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Abstract

Background: Early pregnancy weights are needed to quantify gestational weight gain accurately. Different
methods have been used in previous studies to impute early-pregnancy weights. However, no studies have
systematically compared imputed weight accuracy across different imputation techniques. This study aimed to
compare four methodological approaches to imputing early-pregnancy weight, using repeated measures of
pregnancy weights collected from two pregnancy cohorts in Tanzania.

Methods: The mean gestational ages at enrollment were 17.8 weeks for Study I and 10.0 weeks for Study II. Given
the gestational age distributions at enrollment, early-pregnancy weights were extrapolated for Study I and
interpolated for Study II. The four imputation approaches included: (i) simple imputation based on the nearest
measure, (ii) simple arithmetic imputation based on the nearest two measures, (iii) mixed-effects models, and (iv)
marginal models with generalized estimating equations. For the mixed-effects model and the marginal model with
generalized estimating equation methods, imputation accuracy was further compared across varying degrees of
model flexibility by fitting splines and polynomial terms. Additional analyses included dropping third-trimester
weights, adding covariate to the models, and log-transforming weight before imputation. Mean absolute error was
used to quantify imputation accuracy.

Results: Study I included 1472 women with 6272 weight measures; Study II included 2131 individuals with 11,775
weight measures. Among the four imputation approaches, mixed-effects models had the highest accuracy (smallest
mean absolute error: 1.99 kg and 1.60 kg for Studies I and II, respectively), while the other three approaches showed
similar degrees of accuracy. Depending on the underlying data structure, allowing appropriate degree of model
flexibility and dropping remote pregnancy weight measures may further improve the imputation performance.

Conclusions: Mixed-effects models had superior performance in imputing early-pregnancy weight compared to
other commonly used strategies.
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Background
The role of gestational weight gain (GWG) on
pregnancy-related outcomes and future life events for
both maternal and child health has been extensively ex-
amined [1–9]. In addition, GWG has also been evaluated
as an outcome itself with respect to dietary and lifestyle
factors [10–12]. GWG is commonly characterized as a
single summary measure, such as absolute weight gain
during pregnancy or rate of weight gain over a specific
time window. Recommendations for GWG have corres-
pondingly been developed using these metrics [13–16].
The use of total weight gain or rate of weight gain to

quantify GWG requires the availability of pre-pregnancy
weight or at least first-trimester weight (assuming
minimal weight gain during the first trimester) [13].
However, this is often challenging, especially in low- and
middle-income countries, where few pregnancy cohorts
begin maternal weight collection before pregnancy or
during the first trimester, as most pregnant women in
resource-limited settings do not initiate antenatal care
until the second or third trimesters [17]. Consequently,
pre-pregnancy or early-pregnancy weights are often
unavailable in such studies. Furthermore, even when
weights are available during early pregnancy, they are
often collected at different gestational weeks, making
comparisons of results across different studies difficult.
Various methods have been used in previous studies

to impute early-pregnancy weights based on weights
collected later during pregnancy [18–20]. To our know-
ledge, however, no studies have systematically compared
the imputation accuracy across different techniques. To
fill in this gap with important implication in research
implementations, we examined four methodological ap-
proaches to impute early-pregnancy weight, including (i)
simple imputation based on the nearest one weight
measure, (ii) simple arithmetic imputation based on the
nearest two weight measures, (iii) mixed-effects models,
and (iv) marginal models with generalized estimating
equations (GEEs) [21–23]. We used data from two preg-
nancy cohorts from Tanzania. Because the two studies
had different distributions of gestational age at enrollment,
they effectively represented two different scenarios where
first-trimester weights were either generally available
(interpolation) or generally unavailable (extrapolation).
We hypothesized that the mixed-effects and GEE models
would outperform the two simple imputation approaches.
We also hypothesized that weight interpolation would
have higher accuracy than weight extrapolation.

