provide a comparison of a shared random effects
model with a naïve time-dependent covariate model and

a two-stage joint model for modelling the association be-
tween the longitudinal process and the time-to-event
outcome. They conducted a simulation study to contrast
these three approaches in their ability to estimate the
true association between a longitudinal process and the
event hazard. In their simulations they assumed a con-
stant baseline hazard model to simulate a relatively rare
event with a modest correlation between the longitu-
dinal and survival process [18]. Our paper builds upon
the Sweeting and Thompson paper and implements a
new data generation scheme, assuming a Weibull distri-
bution for the survival process and considers a wide
range of scenarios for the event rates and the residual
variances.
Our main objectives in this paper are to (i) evaluate a

Bayesian semi-parametric joint model (BSJM) and a
maximum likelihood joint model approach (MLA) that
link longitudinal trajectories to survival and (ii) compare
these joint maximum likelihood methods with the Two-
Step Approach (TSA), and the Cox Time Dependent
Covariate Model (TDCM) [4, 12, 15, 19]. In these
methods the BSJM and MLA maximize the joint likeli-
hood of the longitudinal and survival data. In the TSA,
random effects are estimated separately in the first stage
and the predicted longitudinal measures are then
substituted into the second stage survival analysis. The
argument in favor of the joint model has been the effi-
cient use of the data as the survival information goes
into modeling the longitudinal process and vice versa.
The TDCM implements time varying covariate ap-
proaches in which the observed longitudinal measures
are applied in the survival model.

Methods
In this section, we describe the methods for jointly mod-
eling longitudinal data and survival data using a joint
likelihood. In such modeling, the main focus may be on
the longitudinal component, the survival component, or
both, depending on the objectives of the studies. When
the focus is on one aspect, the other component is then
secondary; so its parameters may be viewed as nuisance
parameters [20]. Our goal is to characterize the relation
between the time-to-event (primary) outcome and the
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longitudinal measures (secondary), adjusting for covari-
ates in the model.

Joint likelihood model
We consider a joint likelihood model similar to that of
Brown and Ibrahim [4], which links the longitudinal tra-
jectories of each subject to survival data. The longitu-
dinal responses, Yi, are linked to the time-to-event
model using a Cox proportional hazard model [21]. For
each individual, i, we let Si be the survival time and Ci

censoring time, with Ti the observed survival time. Due
to censoring we observe Ti = min (Si,Ci). Let δi = I(Si ≤
Ci), denote the event indicator:

δi ¼ 1 if Si≤Ci

0 if Si > Ci

� �

The joint likelihood for subject i can be constructed as
a product of the longitudinal model and survival model
conditional on the longitudinal measures.

f Y i; ti; δið Þ ¼ f Y ið Þ� f ti; δijY ið Þ
We begin with the likelihood model for the longitu-

dinal measures and implement a random effects ap-
proach that models the longitudinal measures with
possible measurement errors. Each subject has mi mea-
sures denoted by Yij, j = 1, 2, …, mi, where Yij represents
the observed outcome for the ith subject at the jth time
point. We denote Yij

∗ as the true unobserved measure
value such that:

Y ij tij
� � ¼ Y i

� tij
� �þ ϵij; ϵij � N 0; σ2

� � ð1Þ
Y �

ij is also known as the trajectory function. Through-

out this paper we assume that Yij
∗ = Yi

∗(tij). The trajec-
tory can be modeled in a linear form [4] or quadratic
form [12], or spline, and other time series forms can be
implemented to capture the trajectory of the longitu-
dinal measures but the trade-off is the complexity and
interpretation of the model. These longitudinal measures
are often missing at failure times and may be prone to
measurement error. Including the raw longitudinal mea-
surements in analysis may lead to bias if the measures
are related to the censoring process [1].
In this paper we use a linear mixed effects model

(LME), which allows individual or subject-specific infer-
ence following the approach of Laird and Ware [22], to
fit data from longitudinal response processes.

E Y ij
� � ¼ Y �

i tij
� � ¼ Ui1 þUi2�tij ð2Þ

Here Ui1 and Ui2 are random effects, representing the
subject-specific intercepts and slopes, and are usually as-
sumed to be multivariate normally distributed. The vari-
able tij represents the times for the ith subject at the jth

time at which the longitudinal measures are recorded
during the follow-up period.
For the survival model we consider the Cox model

that links the time-to-event data and the longitudinal
trajectories through the hazard function. For each indi-
vidual, i = 1, 2, …, n, we let Si denote the survival or
event time and Ci denote the censoring time, respect-
ively. We assume that the censoring process is random
or non-informative.
For individual, ti denotes the failure time, which may

be right censored. The Cox model that links the time-
to-event outcome and the longitudinal trajectories
through the hazard function can be written as:

hi tð Þ ¼ h0 tð Þ exp Y �
i tð Þγ þ Xi

Tα
� � ð3Þ

The parameter γ is a scalar (link) parameter that links
the predicted longitudinal trajectories to the hazard
function; α is a vector of unknown parameters for the
time independent covariate measures Xi

