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Abstract

Background: Over 2 billion people suffer from vision impairment or blindness globally, and access to validated
visual measurement tools in imperative in accurately describing and managing the burden of eye disease. The
present study applies contemporary psychometric validation techniques to the widely used 33-item Indian Visual
Function Questionnaire (IND-VFQ-33).

Methods: We first estimated the polychoric correlation between each pair of items. Next, an unrotated and oblique
Promax rotated factor analysis, item response theory (IRT, using a graded response model (GRM)), and differential
item functioning (DIF) testing were applied to the IND-VFQ-33. We subsequently propose a validated IND-VFQ-33
questionnaire after psychometric testing, data reduction, and adjustment.

Results: Exploratory unrotated factor analysis identified two factors; one with a particularly high eigenvalue (18.1)
and a second with a lower eigenvalue still above our threshold (1.1). A subsequent oblique Promax factor rotation
was undertaken for a 2-factor solution, revealing two moderately correlated factors (+ 0.68) with clinically discrete
item loadings onto either Factor 1 (21 items; collectively labelled “daily activities”) or Factor 2 (5 items; collectively
labelled “bright lights”). IRT confirmed high item discrimination for all remaining items with good separation
between difficulty thresholds. We found significant DIF on depression for six items in Factor 1 (all uniform DIF,
except item 21 (non-uniform DIF) with no substantive difference in beta thresholds for any item and no substantive
difference in expected individual or sum score, by depression at baseline. For Factor 2, only one item demonstrated
significant uniform DIF on gender, similarly without major differences in beta thresholds or expected total score
between gender at baseline. Consequently, no further item recalibration or reduction was undertaken after IRT and
DIF analysis.
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Conclusion: Applying IRT and DIF validation techniques to the IND-VFQ-33 identified 2 discrete factors with 26
uniquely-loading items, clinically representative of difficulty performing daily activities and experiencing difficulty
due to bright lights/glare respectively. The proposed modified scale may be useful in evaluating symptomatic
disease progression or response to treatment in an Indian population.

Keywords: Ophthalmology, Psychometric validation, Factor analysis, Item response theory, Differential item
functioning

Background
Globally over 2 billion people suffer from vision impair-
ment or blindness, half of which is either preventable or
treatable [1, 2]. Cataract and uncorrected refractive error
are the two most prominent causes of vision impairment
worldwide, disproportionately impacting low-middle in-
come countries and older age groups [2, 3] where the fu-
ture burden of global blindness is predicted to most
severely affect [4]. With globally aging populations [5],
access to visual-measurement tools validated for use in
older populations is imperative in accurately describing
and managing the burden of eye disease [6].
The Indian Visual Function Questionnaire (IND-VFQ-

33) is a 33-question survey originally psychometrically
validated in 2004 by Gupta and colleagues on a popula-
tion of 780 patients in India [6]. The questionnaire was
reduced from an original sample of 45 questions (hence-
forth referred to as “items”), removing items if they dem-
onstrated either > 5% missing values, high inter-item
correlation > 0.80, or for failing convergence/discrimin-
ation testing. Gupta and colleagues concluded that 33 of
the original 45 items reliably assessed three clinical do-
mains (or dimensions): (i) visual symptoms, (ii) psycho-
social impact, and (iii) general function [6]. In 2012,
Gothwal and colleagues fit Rasch models to each of
these 3 domains. Based on lack of fit to the model, they
recommended deleting the visual symptoms and psycho-
social impact scales. They argued that the general func-
tion scale exhibited multidimensionality, and that it
should be divided into two scales measuring visual func-
tion and vision-related mobility impairments [7].
Psychometric validation is a statistical method used to

identify the presence and nature of underlying “latent
traits” being assessed by a questionnaire. The present
study applies Factor Analysis, and more contemporary
Item Response Theory (IRT) and Differential Item Func-
tioning (DIF) psychometric validation techniques to
evaluate the IND-VFQ-33, using data from 867
questionnaire-respondents either with visual impairment
(primarily due to cataract or uncorrected refractive
error), or with normal vision.
IRT represents a collection of modern psychometric

validation techniques recommended for reporting pa-
tient outcomes, suitable for the analysis of