Methods
Study population
We used data from two randomized, double-blind,
placebo-controlled trials conducted in Dar es Salaam,
Tanzania. The details of these two studies have been

described elsewhere [24, 25]. Briefly, Studies I and II
were conducted between 2010 to 2012 and 2010 to
2013, respectively. For both studies, participants were
screened and enrolled at antenatal care clinics. Study I
enrolled 1500 pregnant women who were randomized to
receive a daily oral dose of either 60 mg of iron or pla-
cebo from the time of enrollment until delivery [24].
Study II enrolled 2500 pregnant women who were ran-
domized in a two-by-two factorial design to daily oral
vitamin A and zinc supplements [25].
At baseline, participants in both studies completed a

sociodemographic and reproductive health questionnaire
as well as a full clinical examination. They were subse-
quently followed when the participants were provided
with standard prenatal care, and trained research nurses
administered health questionnaires and performed an
obstetric examination. For our analysis, we excluded
participants with missing gestational age at enrollment
or multiple fetuses (n = 28 for Study I; n = 369 for Study
II), leaving us with a final sample of 1472 participants
for Study I and 2131 participants for Study II.

Gestational weight assessment
For both studies, weights (kg) at enrollment and
monthly follow-up visits were measured by trained study
nurses using calibrated scales. Due to the different
eligibility criteria, the distributions of gestational age at
enrollment differed between the two studies (mean
gestational age at enrollment: 17.8 weeks and 10.0 weeks
for Study I and Study II, respectively). As a result, the
majority of participants in Study I did not have available
weight measures collected during the first trimester or
early second trimester. In contrast, all of the participants
in Study II had at least one weight measure during the
first trimester. For each study, implausible weight mea-
sures (weight < 30 kg or > 120 kg) were excluded from
analysis (number of weight measures: 5 and 27 for Study
I and Study II, respectively), leaving us with a total of
6272 and 11,775 available weight measures for analysis
from Study I and Study II, respectively.

Statistical analysis
We evaluated four methodological approaches to imput-
ing early-pregnancy weight in Study I and Study II,
separately. Given the timings of available weight
measures collected during the follow-up period for each
study, we imputed gestational weight at the end of the
first trimester, defined as the window between 13 and
15 weeks of gestation. Due to the different distributions
of gestational age at enrollment between the two studies,
the imputation represented extrapolation (i.e., imputing
values farther away from the center of the data range)
for Study I and interpolation (i.e., imputing values closer
to the center of the data range) for Study II.
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To perform weight imputation and evaluate the imput-
ation performance, we divided each study into a testing
set and a training set. Training set was used for model
development, and testing set was used for model per-
formance evaluation. For the testing set of each study,
through simple random sampling, we randomly selected
a single sample of 200 participants who had at least one
weight measure between 13 and 15 weeks of gestation
and at least two weight measures during the entire
follow-up period. We chose a sample size of 200 for the
testing set based on the small number of participants
with available weight measures near the end of the first
trimester in Study I (n = 231). For women in the testing
set with multiple weight measures between 13 and 15
weeks, the measurement closest to 14 weeks and 0 days
(i.e., the end of the first trimester) was used as the target
time point for imputation. Therefore, the testing set for
each study included the weights of the 200 random par-
ticipants taken at the target time points. These weights
were later used as the observed early-pregnancy weights
when compared with the imputed weights. On the other
hand, the training dataset included all participants and
their corresponding weight measurements except the
target weight measurements set aside in the testing
dataset.
We evaluated the performances of four imputation

methods: (i) simple imputation by assigning the nearest
weight, (ii) simple arithmetic imputation based on the
nearest two weight measures, (iii) mixed-effects models,
and (iv) marginal models with generalized estimating
equation (GEE). The imputation method assigning the
nearest weight measure (method i) was performed by
directly taking the weight measure closest to the target
time point from the training set as the imputed weight
(gestational age of the nearest weight measure: mean
[SD] = 18.0 [2.9] and 14.1 [4.1] for Study I and II, re-
spectively). The arithmetic imputation based on the
nearest two weight measures (method ii) was performed
by identifying the two weight measures closest to the
target time point in the training set, calculating the rate
of weight gain between the two time points assuming
linearity, and then applying the rate to impute the
weight at the target time point.
The mixed-effects model method (method iii) was per-

formed by fitting the following mixed-effects regression
model for gestational weight in the training dataset:

Wij ¼ bi þ βi
T g tij

� �þ εij;

where Wij represented the j th measured weight for the i
th subject which was measured at gestational week tij,
g(tij) represented a linear or linear plus nonlinear terms
of gestational week tij, bi and βi were the subject-specific
random intercept and slopes following normal distributions

which did not necessarily have zero means, and εij was an
error term following a mean-zero normal distribution [18,
26]. The imputed gestational weight for subject i at a target
gestational week t was then b̂i þ bβi

T
gðtÞ: Therefore, the

between-person variation in gestational weight trajectories
was accounted for by including the subject-specific random
effects.
The GEE method (method iv) was performed by fitting

the following fixed-effects regression model in the train-
ing dataset:

Wij ¼ γ þ αTg tij
� �þ eij;

where γ and α were the fixed-effects intercept and
slopes, and eij was a mean-zero error term which was
not required to be normally distributed. The imputed
gestational weight for subject i at a target gestational
week t was then γ̂ þ α̂TgðtÞ þ êi , where êi was the aver-
age of the residuals, êij , for the weights at all the gesta-
tional weeks available in the training set. Therefore, for
the GEE method, the between-person variation in gesta-
tional weight trajectories was accounted for by including
the subject-specific residuals. We used unstructured
variance-covariance matrix for both the mixed-effects
model and the GEE methods. Importantly, for both the
mixed effects and the GEE methods, the observed
weights at the target gestational weeks for which the ges-
tational weights were imputed were not included in the
training set in which the regression models were fit.
We evaluated potential non-linear gestational week

trajectories by adding quadratic and cubic terms to the
model. We also modeled gestational age using restricted
cubic splines with three, four, and five knots placed at
equally spaced percentiles of the observed gestational
weeks in the training set [26, 27]. We additionally
explored alternative knot placements with three knots at
the 5th, 50th, and 95th percentiles, four knots at the 5th,
35th, 65th, and 95th percentiles, and five knots at the
5th, 27.5th, 50th, 72.5th, and 95th percentiles [18, 26].
For the GEE method, in addition to the mean residual
approach described above, we also implemented a near-
est residual approach; that was, the imputed gestational
weight for subject i at the target gestational week t was
γ̂ þ α̂TgðtÞ þ êi j0 ; where êi j0 was the residual correspond-

ing to subject i ’s measurement in the training set that
was closest to the target time t.
Using the modeling methods described above, we im-

puted a subject-specific weight at the target gestational
week for each subject in the testing set, who had avail-
able weight measurement between 13 and 15 weeks of
gestation. Model performance was evaluated based on
the mean absolute error (MAE, kg), which was calcu-
lated by taking the average of the absolute differences
between the imputed weight and the observed weight at
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the same time point during the pregnancy over the
subjects in the testing set. Mean square error (MSE),
spearman correlation coefficient (r), and proportion of
subjects in the testing set with difference in imputed
weight and observed weight within 2 kg were also evalu-
ated [16].
Sensitivity analyses included 1) examining the influ-

ences of distant weight measures by dropping the third-
trimester weights from analysis; 2) including gravidity,
age, and education status as predictors in the models;
and 3) natural log-transforming weight before fitting the
models. All analyses were conducted using SAS statis-
tical software (version 9.4; SAS Institute Inc., Cary, NC,
USA). Sample SAS programs are available upon request.

Results
Study I had 1472 subjects with 6272 observed weight
measures; Study II had 2131 subjects with 11,775 ob-
served weight measures. The population characteristics
of the studies were summarized in Table 1. The mean
baseline gestational age was 17.8 weeks (SD = 4.4 weeks)
for Study I and 10.0 weeks (SD = 2.4 weeks) for Study II.
The median for the total numbers of weight measure-
ments was 5 (range: 1–9) for Study I and 6 for Study II
(range: 1–10). The characteristics of the subjects in-
cluded in the testing sets were similar to those in the en-
tire datasets for both studies. To visualize the data, we
randomly selected 20 subjects from each study and plot-
ted the observed weight measures (Supplement Figs. 1
and 2). Subjects from both studies showed increased
gestational weight over the course of pregnancy.