T; h0(t) is the
baseline hazard function. From (3) one can generate a
Cox partial likelihood [21] from which statistical infer-
ences can be derived if Y �

i were observed:

L�p ¼
Yn
i¼1

exp Y �
i tið Þγ þ Xi

Tα
� �

Xn
k¼1

exp Y �
k tið Þγ þ Xi

Tα
� �

I tk ≥ tið Þ

8>>><
>>>:

9>>>=
>>>;

δi

ð4Þ

In (4) two assumptions are made: (i) survival times are
independent and without ties; (ii) the longitudinal mea-
sures are available at each event time for all individuals.
Assumption (ii) is often not true as covariate measure-
ment times may not coincide with event times, leading
to missing data in time-dependent covariates in the sur-
vival model. Such missingness may be assumed to be ig-
norable or MAR where the missingness is not related to
the missing values that would be observed [23]. The
last-value-carried-forward (LVCF) method for missing
longitudinal measures has been widely used to impute
the missing covariates, but may lead to bias in the esti-
mates [1].The hazard function for the survival compo-
nent (3) given the longitudinal trajectory function yields:

f ti; δið Þ∝ f tið Þδi S tið Þ1 − δi ¼ h tið Þδi S tið Þ;where S tð Þ
¼ exp −

Z t

0
h uð Þdu

� 	

f ti; δijY i
�;Xið Þ ¼ h0 tið Þδi exp δi Y

�
i tið Þγ þ Xi

Tα
� �� �

� exp −
Z ti

0
h0 uð Þ exp Y �

i uð Þγ þ Xi
Tα


 �
du

� � ð5Þ

Statistical inference based on the above likelihood
function is potentially computationally intensive. A non-
adaptive Gauss-Kronrod integration can be employed to
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numerically calculate the integral [24]. The maximum
likelihood parameter estimates can be obtained using
the Expectation–Maximization (EM) algorithm and
Newton-Raphson approximation [25]. Or a Monte Carlo
Markov Chain (MCMC) approach can be implemented
in a Bayesian framework [14]. Tsiatis and Davidian [2]
applied a different approach to the issue by proposing a
conditional score that is also efficient and yields consist-
ent and asymptotically normal estimators.

Bayesian semi-parametric joint model (BSJM)
Faucett and Thomas [14] applied a Bayesian approach to
estimate the parameters of the longitudinal process (σ2,
mean and covariance of Ui1 and Ui2) and the propor-
tional hazard model (λ0, γ and α) in the joint likelihood
framework via MCMC. They specified non-informative
priors for the parameters to obtain results similar to the
maximum likelihood estimates. Wang and Taylor [16]
applied a similar approach to model the survival compo-
nent and used a more flexible approach to the longitu-
dinal part by incorporating a stochastic process into the
longitudinal trajectory. Brown and Ibrahim [4] consid-
ered a semi-parametric Bayesian joint model in which
they relax the distributional assumptions for the longitu-
dinal model using Dirichlet process priors on the ran-
dom effect parameters.
We apply a Bayesian approach for jointly modeling

longitudinal and survival data similar to that of Brown
and Ibrahim [4]. For the survival model, we specify nor-
mal priors for the parameters γ and α. We use MCMC
methods to obtain posterior distributions of the parame-
ters given the data. For the longitudinal component, we
consider the LME model in which we assume prior dis-
tributions for the mean parameters, with variance com-
ponents. From (1) and (2) we have that:

Y ij tij
� � ¼ Y ij

� tij
� �þ ϵij;Y

�
ij ¼ Ui1 þ Ui2�tij; i

¼ 1; 2;…; n; j ¼ 1; 2;…;mi

ϵij � N 0;Rið Þ

Y ij j Ui � N Y �
ij;V i

� 

;V i ¼ ZiGZi

0 þ Ri;Ri ¼ σ2Imi

We model the longitudinal trajectories using a linear
growth curve model with Ui1 and Ui2 representing the
random intercepts and slopes. G denotes the covariance
matrix of the random effects and Zi is a diagonal matrix
of the longitudinal time points. A subject i ′ s contribu-
tion to the joint likelihood function can be written as:

f Y i; ti; δið Þ ¼ h0 tið Þδi exp δi Y �
i tið Þγ þ Xi

Tα
� �� �

� exp −
Z ti

0
h0 uð Þ exp Y �

i uð Þγ þ Xi
Tα


 �
du

� �
�

ð6Þ

1

2πσ2ð Þ
mi
2

exp −
1
2σ2

Xmi

j¼1

Y ij − Y �
ij

� 
2( )

A typical approach assumes a constant hazard ratio for
the baseline hazard and normal prior distributions for
the random effects and the unknown regression param-
eter (α). The variance-covariance matrix (V) is assigned
a Wishart distribution through a precision matrix P:

P ¼ V − 1 � Wishart Q − 1; v
� �

and

σ2 � IG a; bð Þ

In the Wishart distribution, Q denotes the scale matrix
and v denotes the degrees of freedom. IG represents in-
verse gamma distribution with shape a and scale param-
eter b.
We employed R and WinBUGS to obtain parameter

estimates and credible intervals from the posterior distri-
bution of the Bayesian modeling using standard Gibbs
sampling MCMC methods [26, 27]. Once the model,
data and initial values are specified in WinBUGS, the pa-
rameters can be monitored until convergence is attained.
At the end of the MCMC process we obtain plots and
diagnostic statistics to assess convergence in the parame-
ters. One shortcoming of the BSJM is the computing
time involved in estimating the parameters.