questionnaires that measure a latent construct (i.e.,
vision-related psychosocial symptoms, function and
quality of life), and for estimating individual participant
scores on the latent construct, based on responses to the
items thereafter [8]. The Graded Response Model
(GRM) is a type of IRT model particularly well-suited
for validation of such questionnaires [9], and is applied
in the present study [7]. The GRM model is particularly
suited to validating ordinal scale items (frequently used
in health assessments) and being less constrained than
other IRT models, provides an accurate reflection of the
data [10, 11]. The IRT validation process should also in-
volve an assessment of DIF [12]. DIF assesses if the item
responses are different between levels of some baseline
variable (usually sociodemographic, e.g. gender, ethni-
city, age) though the estimated person latent score is
constant, thus indicating the item is responsive to the
extraneous baseline variable in addition to or instead of
the person score, suggesting impure validity for assessing
the latent variable of interest. If enough items exhibit
DIF for any one sociodemographic group vs its counter-
part, then the same raw score for that group might indi-
cate a different level of visual impairment. This could
compromise the ability to make screening or clinical de-
cisions [13, 14]. In that case, clinicians might decide that
some groups of respondents will need their question-
naire scores re-calibrated for accurate comparisons [8].
Prior psychometric validation techniques applied to

visual questionnaires (for example, Rasch models) im-
pose comparatively more restrictions than methods ap-
plied herein (for example, assuming equal discrimination
of impairment levels for all items, rather than calculating
discrimination levels). Such constraints have conse-
quently caused other studies to remove entire sub-
scales, and to substantively change the content of the
general function scale based on violations of assumed
unidimensionality [10, 11, 15]. We believe that the Rasch
model’s restrictions may be unrealistic for such surveys,
and that by fitting the more flexible GRM, we provide a
more accurate reflection of the data.
The present study applies contemporary psychometric

validation methods described above, which have not yet
been applied to the IRT-VFQ-33. Questionnaire re-
sponses from a large residential aged-care population in
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India suffering eye diseases representative of the com-
monest causes of visual impairment in low income
countries were used. We subsequently propose an ad-
justed, validated IND-VFQ-33 questionnaire after psy-
chometric testing, data reduction and adjustment,
appropriate for use particularly in an elderly residential
care population.

Methods
Study design, population, and the IND-VFQ-33
questionnaire
The IND-VFQ-33 is a 33-question Rasch validated in-
strument developed and validated in India [6, 16], and
assesses the visual dimensions of visual functioning and
activity limitation, psychosocial impact, and visual symp-
toms in the three distinct sub-scales mentioned [7, 16,
17]. Questions 1–22 of the IND-VFQ-33 are scaled on a
5-point ordinal difficulty scale, and the remaining 11
questions scaled on a 4-point ordinal scale. Options 1–4
on both scales are identical in options reporting degree
of difficulty; (1) “not at all”, (2) “a little”, (3) “quite a bit”,
and (4) “a lot”; where items 1–22 also include a fifth dif-
ficulty option ((5) “cannot do this because of my sight”).
Questions 1–22 also had a sixth option ((6) “cannot do
this for other reasons”) which was treated as effectively a
missing response. A higher score on the scale represents
a higher degree of difficulty.
Participants from the HOMES study, originally con-

ducted to assess the burden of vision loss in older adult
populations in residential care in India, were considered
for the present study cohort [18]. Participants were ex-
cluded if they demonstrated cognitive deficit (defined
here as a Mini-Mental State Examination (MMSE) score
of < 20), or for medical conditions precluding participa-
tion. Participants were categorised as having either nor-
mal vision (presenting visual acuity 6/18 or better in the
better eye), or having significant visual impairment (clas-
sified as presenting visual acuity worse than 6/18 in the
better eye) [2]. IND-VFQ-33 questionnaires were admin-
istered to participants by trained investigators [18]. The
HOMES study design and procedures were approved by
the Institutional Review Board of the Hyderabad Eye Re-
search Foundation, India. The study was conducted in
adherence to the Declaration of Helsinki. All participants
provided written informed consent expressing their will-
ingness to participate in the study.