Weight extrapolation in study I
In Study I, which had fewer weight measures collected
during the first trimester compared to Study II, we
extrapolated early-pregnancy weight based on weights
collected later in the pregnancy. Across the four
methods evaluated, the mixed-effects model had the
highest imputation accuracy (restricted cubic splines
model with three knots at quartiles: MAE = 1.99 kg (SD
= 1.70 kg, interquartile range: 0.70–2.65 kg)) (Table 2).
Results from the MSE, the correlation coefficient, and
the proportion of subjects with difference in imputed
weight and observed weight within 2 kg were consistent
with the MAE results (the mixed-effects model with the
lowest MAE: MSE = 6.86 kg, correlation coefficient =
0.96, proportion of subjects in the testing set with the
weight difference within 2 kg = 62%). Varying model
flexibility in the mixed-effects model by adding add-
itional polynomial terms or spline terms did not consid-
erably improve the accuracy. Among the other three
imputation methods in imputing early-pregnancy weight
(assigning the nearest measure, arithmetic calculation
using nearest two measures, and GEE method), assigning

to the nearest weight measure gave the smallest MAE
(nearest weight method: MAE = 2.46 kg; arithmetic cal-
culation using nearest two measures: MAE = 2.91 kg;
GEE method with cubic polynomials: MAE = 2.93 kg)
(Table 2).
In the sensitivity analyses, dropping third-trimester

pregnancy weights from the mixed-effects models
slightly improved the accuracy (Table 2). For the GEE
approach, the models with the mean weight residual
produced consistently lower MAEs, compared to the
models with the nearest weight residual (Table 2). Log-
transforming weight or including gravidity, age, or edu-
cation status as predictors did not improve the accuracy
(results not shown).

Weight interpolation in study II
In Study II, because all women had at least one weight
measure collected during the first trimester, we interpo-
lated early-pregnancy weight based on weights collected
throughout the pregnancy. Mixed-effects model showed
the highest imputation accuracy (restricted cubic splines
model with five knots placed at the 5th, 27.5th, 50th,
72.5th, 95th percentiles: MAE = 1.60 kg (SD = 1.72 kg,
interquartile range: 0.60–1.20 kg), MSE = 5.49 kg, correl-
ation coefficient = 0.96, proportion of subjects in the
testing set with the weight difference within 2 kg = 77%;
the sextiles methods had similar results). A slight improve-
ment in accuracy was seen with varying model flexibility in
the mixed-effects models. The other three imputation ap-
proaches showed similar degrees of accuracy, which were
all lower than those from the mixed-effects models (nearest
weight method: MAE = 2.14 kg; arithmetic calculation
using nearest two measures: MAE = 2.00 kg; GEE method
with five knots: MAE = 1.95 kg) (Table 2).
In the sensitivity analyses, we did not observe a

consistent pattern of improvement in the weight
interpolation analyses when dropping the third-trimester
weights (Table 2). GEE methods with the mean residual
and the nearest weight residual performed similarly.
Finally, log-transforming or including a third covariate
did not improve accuracy (results not shown).
For data visualization, we randomly selected eight indi-

viduals from the testing dataset of each study and plot-
ted their observed weights and imputed weights based
on the four methods (Figs. 1 and 2). For the mixed-
effects model with the lowest MAE in each study, we
further plotted the observed weight against the differ-
ence between the observed weight and the imputed
weight at the target pregnancy time for the individuals
included in the testing set (Supplement Figs. 3 and 4).

Discussion
We compared four approaches to imputing early-pregnancy
weight based on weights collected during pregnancy. This
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imputation procedure could be the first-stage analysis in an
analysis with GWG as exposure or outcome. While the final
goal may be to estimate a target parameter such as the

association of GWG with a pregnancy outcome, if the im-
puted values resemble the underlying complete data closer,
the estimates of the target parameter are more likely to be

Table 1 Population Characteristics of Study I (2010–2012) and Study II (2010–2013), Dar es Salaam, Tanzania

Characteristic Study I Entire
set (N=1472)

Study I Testing
set (N=200)

p-valuea Study II
Entire set
(N=2131)