Maximum likelihood approach (MLA)
The maximum likelihood approach for jointly modeling
longitudinal and survival data was described by Rizopou-
los [9]. This method, employing the same general ap-
proach as Wulfsohn and Tsiatis [15], implements a
shared parameter model for the joint modeling of longi-
tudinal responses and time-to-event data.
The joint distribution for the longitudinal and survival

model can be written as:

f Y i;Ti; δið Þ ¼
Z

f ðY i Uij Þ� hi T ijUið Þδi S T ijUið Þ
n o

� f Uið ÞdUi

ð7Þ

where S(Ti|Ui) and hi(Ti|Ui) represent the survival
function and the hazard function respectively condi-
tional on the random effects, and f(Yi, Ti, δi) is the dens-
ity function. The distributional form in (7) assumes that
given the random effects, the longitudinal measures are
independent of the time-to-event outcome and are inde-
pendent of each other. The true unobserved values of
the longitudinal measures ðY �

ijðtÞÞ are associated with
the event outcome (Ti) through the hazard function:
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hi tjY i tð Þð Þ ¼ h0 tð Þ exp Y �
ij tð Þγ þ Xi

Tα
n o

Parameter estimates, from (7), can be obtained using
the JM package in R. The package fits a shared param-
eter model for the joint modeling of normally distributed
longitudinal responses and event time under the likeli-
hood approach. The maximum likelihood estimation for
joint models is based on the maximization of the log-
likelihood corresponding to the joint distribution of the
time-to-event and longitudinal outcomes [9]. The
maximization is challenging as the integral of the sur-
vival function has no analytic solution. Following Rizo-
poulos, we implemented a Weibull model using Gauss-
Hermite integration to approximate the integral. In the
estimation process a hybrid optimization approach is
employed that starts with EM and then continues with
direct maximization. The procedure for the EM algo-
rithm uses a fixed number of iterations and if conver-
gence is not achieved it switches to a quasi-Newton
algorithm until convergence is attained.

Two step approach (TSA)
In the TSA, the parameters of the longitudinal process
are estimated separately, and the estimated random ef-
fects are substituted directly into the survival model.
This approach was first implemented by Tsiatis [12] in
which a linear mixed effect model is fit to the longitu-
dinal measures and the fitted values are inserted into the
Cox Proportional Hazard model in the second stage as
time dependent covariate measures. Ye, Lin, and Taylor
[7] proposed two approaches for modeling the TSA
called risk set regression calibration (RRC) and ordinary
regression calibration (ORC). In the first approach the
LME model is fit using the observed longitudinal data
only among subjects with the event. This approach can
be implemented if the longitudinal trajectories of sub-
jects who experienced the event may be different from
those who did not.
In the second approach the LME model is fit using ob-

served longitudinal data from all subjects. In the first
step the longitudinal process is estimated using the LME
model in (1) and (2) and estimates of the random effects
are used to obtain predicted values of the longitudinal
measures at event times. In the second step the pre-
dicted longitudinal measures are used in the Cox Model
to estimate the hazard for the event. The variance esti-
mates for the parameters are obtained from the observed
information of the partial likelihood function. See eq.
(3). Xi represents the time independent covariate mea-
sures in the model and the Y �

i ðtÞ represents the pre-
dicted values of the longitudinal measures at event time
t. The link parameter (γ) in this approach can be inter-
preted as the association between the longitudinal

measures at event time and the survival time. The esti-
mation and inference for the hazard model (3) can be
performed by using the partial likelihood theory pro-
posed by Cox [21].
The main advantage of this approach is that it is sim-

ple and can be implemented using existing statistical
packages. Tsiatis et al. [12] argue that a repeated mea-
sures random effects model for the covariate process is
superior to naive methods where one maximizes the par-
tial likelihood of the Cox using the observed covariates
values. Ye, Lin, and Taylor [7] argue that there are two
main disadvantages of a simple TSA; 1) it may provide
biased estimates especially when the longitudinal process
and the survival process are strongly associated; and 2) it
does not incorporate the uncertainty of estimation in the
first stage into the second stage, possibly leading to
under-estimation of the standard errors. We evaluate
several scenarios to assess the validity of these assump-
tions using simulation studies.