Unrotated and rotated (Promax oblique) factor analysis
Factor Analysis is a technique used to identify the pres-
ence and nature of latent traits underlying participant
responses (where latent traits are unobservable charac-
teristics (for example, experiencing visual difficulty in
dim light)). Because IRT models assume only one latent
trait influences responses to each question (potentially

producing biased estimates of trait levels and item pa-
rameters if violated), an exploratory Factor Analysis is
necessary to first analyze correlations between questions
(henceforth referred to as “items”). This allows the num-
ber and nature of latent traits (henceforth referred to as
“factors”) causing observed item responses to be deter-
mined [19–22], and the underlying basis for all their ob-
served inter-correlations. Specifically, exploratory factor
analysis analyzes the correlations of responses to items
to identify unique factors, on the assumption that
unique patterns of responses suggest which factors are
likely being assessed, and which items relate to those
factors (and to what degree) [23].
We initially estimated the pairwise polychoric correl-

ation between each pair of items, which are essentially
estimates of the correlations of hypothetical continuous
variables corresponding respectively to each observed
categorical or ordinal variable (presumably derived by
binning the latent variable at cutoffs) and responsible for
their surface relations. Factor Analysis is known to
sometimes give distorted results when applied directly to
correlations of numerically coded ordinal or categorical
variables. Next, we conducted a Factor Analysis on the
correlation matrix; this determines if the questionnaire
is unidimensional (where a single factor is being mea-
sured by a collection of items), or multidimensional
(where more than one factor underlies the various
items). The criteria used to identify the number of fac-
tors are (i) eigenvalues (essentially factor variances) that
are > = 1 (the variance of a standardized variable), (ii) a
“scree” plot of eigenvalues, and/or (iii) a parallel analysis
[21, 23]. The point at which factor variances show an
“elbow” bend and asymptote to a floor in the “scree” plot
suggests the number of factors. A parallel analysis com-
pares each obtained factor’s eigenvalue to the 95th per-
centile of the distribution of their respective counterparts
produced by random permutations of the data as a
method of determining the statistical significance of each
factor. The short-listed number of factors at this stage is
then pre-specified in a subsequent factor analysis that is
“rotated” to a statistically more parsimonious and hope-
fully more substantively meaningful solution in which the
constellation of item loadings (associations) on each factor
indicate the nature of the underlying latent construct and
suggest a suitable corresponding label to describe it. We
employed a type of “oblique” rotation method (Promax)
that allowed factors to be moderately correlated if empir-
ically indicated as such [24].
All items with > 20% missing values were removed

from the final list of items and their factors. Items were
also removed if they either (i) loaded poorly (< 0.5) on
every factor identified in rotated factor analysis, and/or
(ii) cross-loaded (i.e. loaded well on more than one fac-
tor identified) [25, 26].
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Item response theory (graded response models)
Item Response Theory (IRT) was undertaken next and
involves fitting a latent variable model to item responses
intended to measure (in this case) difficulty performing
visual-related tasks [27]. Essentially, the aim of IRT
modelling is to assess relative item difficulty, assess how
well items discriminate between participants of differing
ability (discrimination), and (by re-scaling responses in
order of difficulty) calculate an ability-score (usually
called theta) for each participant.
IRT models validate how well individual items dis-

criminate between participants of differing estimated
“ability”, and how clearly those differences in ability are
reflected by individual item responses [28], using a dif-
ference model [29] which defines the cumulative prob-
ability among response options as:

P�
k¼P xip≥k

� �� θpÞ

Where the probability of responding k ≥ 1 denoted by
P�
1 is exactly 1.0, because any observed response to an

item must be in category 1 or higher [28]. The probabil-
ity P�

2 of responding k ≥ 2 is then estimated from re-
sponse data. Taking the difference between P�

2 and P�
1

leaves category k = 1 in isolation. By creating a series of
dichotomous probabilities in the same step-wise manner,
we can model the response function of each category up
to k = 5 [28].
The specific class of IRT difference model used for

the present study, the GRM, was originally developed
by Samejima in 1969 [9]. The GRM applies the above
principles of traditional dichotomous unidimensional
IRT models to ordinal data (like the IND-VFQ-33) [9,
28], by calculating a series of dichotomous probabil-
ities for each option on the polytomous 4- or 5-point
ordinal scale, and the subsequent level of ability (or
visual difficulty in this case) that a respondent would
need to be most likely to answer at a certain response
level on the ordinal scale (reported as their beta-
threshold, Table 2) [9, 28].
For example, in the IND-VFQ-33 difficulty scale (ran-

ging from (1) “not at all”, to (5) “cannot do this because
of my sight”), responses are sequentially dichotomized
such that initially, k = 1 defines one group, and k = 2,3,
4 or 5 defines the second group – transforming the
polytomous ordinal response scale into an “option = 1
vs. option = (2–5, or)” dichotomy. Sequential dichoto-
mies are made for each individual response on the 4- or
5-point ordinal scale [28]. The GRM then models
P(xip ≥ k | θp), which represents the probability of select-
ing option k or higher on item i, given the location of
person p along the θ scale:

P�
ik¼P xip≥k

� �¼ exp ai θp − bk
� �� �

1þ exp ai θp − bk
� �� �

Each item’s discrimination parameter ai models how
well the item discriminates between respondents of low
and medium impairment, or between respondents of
medium and high impairment. Generally, higher dis-
crimination is better.
An item with higher overall bk parameters indicates

more severe impairment (or difficulty). Note that if an
item has k response options, only k − 1 severity parame-
ters are estimated, which we label b2 through b4 or b5.
The model assumes that when a person’s level of impair-
ment equals the b2 parameter, they are equally likely to
endorse response category 2 or higher (i.e. categories 2,
3, 4, or 5) [28] as to endorse categories lower than 2 (i.e.
category 1).
IRT additionally calculates beta-thresholds representa-

tive of individual item difficulty at differing levels of par-
ticipant ability. For example, consider two theoretical
items which have beta-2 thresholds of 0.5 and 0.8 re-
spectively. For item 1, at θ = 0.5, respondents have a 50%
chance of endorsing category 2 or higher versus categor-
ies lower than 2. For item 2, this threshold is reached
when θ = 0.8. Thus, as regards to this threshold, item 2
is more difficult, and endorsing category 2 or higher in-
dicates a higher level of visual impairment than the same
endorsement for item 1 does.
Items demonstrating either poor discrimination or

poor separation of the thresholds are usually removed
from further analyses. The GRM then uses the adjusted
item discriminatory ability and difficulty calculations of
retained items to impute new ‘visual disability’ and cu-
mulative factor scores for individuals.

Differential item functioning
As part of IRT analyses, a final check on psychometric
purity is conducted by checking for Differential Item
Functioning (DIF). DIF occurs when the item discrimin-
ation and difficulty parameters differ among sociodemo-
graphic subgroups even when they are equated on the
relevant ability measures. This creates potential meas-
urement biases in favor of one sociodemographic sub-
group over another at particular levels of dis/ability [8,
14, 30, 31]. In its simplest form, two groups at a time
are investigated for DIF: a reference group (baseline,
against which comparisons are made), and a focal group
(the population in which DIF is suspected) [30]. We in-
vestigated DIF on six dichotomized subgroups; age (< 75
years old vs > 75 years old), gender (male vs female),
education (any schooling vs no schooling), housing (pays
independently vs financially assistance/subsidized), dia-
betes (yes vs no), and self-reported depression (catego-
rized using the PHQ-9 questionnaire [32] as either
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none-mild vs moderate-severe symptoms of depression,
using the recommended cut-point of 10 points used for
screening for features of depression [32]).
Both uniform and non-uniform DIF analyses were

undertaken. Uniform DIF (the constrained model) as-
sumes that only the difficulty parameters differ in the
focal group, and so the same direction of bias is present
at any level of ability, consistently in favor of the refer-
ence group or the focal group. Non-uniform DIF (un-
constrained model) assumes that both the difficulty and
severity parameters differ in the focal group [31]so that
the extent of bias in comparing the reference to the focal
group is conditional on the level of ability and may even
reverse at one level compared to another.
While various statistical approaches for detecting DIF

have been developed and researched [33], the ordered
logistic DIF procedure is particularly flexible and accur-
ately computes parameter covariance matrices when the
IRT model is equated across groups [34, 35]. This ap-
proach tests the null hypothesis that the ability differen-
tiation is equal across the entire theta-continuum (the
absence of uniform DIF) and the null hypothesis that
the item discrimination is equal between each demo-
graphic subgroup (the absence of non-uniform DIF). An
IRT likelihood-ratio DIF approach was used for the
present study, as previously cited [8, 29]. Examining DIF
involves multiple tests, and we used the Benjamini-
Hochberg (or “false discovery rate”, FDR) procedure to
correct the p-value thresholds for multiple testing. This
correction is the most powerful correction available,
meaning that it should not fail to reject a test when sig-
nificant DIF actually exists. In contrast, other adjust-
ments like the Bonferroni correction are too
conservative, meaning that they may fail to flag signifi-
cant DIF [36].
When DIF is substantial and cannot be ignored, pos-

sible solutions include removing or re-writing the item
[8] or separate estimation of the item parameters for
subgroups; subsequently using those parameters to esti-
mate the person parameter [8, 37]. In the present ana-
lysis, assessment of the magnitude in difference in
cumulative factor scores between the two subgroups on
which there was significant DIF, and the substantive im-
portance/nontriviality of this difference, was used to de-
termine whether to remove the item from the
questionnaire.