Study II
Testing set
(N=200)

p-valuea

Age at baseline (years), mean (SD) 23.9 (4.1) 23.7 (4.0) 0.52 22.6 (3.9) 22.7 (3.8) 0.98

Weight at baseline (kg), mean (SD) 59.7 (11.7) 58.6 (11.7) 0.14 55.6 (11.0) 55.1 (10.1) 0.57

Height at baseline (cm), mean (SD) 156.1 (6.1) 157.1 (6.4) 0.07 154 .7 (6.1) 154.8 (6.1) 0.90

Gestational week at baseline (weeks), mean (SD) 17.8 (4.4) 12.7 (2.1) < 0.0001 10.0 (2.4) 9.8 (2.4) 0.22

Total number of antenatal visits, range (median) 1–9 (5) 2–9 (6) < 0.0001 1–10 (6) 3–10 (7) < 0.0001

Weight at the end of 1st trimester (kg), mean (SD)b 58.7 (11.6) 55.3 (9.9)

Last available weight measure at the end of 2nd
trimester (kg), mean (SD)

62.2 (11.7) 62.7 (11.5) 0.58 59.8 (10.7) 59.6 (9.6) 0.82

BMI based on last available weight at the end of
2nd trimester (kg/m2), mean (SD)

25.5 (4.6) 25.4 (4.7) 0.70 25.0 (4.2) 24.9 (3.8) 0.68

Gestational age at delivery (weeks), mean (SD) 39.5 (3.5) 39.0 (3.2) 0.07 38.8 (2.7) 39.1 (2.4) 0.084

Treatment status (control), n (%)c 738 (50.1) 102 (51.0) 0.79 533 (25.0) 41 (20.5) 0.19

Primigravida, n (%) 613 (41.6) 91 (45.5) 0.23 1024 (48.1) 104 (52.0) 0.25

Marital Status, n (%) 0.36 0.15

Married or co-habiting 1172 (79.6) 164 (82.0) 1908 (89.5) 185 (92.5)

Other/missing 300 (20.4)d 36 (18.0) 223 (10.5) 15 (7.5)

BMI at baseline (kg/m2), n (%) 0.04 0.74

Underweight (< 18.5) 68 (4.6) 16 (8.0) 244 (11.5) 19 (9.5)

Normal (18.5–25) 840 (57.1) 119 (59.5) 1297 (60.9) 128 (64.0)

Overweight (25–30) 396 (26.9) 41 (20.5) 420 (19.7) 37 (18.5)

Obese (≥30) 168 (11.4) 24 (12.0) 169 (7.9) 16 (8.0)

Education status, n (%) 0.34 0.38

0–4 years 32 (2.2) 5 (2.5) 177 (8.3) 12 (6.0)

5–7 years 781 (53.1) 104 (52) 1345 (63.2) 133 (66.5)

8–11 years 406 (27.6) 57 (28.5) 498 (23.4) 42 (21.0)

≥12 years 214 (14.5) 32 (16.0) 110 (5.2) 13 (6.5)

Unknown 39 (2.7) 2 (1.0) 1 (0.05) 0 (0.0)

Occupation status, n (%) 0.69 0.12

Unemployed 700 (47.6) 98 (49.0) 1174 (55.1) 110 (55.0)

Unskilled or informal 445 (30.2) 63 (31.5) 514 (24.1) 51 (25.5)

Skilled 280 (19.0) 34 (17.0) 113 (5.3) 4 (2.0)

Other/unknown 47 (3.2) 5 (2.5) 330 (15.5) 35 (17.5)

Non-live birth in previous pregnancy, n (%)e 126 (20.6) 27 (29.7) 0.02 219 (20.7) 15 (16.7) 0.32

Prior history of complications, n (%)f 109 (7.4) 18 (9.0) 0.35 115 (5.4) 7 (3.5) 0.21