Time dependent covariate modeling (TDCM)
A time dependent explanatory variable is one whose
value for any given subject may change over the period
of time that the subject is observed [28]. The TDCM
employs the observed longitudinal measures to predict
an event. Therneau and Grambsch [19] considered a
well-known example of TDCM using the Stanford Heart
Transplant Program. Data for a subject is presented as
multiple observations, each of which applies to an inter-
val of observation. A proportional hazards model is often
used to analyze covariate information that change over
time. The hazard may be thought of as being propor-
tional to the instantaneous probability of an event at a
particular time [21].
We consider sample of size n, consisting of [Ti, δi,

[Yij(t), 0 ≤ t ≤ Ti], i = 1, 2,…, n], where Ti is the time-to-
event for the ith subject, δi is the event indicator. The
vector Yij(t) = [Yi1(t), Yi2(t),…, Yig(t)]

T is a set of observed
longitudinal measures, and mi ≤ g is the number of times
intervals for the ith subject and g is the maximum.

δi ¼ 1 if T i≤Ci

0 if T i > Ci

� �

The hazard for this model at time t can be written as:

h tð Þ ¼ h0 tð Þ� exp βY i tð Þ þ Xi
Tα

� �
¼ h0 tð Þ� exp

Xmi

k¼1

βkY ik tð Þ þ Xi
Tα

 !
ð8Þ

The vector Y ijðtÞ ¼ ½Y i1ðtÞ;…;Y imiðtÞ�T is a set of co-
variates and mi is the number of longitudinal measures
for the ith subject. We define t1 < t2 < t3 <… < tD as a set
of ordered event times and Yij(ti) as the time-dependent
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covariate associated with the individual whose failure
time is ti. The risk set R(ti) at time ti is the set of all indi-
viduals who are still under study at a time just prior to ti.
The partial likelihood based on the hazard function spe-
cified (9) can be written as:

L α; βð Þ ¼
YD
i¼1

exp
Xmi

k¼1

βkY ik tið Þ þ Xi
Tα

 !

X
lϵR tið Þ

exp
Xmi

k¼1

βkY lk tið Þ þ Xl
Tα

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð9Þ
In most applications, βk = 0 for intervals which are not

under consideration. The estimates can be obtained by
maximizing the likelihood specified in (9).

Simulations
In this section, we carried out a series of simulations to
compare the performance of these four methods for
modeling longitudinal and survival data described above.
The performance of these methods was assessed with
Type I error, bias, accuracy, and coverage probabilities
for the link parameter. We simulated longitudinal and
survival data to resemble data from the Framingham
Heart Study. In Table 1, we highlight the simulation
model and the required parameters (residual error, ran-
dom effect means for the longitudinal process, covari-
ance of random effects and coefficients for Age and Sex)
for simulating the longitudinal and survival data. The
longitudinal trajectories were generated from a linear
model adjusting for the age at baseline of the partici-
pants. The survival time was generated to depend on the
longitudinal measures and a set of covariates (Age at
baseline and Sex).
In our previous paper on Generating Survival Times

with Time-Varying Covariates [29] we provide a detailed
algorithm for generating survival times for time-varying
Cox Exponential and Weibull models using Lambert’s
W function. The simulation requires the specification of
the longitudinal measures and the distribution of the

survival data. The longitudinal measures can be obtained
from a mixed effects model by introducing the random
effects as shown in (1) and (2). We focus on a simple lin-
ear mixed effect model (LME), which allows individual
or subject-specific inference [19] to fit data from longi-
tudinal response process. For the survival data, two inde-
pendent Weibull distributions were simulated; (i) the
survival times that would be observed if the follow-up
had been sufficiently long to reach the event and (ii) the
censoring mechanism. The survival distribution was gen-
erated to depend on the longitudinal measures and a set
of covariates in accordance with the model in (5). If the
survival time is less than or equal to the censored time,
then the event is considered to be observed and the
time-to-event equals the survival time; otherwise the
event is considered censored and the time-to-event
equals the censored time [30]. We assume random non-
informative right censoring and employ a uniform distri-
bution for censoring that allows a maximum follow-up
time of 30 years. We use the Weibull distribution to gen-
erate the survival data. We simulated 1000 independent
multivariate datasets consisting of longitudinal measures,
time-to-event outcomes, and additional covariates. We
present a general formula (see Table 1) which links the
survival time of the Cox model and the random effects
of the longitudinal model. We use the Weibull distribu-
tion to generate survival times from the longitudinal
data in the simulation studies by using the Lambert
function [29].
We applied the following methods to each of 1000

replicates (10,000 for Type I error): (1) Bayesian semi-
parametric joint model (BSJM); (2) Maximum likelihood
approach (MLA); (3) Two-step approach (TSA); (4)
Time dependent covariate model (TDCM). In the BSJM
method several criteria were considered in the MCMC
runs including: 1) the number of chains for each run, 2)
correlation between successive draws and 3) the length
of burn-in time. A total of 101,000 iterations were run
with a thinning of 50 and a burn-in of 1000 for 4 chains
each, thus providing a sample of 500 iterations per
chain. Empirical means and standard deviations for each