Other statistical analyses
Goodness of fit
Factor analysis fits are usually followed with various
“goodness of fit” indices. We employed two commonly
employed such indices: (1) the root mean square error
of approximation (RMSEA) which is basically an index
of discrepancy between the covariance matrix predicted

by the hypothesized model and empirical covariance
matrix, and is considered acceptable if < 0.05; (2) the
Tucker-Lewis index (TLI) which basically locates the co-
variance matrix predicted by the hypothesized model on
a continuum of that of a null independence model and
the empirical matrix, where values > 0.95 are considered
good.

Missing data
We removed items with over 25% missing responses, as
we believed this could indicate that the respondents ei-
ther did not understand the item or the item was not
relevant to them. Pairwise polychoric correlations were
then calculated on the remaining items in preparation
for exploratory factor analysis.
Stata version 16 (StataCorp LP, College Station, TX)

and the R package lavaan was used for analyses [38].
95% confidence intervals are presented where
appropriate.

Results
Patient demographics
One thousand one hundred eighty-two participants from
the HOMES study were originally considered for the
present study cohort [18]. Of these, 98 were excluded
due to cognitive deficit, and a further 217 medical condi-
tions precluding participation; leaving 867 participants
eligible for the present study cohort. Of these, 683 were
classified as having normal vision, and 184 were classi-
fied as visually impaired. Age and sex were similar be-
tween those with visual impairment vs those with
normal vision (75 vs 74 years old, and 61.4% vs 62.1% fe-
male, respectively) (p > 0.05 for both). Those with visual
impairment were significantly less likely to have achieved
education beyond high school (14.7 vs 24.2%), less likely
to independently pay for their housing (35.3 vs. 42.2%),
less likely diabetic (21.7 vs. 32.7%) and more likely to
have severe depression (21.2 vs. 7.6%) (p < 0.05 for all)
(Table 1).

Unrotated and rotated (Promax oblique) factor analysis
Exploratory unrotated factor analysis identified one fac-
tor with a particularly high eigenvalue (Factor 1, eigen-
value 18.1), and a second factor with a lower eigenvalue
still above our eigenvalue threshold (Factor 2, eigenvalue
1.1). The remaining 31 factors all had eigenvalues < 0.6.
We then conducted an oblique Promax factor rotation
(Fig. 1) for a 2-factor solution. Most items loaded well
on one or the other of the two factors identified (Fig. 2,
Table 2). The first factor appeared to describe impair-
ments in daily activities and function (thereafter labelled
Factor 1: “Daily Activities”). The second factor described
impaired ability to tolerate bright light or glare (there-
after labelled Factor 2: “Bright Lights”). The estimated

Mitchell et al. BMC Medical Research Methodology           (2021) 21:26 Page 5 of 13



correlation between the two factors was + 0.68; thus, re-
sults indicate two distinct but moderately positively re-
lated factors. Items 16 (“do you have trouble seeing
inside after being outside in sunlight”) and 32 (“does
light seem like stars”) loaded poorly onto both factors
and were subsequently removed before IRT (Fig. 2). An
exploratory parallel analysis suggested a total of 4
discrete factors may lay above the threshold of random
permutations of the data (Fig. 3). However, after rota-
tion, the suggested 4 factor solution had uninterpretable
third and fourth factors with no strong clinical

associations between items uniquely loading on each fac-
tor, and items had substantially weaker loadings on their
primary factors. Subsequently, these additional third and
fourth factors were not considered for further analyses.