Abbreviations: BMI body mass index
aP-value from chi-square test comparing categorical covariate and analysis of variance comparing continuous covariate between testing set and the rest of entire
set was presented
bAmong participants with available weight measures taken at end of trimester 1 during 12–14 weeks of gestation who were included in the testing sets
cTreatment was 60 mg iron supplement for Study I; Zinc and Vitamin A (as a 2-by-2 factorial design) for Study II (vitamin A only, zinc only, vitamin A and zinc,
placebo). N (%) of the control group was presented for each study
dOne person had missing marital status in Study I
eNon-live birth included fetal death, abortion, miscarriage, ectopic pregnancy among non-primigravida women
fPrior history of complication included any history of the following: CVD, high blood pressure, diabetes, weight loss in previous year, or ever having a low birth
weight baby if non-primigravida
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less biased and more efficient [28, 29]. Thus, our imputation
models were compared based on the imputation error in
this paper. We reported that the mixed-effects models had
the highest overall imputation accuracy compared to the
other three methods. We also found that mixed-effects
models were robust for both the scenarios of extrapolation
and interpolation based on the underlying distributions of
available weights. The imputation error from the mixed-
effects models could be as low as 1.6 to 2.0 kg, correspond-
ing to approximately 3 to 4% of the average weight in early
pregnancy. Comparing the results between the two studies,
Study II with more participants and weight measurements,
and earlier gestational age for the weight measurements,
had more accurate imputation results. Specifically, compar-
ing the MAEs between the interpolation on Study II
and the extrapolation on Study I, we observed an ap-
proximate 20% lower in MAE for the mixed-effects
model method, 30% lower for the GEE method, 30%
lower for the simple arithmetic calculation, and 15%
lower for the nearest weight measure assignment.

Overall, our results support the preferable use of mixed-
effect models over GEE or more traditional approaches.
When comparing the imputation errors between the two
simple imputation approaches (i.e. assigning nearest weight
and arithmetic imputation using nearest two weight mea-
sures) and the mixed-effects model approach, we saw a dif-
ference in MAEs up to 0.9 kg and 0.5 kg in weight
extrapolation on Study I and weight interpolation on Study
II, respectively. The relatively small differences in the im-
putation errors across the four methods may suggest that,
compared to the simple arithmetic approaches, the use of
mixed-effect models may not considerably impact the esti-
mates in the epidemiological studies on gestational weight
or GWG. However, modeling-based imputation, such as
the mixed-effects model method, allows one to anchor the
weight estimate at a specific time point of a pregnancy
without making additional assumptions on the underlying
gestational age distribution or the GWG trajectory for a
given study. This is particularly important when there is
heterogeneity in the gestational age at study baseline, the

Table 2 Results of extrapolating early-pregnancy weights in Study I and interpolating early-pregnancy weights in Study II

Imputation method Mean Absolute Error (kg)

Study I weight extrapolation
N=1472

Study II weight interpolation
N=2131

Mixed-effects models All weights included
(n=6272)

Dropping third trimester
weights (n=3375)

All weights included
(n=11,775)

Dropping third trimester
weights (n=8125)

3 knots (quartiles) 1.99 2.01 1.69 1.64

4 knots (quintiles) 2.08 2.05 1.66 1.59

5 knots (sextiles) 2.18 N/Aa 1.60 1.70

3 knots (5th, 50th, 95th) 2.00 2.00 1.67 1.63

4 knots (5th, 35th, 65th, 95th) 2.00 1.98 1.62 1.66

5 knots (5th, 27.5th, 50th, 72.5th, 95th) 2.25 1.98 1.60 1.81

Linear 2.02 2.01 1.67 1.65

Quadratic 2.02 1.95 1.66 1.62

Cubic 2.02 6.46 1.62 N/Aa

Marginal models with GEE Mean residual Nearest weight residual Mean residual Nearest weight residual