Table 1 Simulation Model and Parameters

Exams (Ui1, Ui2) Residual Age Sex Link Censoring Distribution

6 (4.250, 0.250) σ2 = 0.1161 0.050 −0.500 Varying Uniform (25, 30)

Random Effects Covariance Matrix: G¼ 0:29 − 0:00465
− 0:00465 0:000320

� �

Longitudinal Trajectories : φβ(tij) = Ui1 + Ui2 ∗ tij + α ∗ Agei

Survival Model : h(t) = h0(t) exp {α1Age + α2Sex + γφβ(t)}

Survival Time ðExponentialÞ: T¼ 1
ð γ�Ui2Þ Lð

− γðUi2Þ logðMÞ
λexpðX 0 βþγðUi1ÞÞ

Þ

Survival Time ðWeibullÞ: T¼ 1
γðUi2�1νÞ

LðγðUi2� 1
νÞ�ð − logðMÞ

λexpfX 0 βþγðUi1Þg
Þ
1
νÞ
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variable were estimated. The quantiles for each variable
are estimated in WinBUGS and used to compute cred-
ible intervals. In the Supplemental Material (S5), we
present the Bayesian Semi-Parametric Joint Modeling,
the initial values as well as the exact prior distributions
implemented in the simulations. Two shortcomings of
the BSJM are the computing time involved in estimating
the parameters and the lack of convergence in some of
the MCMC runs.
The variable Sex is considered a fixed covariate at each

exam in all the methods. The baseline Age is also in-
cluded in the model; the data structure is a single row
per subject where longitudinal measures, covariates and
the overall survival/censoring time are specified for each
subject. The statistical analyses were performed using
SAS Software (version 9.3; SAS Institute, Cary, NC) and
the computing environment R (R Development Core
Team, 2012). The Bayesian analysis was conducted in R
using WinBUGS version 1.4.3, MRC Biostatistics Unit,
Cambridge, UK.

Results
We compute Type I error for the link parameter to as-
sess all four methods (see Table 2) for a sample size of
100 with 10,000 replicates. The methods appear to pro-
vide Type I error rates close to the nominal level (0.050)
for both the Exponential and Weibull models with two
exceptions. The BSJM shows deflated type I error for
both Exponential and Weibull with high censoring rates
and elevated Type I error for Weibull with low censor-
ing. The MLA shows elevated Type I errors for Expo-
nential with high censoring (See Supplemental Figure
S1).
In Table 3 we present the estimates, SEs, coverage

probability (CP), bias and mean square error (MSE) for
the comparison of the longitudinal effect on survival
using the Weibull distribution for n = 100. The MLA
and BSJM provide lower standard errors and shorter
confidence intervals for the link estimate (see Table 3

and Supplemental Figure S2) compared to the other
methods. The simulation scenarios with higher censor-
ing rates show higher standard errors and larger confi-
dence intervals. The results suggest the TSA performs
best at estimating the link parameter, as it has lower bias
and higher coverage probability (CP) compared to the
other methods. For example, with 10% censoring and
(γ = 0.00), the TSA has a bias of 0.000 with a CP value of
95.2%. The TSA provides larger standard errors for the
link estimate with larger confidence intervals and CP
values close to the nominal level of 95%. The TDCM
yields a negative bias with low CP values when there is a
strong effect of the longitudinal measure on the
outcome.
The performance of the methods in estimating the

simulated effects of Age (α1 = 0.050) and Sex (α2 = −
0.500) was also assessed (See Supplemental Figure S3).
As the effect of the longitudinal measure on survival be-
comes stronger, the effect of Age becomes weaker for all
the methods except the TSA. The SE’s, CP and confi-
dence intervals tend to be smaller when n = 1000, as ex-
pected. The results for the sex effect show that all
methods provide precise estimates for all the scenarios
considered (See Supplemental Figure S4). From the
simulation results we see that the standard errors and
confidence intervals become larger with higher censor-
ing rates. The sex effect is fairly consistent among the
different methods for all simulation scenarios
considered.
We also implemented a data generation scheme by

Rizopoulos to confirm our results across different set-
tings. We compared the methods using FHS parameters
specified in Table 1. The BSJM was not included in this
setting due to the computing time involved in estimating
the parameters. We used a sample size of 1000 with cen-
soring set at 90% and a link parameter of 0.500. As
shown in Table 4, with a residual variance of the longi-
tudinal trajectories (σ2 = 0.1161), the TSA showed low
bias of 0.006 with higher coverage probability 0.952
compared to the other methods. The TSA also provided
larger standard errors for the link estimate with larger
confidence intervals. The TDCM provided a negative
bias of − 0.137 with low CP values of 0.870. The MLA
provided the highest estimate in the link parameter with
a positive bias of 0.082 and a coverage probability of
0.882. When we applied the above residual variance
(σ2 = 0.1161), the pattern in the results provided similar
findings as our data generation scheme. When the re-
sidual error was increased (σ2 = 0.396), to reflect the er-
rors of the joint model by Wulfsohn and Tsiatis [15], we
observed a similar trend in the results with the TSA pro-
viding the least biased estimate, and nearly 95% cover-
age, but larger SE’s (see Table 4). The link parameter
estimates (0.191) for the TDCM were highly attenuated in