Item response theory (graded response models)
Table 3 presents the results of the Item Response The-
ory Graded Response Model analysis. All 21 remaining
items loading onto Factor 1 had a high discrimination >
2.0. All 5 remaining items loading onto Factor 2 had a

Table 1 Baseline patient characteristics (n = 867)

Normal vision (n = 683) Visual Impairment (n = 184)

Age (mean, (SD)) 74 (8.09) 75 (8.83)

Female (n, (%)) 424 (62.1) 113 (61.4)

Education (n, (%))

- < High School 70 (10.3) 46 (25)

- High School 448 (65.6) 111 (60.3)

- > High School 165 (24.2) 27 (14.7)

Housing (n, (%))

- Fully subsidized 92 (13.5) 35 (19)

- Partially subsidized 303 (44.4) 84 (45.7)

- Independently paid 288 (42.2) 65 (35.3)

Diabetes (n, (%)) 223 (32.7) 40 (21.7)

Depression (n, (%)) a

- None-Mild 546 (79.9) 126 (68.5)

- Moderate 85 (12.5) 19 (10.3)

- Severe 52 (7.6) 39 (21.2)

Key: (a) PHQ-9 depression score; categorized as either none-mild (sum score 0–9), moderate (sum score 10–19), or severe (sum score 20–27) depression

Fig. 1 Screeplot before rotated promax oblique factor analysis. Key: y-axis reference line at the minimum eigenvalue threshold of 1.0, displayed
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high discrimination of > 2.0 except item 31 (discrimin-
ation = 1.9).
The item difficulty parameters (B2 to B5 thresholds)

reflect the range of underlying participant ability for
each Factor at which it becomes more likely to select the
difficulty option higher on the 4- or 5-point ordinal scale
(Table 3). All items within each factor showed good sep-
aration between difficulty thresholds, allowing for good
differentiation of participant ability (or visual difficulty)
for any given item.

Differential item functioning
Table 4 presents the items demonstrating statistically
significant DIF for Factor 1 and Factor 2. For Factor 1,
depression was the only baseline variable causing DIF on
six items in total (items 23–27 and item 33); all demon-
strating significant uniform DIF except item 24, which
was non-uniform (note the different discrimination (or
sigmoid slope) by depression, for item 24). There was no
substantive difference in beta thresholds for any of the
six items by depression (Table 4) and no substantive dif-
ference in expected item score for items loading Factor
1, by depression at baseline (see Fig. 4, outlined below).
For Factor 2, only item 31 demonstrated significant uni-
form DIF on gender. Similarly, the beta thresholds did
not exhibit major differences between gender (Table 4),
and the expected total score was very similar between
genders at baseline.
Figure 4 demonstrates the expected total score by de-

pression for Factor 1, allowing all 6 items identified

above to have DIF. As demonstrated, the expected Fac-
tor 1 score was almost identical at all levels of visual im-
pairment regardless of depressive symptoms at baseline;
those with depression scoring fractionally higher sum
difficulty scores. Figure 5 similarly demonstrates a simi-
lar level of total visual difficulty information available at
all levels of theta ability between depression at baseline.

Goodness of fit
The RMSEA for our first dimension of overall visual im-
pairment (Factor 1) was 0.038, indicating close fit and
that it is essentially unidimensional despite including
some psychosocial items. The second dimension of glare
(Factor 2) had a lower RMSEA, 0.102, higher than the
usually accepted cutoff of 0.05. However, our proposed
model as a whole had RMSEA of 0.037. In addition, the
TLI, another goodness of fit index, was well over the ac-
cepted criterion of 0.95 for each individual dimension
and the model as a whole (overall impairment 0.989,
glare 0.980, full model 0.987). Fitting Gupta’s original
model to our data, we obtained acceptable RMSEAs for
the dimensions of visual impairment and psychosocial
symptoms (0.037 and 0.043 respectively), but an even
higher RMSEA for their last dimension of visual symp-
toms (0.148). This subscale overlaps with our proposed
glare dimension, but contains symptoms not related to
glare. In any case, the TLI values for each dimension
and the overall scale were high with the original struc-
ture as well (visual impairment 0.992, psychosocial
0.995, visual symptoms 0.926, overall model 0.982).

Fig. 2 Item loading scatterplot after rotational factor analysis. Key: x-axis and y-axis reference line at the minimum item loading threshold of 0.5
on either factor, displayed. Factor 1 and factor 2 correlation = + 0.68
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Recalibration, final item reduction
As a result of near-identical sum Factor 1 and Factor 2
scores at all levels of difficulty between either depression
or gender at baseline (respectively) after DIF analysis, no
further item recalibration or reduction was undertaken.