3 knots (quartiles) 2.94 3.94 2.03 1.98

4 knots (quintiles) 2.94 3.94 2.00 1.97

5 knots (sextiles) 2.94 3.94 1.96 1.96

3 knots (5th, 50th, 95th) 2.94 3.94 2.02 1.97

4 knots (5th, 35th, 65th, 95th) 2.94 3.93 1.97 1.96

5 knots (5th, 27.5th, 50th, 72.5th, 95th) 2.94 3.92 1.95 2.01

Linear 2.94 3.94 2.01 2.03

Quadratic 2.94 3.94 2.02 1.98

Cubic 2.93 3.92 1.97 1.96

Assigning the nearest weight measure 2.46 2.14

Arithmetic imputation using the nearest two weight
measures

2.91 2.00

Abbreviations: GEE generalized estimating equation
aModel failed to converge
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Fig. 1 Imputed weights vs. observed weights (kg) of eight randomly selected subjects from Study I testing set based on the four different
imputation methods (assigning the nearest weight measure, arithmetic imputation using the nearest two weight measures, mixed-effects model
with the lowest mean absolute error, generalized estimating equation (GEE) model with the lowest mean absolute error), Dar es Salaam,
Tanzania, 2010–2012

Fig. 2 Imputed weights vs. observed weights (kg) of eight randomly selected subjects from Study II testing set based on the four different
imputation methods (assigning the nearest weight measure, arithmetic imputation using the nearest two weight measures, mixed-effects model
with the lowest mean absolute error, generalized estimating equation (GEE) model with the lowest mean absolute error), Dar es Salaam,
Tanzania, 2010–2013
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length of intervals between pregnancy measurements, or
the trajectory of GWG across the study subjects. Since our
study only evaluated the magnitude of differences across
different imputation methods in imputing early-pregnancy
weight, future studies are needed to further compare and
quantify the differences in performance across different im-
putation methods at different time points of pregnancy.
In our study, we observed different patterns of imput-

ation errors across the mixed-effects models with varying
degree of model flexibility between weight extrapolation
on Study I and weight interpolation on Study II. When
extrapolating early-pregnancy weights with limited data
available, our findings suggest that overfitting should be a
concern when selecting the optimal mixed-effects model.
When early-pregnancy weight data was not generally
available (as in Study I), fewer knots or polynomial terms
in mixed-effects models might outperform more complex
models with additional model flexibility; dropping weights
collected in later pregnancy might further improve accur-
acy. However, when interpolating early-pregnancy weight
with earlier weights available in a study with a large sam-
ple size, allowing for model flexibility by adding additional
splines or polynomial terms might slightly improve the
model performance. Therefore, mixed-effects models with
appropriate degrees of model flexibility based on the
underlying study data structure should be considered
when choosing the approach to impute early-pregnancy
weight. In addition to MAE based on a testing set, the
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), which do not require a testing set,
can be used to compare different model choices in the
spline terms.
Previous studies have attempted to impute missing

pregnancy weight using different methods [7, 18–20, 26,
30, 31]. Most of the studies applied a simple arithmetic
approach without using all the available weight measure-
ments [7, 19, 20, 30, 31]. Our results suggested that
having more weight data closer to the gestational week
of interest then fitting models which allowed between-
person variation would produce better imputation accur-
acy. Using weight data from a hospital-based study in
the United States, Darling et al. evaluated performances
between mixed-effects models and simple arithmetic
methods for imputing week 28 and week 40 of gestation
weight and reported similar findings (MAEs of 1.21–
2.62 kg from their mixed-effects models) [26]. In this
study, we imputed pregnancy weight at a different time
of gestation, and the mixed-effects model still outper-
formed arithmetic imputation approaches, suggesting its
potential application in imputing pregnancy weight at
different time points. Similar to Darling et al., we found
that adding covariates or variable transformation did not
improve accuracy. Overall, the current literature sug-
gests that the mixed-effects model can be a useful and

robust approach to imputing pregnancy weight at differ-
ent time points during pregnancy using repeated weight
measures.
To our knowledge, this is the first study evaluating the

GEE method in imputing pregnancy weight. Compared
to the mixed-effects model method with random inter-
cepts and slopes, the GEE method did not require any
normality assumption and accounted for individual dif-
ferences in GWG by adding a subject-specific residual to
the group-level mean. This subject-specific residual was
analogous to the random intercept in the mixed-effects
model method. However, the GEE method did not take
into account the between-subject variation in the slope
of the time term in the regression model, while this was
taken into account through random slopes in the mixed-
effects model. In both studies, the GEE method per-
formed poorly compared to the mixed-effects models,
suggesting that including a subject-specific slope of the
time term was necessary to capture the heterogeneity of
GWG patterns among participants and that the robust-
ness to normality in the GEE method did not compen-
sate for the disadvantage of ignoring this subject-specific
slope of the time term. Furthermore, the GEE method
using the mean residual performed similarly to the near-
est weight residual method for weight interpolation in
Study II but outperformed the nearest weight residual
method for weight extrapolation in Study I, indicating
that different residual approaches should be considered
when using the GEE method on datasets with different
pregnancy weight distributions. Since the GEE method
has rarely been used in previous studies, future studies
should further evaluate its performance under different
residual methods.
The imputation methods are valid under the missing