Table 2 Type I Error (N = 100, Replicates = 10,000, Link = 0.000)

Type I Error (Exponential Distribution)

Censoring TSA MLA BSJM TDCM

10% 0.057 0.052 0.050 0.056

50% 0.052 0.046 0.040 0.050

90% 0.054 0.078 0.010 0.050

Type I Error (Weibull Distribution)

Censoring TSA MLA BSJM TDCM

10% 0.054 0.054 0.090 0.053

50% 0.057 0.050 0.070 0.059

90% 0.051 0.064 0.030 0.053

TSA Two Step Approach, MLA Maximum Likelihood Approach, BSJM Bayesian
Semi-Parametric Joint Modeling, TDCM Time Dependent Covariate Modeling
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this scenario. With a larger residual variance, the TSA
showed modest bias (0.452) in the link parameter com-
pared to the scenario with lower residual variance. As seen
earlier, the MLA provided larger estimates in the link par-
ameter (0.580) compared to the other methods.

Application to Framingham HEART study
To illustrate the performance of these methods, we ex-
amined data from the Framingham Heart Study (FHS)
in which lipid measurements and Myocardial Infarction
(MI) data were collected over a period of 26 years. The
FHS is a widely known longitudinal study that seeks to
identify common factors contributing to cardiovascular

disease (CVD). Since 1948 three generations of partici-
pants have been recruited and followed over the years:
Original cohort (recruited in 1948), Offspring (recruited
in 1971) and third generation (recruited in 2002).
Among the offspring participants, high-density lipopro-
tein (HDL), low density lipoprotein (LDL) and triglycer-
ides (TG) were measured at fairly similar time intervals
over a period of 26 years. The time to myocardial infarc-
tion was recorded for each participant, although some
subjects were censored by the end of the study period or
due to death from other causes. We log transformed the
TG measures in our analysis to reduce skewness in TG
measures. A total of 2262 subjects with complete data,

Table 3 Comparison of Longitudinal Effect on Survival (Distribution =Weibull, N = 100, Link = γ)
Scenarios TSA MLA

Censoring γ Estimate SE CP Bias MSE Estimate SE CP Bias MSE

10% 0.000 0.000 0.247 0.952 0.000 0.125 0.006 0.074 0.955 0.006 0.011

0.500 0.512 0.251 0.950 0.012 0.128 0.609 0.103 0.848 0.109 0.033

1.000 1.041 0.266 0.954 0.041 0.142 1.141 0.152 0.904 0.141 0.066

50% 0.000 0.009 0.319 0.950 0.009 0.208 0.006 0.096 0.945 0.006 0.020

0.500 0.509 0.323 0.954 0.009 0.166 0.572 0.134 0.938 0.072 0.041

1.000 1.049 0.315 0.945 0.049 0.211 1.190 0.170 0.804 0.190 0.100

90% 0.000 −0.005 0.644 0.948 −0.005 0.868 −0.041 0.188 0.909 −0.041 0.054

0.500 0.556 0.666 0.947 0.056 0.970 0.588 0.251 0.878 0.088 0.112

1.000 1.098 0.759 0.940 0.098 1.403 1.243 0.409 0.844 0.276 0.234

BSJM TDCM

Censoring γ Estimate SE CP Bias MSE Estimate SE CP Bias MSE

10% 0.000 0.019 0.073 0.910 0.019 0.014 −0.001 0.188 0.938 −0.001 0.073

0.500 0.592 0.099 0.920 0.092 0.025 0.336 0.191 0.845 −0.164 0.103

1.000 1.127 0.145 0.900 0.127 0.053 0.666 0.200 0.595 −0.334 0.191

50% 0.000 −0.004 0.094 0.930 −0.004 0.021 0.013 0.244 0.949 0.013 0.124

0.500 0.610 0.127 0.930 0.110 0.039 0.354 0.252 0.913 −0.146 0.154

1.000 1.107 0.156 0.930 0.107 0.059 0.688 0.238 0.712 −0.312 0.214

90% 0.000 0.027 0.191 0.970 0.027 0.076 −0.002 0.494 0.943 −0.002 0.502

0.500 0.778 0.242 0.933 0.278 0.161 0.373 0.510 0.919 −0.127 0.590

1.000 1.009 0.269 0.990 0.009 0.116 0.758 0.577 0.907 −0.242 0.838

TSA Two Step Approach, MLA Maximum Likelihood Approach, BSJM Bayesian Semi-Parametric Joint Modeling, TDCM Time Dependent Covariate Modeling, CP
Coverage Probability, SE Standard Error, MSE Mean Square Error