Discussion
The purpose of the present study was to psychometric-
ally evaluate the IND-VFQ-33 ophthalmology question-
naire with contemporary psychometric validation
techniques not previously used, clarifying latent traits

being assessed and which items substantively loaded on
each trait (through Factor Analysis), ensuring adequate
discrimination and differentiation (through IRT), and ex-
cluding potential bias between demographic subgroups
(through DIF analysis).
Of the 33 items in the IND-VFQ-33, we removed a

further 7 after psychometric validation; 5 items initially
removed because of high frequency of missing values
(potentially due to wording ambiguity or poor relevance
to a residential aged-care population), and thereafter re-
moving item 32 (“does light seem like stars”) and item

Table 2 Identified factors from rotated promax factor analysis with individual item loading

Factor 1: Daily Activities Factor 2: Bright Lights

1: Climbing stairs (Item removed (missing > 25%)) a

2. Making out bumps in the road 0.80 b 0.09 c

3. Seeing animals or vehicles walking 0.87 0.04

4: Going to functions like weddings (Item removed (missing > 25%))

5: Finding way in new places (Item removed (missing > 25%))

6. Going out at night 0.83 0.01

7. Finding way around indoors 0.80 0.14

8: Climbing on or off buses (Item removed (missing > 25%))

9: Recognizing people from a distance 0.72 0.07

10. Recognizing a person near you 0.84 0.05

11. Locking or unlocking the door 0.76 0.17

12. Doing your usual work at home 0.79 0.15

13: Doing work to your usual standard (Item removed (missing > 25%))

14. Searching for things at home 0.82 0.08

15. Seeing outside in bright sunlight 0.22 0.62

16. Seeing inside after being out in sunlight (item removed (poor loading < 0.5)) d

17. Seeing differences in color 0.71 0.14

18. Differentiating between money 0.80 0.04

19. Going to the toilet 0.72 0.19

20. Seeing objects fallen in your food 0.77 0.15

21. Seeing container level when pouring 0.79 0.10

22: Frightened going out at night 0.70 0.13

23. Enjoy social functions less 0.81 0.04

24. Ashamed that you can’t see 0.86 −0.08

25: Become a burden on others 0.72 0.09

26: Frightened to lose remaining vision 0.72 0.07

27: Do you have reduced vision 0.71 0.09

28. Dazzled in bright light −0.08 0.87

29. Blurry vision in the sunlight 0.10 0.81

30. Bright light hurt your eyes 0.10 0.79

31. Vehicle light makes you close eyes 0.12 0.66

32: Does light seem like stars (Item removed (poor item loading < 0.5))

33: Do you have blurred vision 0.62 0.21

Key: (a) item removed due to high missingness; (b) unique item factor loading > 0.5 threshold (bolded); (c) unsubstantial item factor loading < 0.5 (un-bolded,
italicized); (d) item loaded poorly onto either factor < 0.5
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16 (“do you have trouble seeing inside after being out-
side in sunlight”) for poor loading onto either of the two
factors. We subsequently present 26 remaining items, all
of which demonstrate good discrimination and differen-
tiation after IRT (GRM) validation, and load well onto
one of the two clinically distinct factors; Factor 1 (“Daily
Activities”) and Factor 2 (“Bright Lights”).
Importantly, 6 items in Factor 1 exhibited DIF in re-

spondents with significant current depressive symptoms.
However, as illustrated in Fig. 4 the overall impact on
the cumulative factor score is minimal: respondents with
depression had almost identical expected scores across
all potential levels of visual impairment. While there is a
method to formally test if the difference in the expected
scores is different between two groups [30], we elected
not to do this because the difference is much less than
one raw score point at any level. Additionally, in respon-
dents with depression, the estimated severity thresholds
did not differ substantially from the reference group.
Similarly, there is detectable DIF for gender on one
question in Factor 2, but it does not make a substantial
difference to the expected cumulative Factor 2 score.
Thus, we presently argue that the instrument as a whole
can be treated as not having DIF.
Notably in the present study, our initial unrotated fac-

tor solution indicated the presence of one strong latent
factor (suggested by a particularly prominent first eigen-
value) and a weaker but still evident additional factor
(an eigenvalue marginally above our 1.0 value threshold
for acceptance and statistically significant by the parallel
analysis test). After rotation to a more meaningful 2 fac-
tor solution, there was indeed a moderately-high positive
correlation between Factor 1 and Factor 2, suggesting

that there may be one higher-order latent trait assessed
by the IND-VFQ-33 instrument as a whole, but the deci-
sion was made here to include two separate factors
which were still indicated as distinct. This was in part
because of the unique, strong loadings onto Factor 2 for
a set of items all of which loaded poorly onto Factor 1
(particularly items 28–30), and which were clinically
unique in their description of symptoms relating to
bright light, which none of the questions preferentially
loading on Factor 1 described.
The two distinct factors found in the present study