at random (MAR) assumption which allows the prob-
ability of missingness depends on observed data [32].
Potential predictors of missingness probability should be
considered in the imputation models. In both of our
Studies I and II, the available weight measurements and
gestational age were taken into account in the imput-
ation model. When additionally including gravidity, age,
and education status in the imputation models, the
imputation accuracy was not improved. In an earlier
study by Darling et al., similarly, adding covariates (i.e.,
age, height, gravidity, and gestational diabetes status) in
the imputation model did not improve the level of
accuracy [26]. This could be due to the fact that most
information about the missing gestational weights was
contained in the available weight measurements for the
same individual due to the high within-person correl-
ation over time for gestational weight, and after taking
into account these available weight measurements, other
variables may not contain much additional information
about the missing weights. Future studies may continuously
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evaluate whether any other covariates could improve the
imputation models. In addition, multiple imputation has
been suggested as an alternative method to handle incom-
plete data under the case of MAR [33]. An analysis evaluat-
ing the association of GWG with pregnancy outcomes can
use multiple imputation techniques so that the extra
variation in the estimates of missing values can be taken
into account in the interval estimates of the parameters of
interest.
Our study had several strengths. First, we undertook

imputation analyses on two separate data cohorts with
repeated weight measurements, allowing us to evaluate
the imputation performance under different availabilities
of early-pregnancy weights. Second, we compared multiple
traditional and novel imputation techniques, including the
GEE method, with varying degrees of model flexibility.
Given the importance of GWG on optimal pregnancy
outcomes and the long-term health of mother and the
offspring [3, 4, 6–9], our findings will benefit studies
examining GWG with respect to pregnancy-related or
future disease outcomes with limited weight measures,
when the knowledge of early-pregnancy weight is crit-
ical to characterize GWG.
Our study had some limitations. First, there was no pre-

pregnancy weight or body mass index available in either
study, and only 15.7% of participants in Study I had first-
trimester weights available. Given the availability of the
data, we chose 14 weeks of gestation as the target point
for weight imputation to avoid over-extrapolation. Conse-
quently, we were unable to evaluate the imputation
methods in imputing pre-pregnancy weight or pregnancy
weight earlier than the target time point of 14 weeks of
gestation. Nevertheless, the two studies that we used had
different distributions of pregnancy weights, which repre-
sented imputing early-pregnancy weight under different
scenarios. The consistent results between our two studies
and the similar conclusions from the study by Darling
et al. [26] suggested the robustness of the mixed-effects
model approach in imputing pregnancy weight at different
time points of pregnancy. Second, due to the limited num-
ber of women with early-pregnancy weights from Study I
(n = 231), the size of the testing set was small. As a result,
our results might have been influenced by a few extreme
weight values. Furthermore, we did not have sufficient
power to evaluate the imputation performance by creating
multiple random testing sets to validate our findings.
Last but not least, it is unclear whether our findings
can be generalized to women outside of Tanzania or
sub-Saharan Africa. However, the results on imputing
pregnancy weights at week 14 and week 28 of gestation,
based on a study of the predominantly Caucasian popu-
lation in the United States had similar findings [26],
supporting our conclusions on the robustness of the
mixed-effects model approach.

Conclusions
Our study suggests that mixed-effects models are useful
in research settings to impute early-pregnancy weights
when such measures were not available. Future studies
are warranted to further validate the mixed-effects
model approach in other studies and in imputing preg-
nancy weights at different time points of pregnancy. The
utility of GEE and multiple imputation approaches
should also be further investigated in future work.
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