Table 4 Rizopoulos Data Generation Scheme (N = 1000, Link = 0.500, Slope = 0.250)

σ2 = 0.1161 (FHS), Censoring = 90% σ2 = 0.396 (Tsiatis), Censoring = 90%

TSA MLA TDCM TSA MLA TDCM

Estimate 0.506 0.582 0.363 0.452 0.580 0.191

SE 0.214 0.158 0.164 0.241 0.170 0.122

CP 0.952 0.882 0.870 0.945 0.879 0.286

BIAS 0.006 0.082 −0.137 −0.048 0.079 −0.309

MSE 0.092 0.042 0.073 0.119 0.078 0.126

SE Standard Error, CP Coverage Probability, MSE Mean Square Error
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until event or death, were followed from 1979 to 2005
and data was collected at the start of each exam (see
Table 5). The mean age at baseline was 43.3 years. Six
exams were considered in the analysis from Exam 2 to
Exam 7. The mean triglyceride measures at each exam
were calculated with values ranging from 100.49 to
158.70, showing an increased trend from Exam 2 (1979–
1983) to Exam 7 (1998–2002). The mean (SD) follow-up
time was 22.80 (5.13). The cumulative event rate for the
26-year period was 3.71%. The proportion of female par-
ticipants was 51%.
We fit the FHS data to the models described in Sec-

tion 2 and characterize the association between the lon-
gitudinal measures and time-to-event response. We used
log TG at each exam for the longitudinal part of the
model assuming a linear trend and survival time mea-
sured from exam 2 to MI or loss to follow up (up to
2005). We adjusted for Sex and baseline Age in all the
models. In Fig. 1 we show the distribution of time-to-
event among the 2262 subjects with complete data. The
survival distribution among subjects with events was
fairly uniform and the distribution of survival times for
censored subjects was skewed to the left with most cen-
soring times occurring at the tail end of the distribution
(20–26 years).
In Table 6 we present the estimates for Age, Sex, and

the link parameter (γ), for each method. The link param-
eter provides a measure of the association between the
longitudinal TG measures and the risk of MI; γ is the
log hazard ratio for a one unit increase in the log TG at
time t in the survival model. The link parameter refers
to the longitudinal levels at time t and does not relate to
changes in the longitudinal model over time. The results
suggest a higher estimate in the link parameter for the
MLA and BSJM (γ= 0.9764 and 1.0263). These results
are similar to the findings by Wulfsohn and Tsiatis [15]
with higher estimates in the joint maximization com-
pared to the two-step approach. The TDCM method
shows a lower link estimate compared to the TSA and
the joint likelihood methods. The TSA and the MLA
provided higher standard errors for the link parameter
compared to the other methods. Tsiatis [12] argued that

the standard error for the link parameter is greater when
using the joint estimation procedure compared to the
TSA because the random effects are assumed to be in-
fluenced by the uncertainty in the estimated growth
curve parameters; thus, more variability is incorporated.
We do not see this, however, in these results. The Age
effects and standard errors were similar among the
methods with estimates ranging from 0.050 to 0.065.
The Sex effect was fairly consistent among the different
methods ranging from − 1.025 to − 0.999. Using a 0.05
level of significance the Age, Sex and Log of the trigly-
ceride measures were significantly associated with risk of
myocardial infarction. The results of all methods suggest
that repeated measures of triglyceride levels are signifi-
cantly associated with the risk of myocardial infarction
in the Framingham Heart Study Cohort.

Discussion
In this paper, we compared longitudinal and survival
data methods that link longitudinal trajectories to sur-
vival. These methods quantify the link parameter as the
association between the current level of a longitudinal
process and the survival outcome. We analyzed data
from FHS in which triglyceride measurements and Myo-
cardial Infarction (MI) data were collected over a period
of 26 years. We used a simulation study to assess the
performance of these methods with respect to bias, ac-
curacy, and coverage probabilities. We compared the
TSA to the MLA, BSJM and TDCM methods using a
derivation of the survival time function for modeling
time dependent covariate data.
Based on the simulation studies the TSA, which uses

the predicted longitudinal measures, performed best at
estimating the link parameter for moderate residual vari-
ance. The joint likelihood methods provided upwardly
biased estimates in the link parameter, similar to the
findings by Wulfsohn and Tsiatis [15]. The TDCM that
uses the observed longitudinal measures as time-
dependent covariate measures in the survival analysis re-
sulted in underestimation of the true parameters. These
results are similar to the findings by Sweeting and
Thompson [18]. They recommended the use of a shared

Table 5 Framingham Heart Study Data (N = 2262)

Characteristics Exam 2 Exam 3 Exam 4 Exam 5 Exam 6 Exam 7

Sample Size – Na 2262 2211 2173 2118 2056 1995

Longitudinal Data – Years 1979–1983 1983–1987 1987–1991 1991–1995 1995–1998 1998–2001

Age (Years) 43.32 (9.58) 47.69 (9.60) 51.15 (9.60) 54.80 (9.60) 58.87 (9.54) 61.78 (9.45)

Triglycerides (mg/dL) 100.49 (88.77) 118.80 (123.59) 124.15 (110.18) 154.47 (133.08) 153.08 (114.92) 158.70 (112.49)

Survival Time in Years 4.33 (0.60) 3.43 (0.46) 3.61 (0.46) 4.01 (0.60) 2.87 (0.86) 6.00 (1.62)

Cumulative Event Rate (%) 0.44% 0.88% 1.46% 2.08% 2.39% 3.71%

Sex (% Female) 51.19%
a Sample sizes reduce at each exam as subjects have events and are censored; Values are Mean (SD) for Continuous Variables
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random effects model. In most of our models the age ef-
fect was attenuated depending on the association of the
longitudinal measures on survival. This result was ex-
pected as age was associated with the longitudinal mea-
sures. The time independent covariates (baseline Age
and Sex) were unbiased when there was no association
between the longitudinal measures and survival (γ =
0.00). Comparison of the methods in Framingham Heart
Study revealed similar patterns.
We implemented a data generation scheme by Rizo-

poulos in order to confirm our results across the differ-
ent settings. The results showed similar findings with
the two-step approach performing best at estimating the
link parameter connecting the longitudinal measures to
the event time. For larger residual errors, we found that
the TDCM methods had attenuated estimates of the link

parameter and the MLA provided upwardly biased esti-
mates. The TSA also yielded biased estimates in the link
parameter when there are larger residual errors. These
results were similar to the findings by Dafni and Tsiatis
[31]. They used different values for the residual error
(σ2 = 0.32, 0.62, 1.24). In their simulations with larger
measurement error, the bias of the estimates based on
the observed longitudinal measures increased dramatic-
ally in the positive direction. They indicated that the
two-step model yielded parameter estimates that were
somewhat biased towards the null (for larger residual er-
rors). We explored several other scenarios not presented
in this paper where we varied the residual error in the
longitudinal measures. Our results show that with low
residual errors in the longitudinal measures, the TSA
provides results similar to time dependent covariate

Fig. 1 Survival Distribution by Event Occurrence

Table 6 Jointly Modeling Longitudinal and Survival Data (FHS Data)

AGE (α1) SEX (α2) LogTG (γ)

Methods Estimate SE P Estimate SE P Estimate SE P

TSA 0.0650 0.0120 <.0001 −1.0008 0.2437 <.0001 0.9404 0.2111 < 0.0001

MLA 0.0494 0.0119 <.0001 −0.9992 0.2444 <.0001 0.9764 0.2191 < 0.0001

BSJM 0.0503 0.0121 <.0001 −1.0021 0.2468 <.0001 1.0263 0.1813 < 0.0001

TDCM 0.0560 0.0119 <.0001 −1.0254 0.2435 <.0001 0.6181 0.1741 0.0004

SE Standard Error; Parameter Estimates for Age, Sex and Log Triglycerides Specified in Parenthesis
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methods that use the observed longitudinal measures.
We interpreted this to mean that a small residual error
results in low measurement error and the observed
values are comparable to the predicted values.
One limitation of our study is the linearity assumption in

the longitudinal measures. The trajectory can be modeled in
a linear form [4] or quadratic form [12]. Splines and other
time series forms can also be implemented to better capture
the trajectory of the longitudinal measures, but the trade-off
is the complexity of the model and interpretability. Further,
the creation of the simulated data depends on the linear
model for the longitudinal data. Exploration of non-linear
models for the longitudinal data is a topic of future research.
The simulation data generation scheme was also based on
the two-step approach; this may provide more precise esti-
mates when analyzing the simulated data using the two-step
model. Another limitation is the number of time points used
for the longitudinal measures. With more exam visit time-
points the LME model becomes computationally intensive.
In addition, the use of distributions other than the Exponen-
tial and Weibull is indispensable in investigating the charac-
teristics of the Cox proportional hazard model. There is the
need for the use of empirical distributions to handle flexibly
parameterized proportional hazard models [32]. Despite
these limitations this paper strengthens the current know-
ledge on methods for jointly modeling longitudinal and sur-
vival data.

Conclusion
Traditional methods, such as TDCM that use observed data,
tend to provide downwardly biased estimates towards the
null. The TSA and joint models provide better estimates, al-
though a comparison of these methods may depend on the
underlying residual variance. Hence, an avenue for future ex-
ploration is to evaluate the degree of attenuation in the link
parameter by the magnitude of the residual variance. Joint
modeling for longitudinal and survival data has also recently
received attention in statistical genetics research. In genome
wide association studies and gene expression studies, longitu-
dinal and survival measures are often collected over time.
The development of new methods to handle these high di-
mensional data is essential. Binary longitudinal measures,
multiple survival endpoints and missing data analyses are
also important areas for further investigation using the
methods for jointly modeling longitudinal and survival data.
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