might be compared to two of the original domains out-
lined by Gupta and colleagues; “general function” and
“visual symptoms”. Here, we demonstrate that two items
originally representative of “visual symptoms” by Gupta
and colleagues (item 27 (“do you have reduced vision”)
and item 33 “do you have blurred vision”)), instead load
preferentially with Factor 1, “Daily Activities”. Notably, a
third distinct factor representative of the remaining do-
main originally outlined (“psychosocial impact”) was not
found here. The five items originally pertaining to that
third “psychosocial impact” factor (items 22–26) pres-
ently all loaded well onto Factor 1, without demonstrat-
ing their own unique sub-scale. While definitive
conclusions cannot be drawn to explain this, the rela-
tively high prevalence of depression may have con-
founded participants’ responses to psychosocial impact
items.
In contrast to our study, the Rasch-validated analysis

of the questionnaire by Gothwal and colleagues dis-
carded 13 of the 33 items, and two of the original three
questionnaire domains, for not adequately demonstrat-
ing Rasch properties; subdividing the only remaining

Fig. 3 Exploratory parallel analysis. Key: Dashed line represents the 95th percentile of the distribution of respective counterparts produced by
random permutations of the data

Mitchell et al. BMC Medical Research Methodology           (2021) 21:26 Page 9 of 13



domain (“general function”) into two sub-scales and sub-
stantially reducing the total questionnaire content con-
siderably. As aforementioned, the Rasch model is a very
restrictive model. Items not meeting the restrictions are
discarded, which led to Gothwal et al. eliminating many
more items than we did here. Additionally, Rasch valid-
ation is not necessarily designed to detect multidimen-
sionality of questionnaires. Indeed, Harvey argued that it
may be better to start with less restrictive psychometric
models [39], such as the GRM.

Strengths and limitations
Strengths of the study include the relatively large total
sample size, and the relatively high response rate for
most items. The clinical assessments and interviews
were done within the residential aged-care homes to

ensure comfort and convenience for all participants, and
contemporary psychometric validation techniques that
have not previously been applied to the IND-VFQ-33
allowed for accurate psychometric testing. With globally
aging populations, a validated instrument to assess the
burden of visual impairment in the elderly is imperative.
Through contemporary psychometric validation
methods, we here describe how this visual survey tool
might be better used for elderly populations; important
in eye care planning, resource allocation and directing
future research. Possible limitations of the current study
include potential inaccuracies associated with self-
reported data (i.e. reported level of visual difficulty and
reported depression symptoms), a limitation faced by all
studies using self-reported data. The fact that the cohort
were exclusively residential aged-care participants from

Table 3 Final shortlist of items with discrimination and severity parameters

Discrimination (CI) B2 threshold B3 threshold B4 threshold B5 threshold

Factor 1: Daily Activities

2. Making out bumps in the road 2.9 (2.5–3.4) 0.5 a 1.4 1.7 2.7

3. Seeing animals or vehicles walking 3.6 (3.0–4.2) 1.1 1.6 1.9 2.8

6. Going out at night 2.5 (2.1–2.8) 0.8 1.5 1.8 2.2

7. Finding way around indoors 4.0 (3.2–4.7) 1.4 2.0 2.3 3.4

9. Recognizing people from a distance 2.1 (1.8–2.4) 0.0 0.9 1.1 1.5

10. Recognizing a person near you 3.4 (2.8–4.1) 1.4 2.1 2.4 2.9

11. Locking or unlocking the door 3.4 (2.8–4.0) 1.2 1.8 2.2 2.6

12. Doing your usual work at home 3.6 (3.0–4.2) 1.1 1.7 2.0 2.9

14. Searching for things at home 3.3 (2.8–3.8) 0.9 1.6 1.9 2.7

17. Seeing differences in color 2.5 (2.1–2.9) 1.0 1.8 2.1 2.7

18. Differentiating between money 2.7 (2.3–3.1) 0.8 1.6 1.9 2.4

19. Going to the toilet 3.2 (2.6–3.8) 1.3 1.9 2.2 3.6

20. Seeing objects fallen in your food 3.2 (2.7–3.7) 1.0 1.6 1.9 2.3

21. Seeing container level when pouring 3.1 (2.6–3.5) 1.0 1.7 1.9 2.5

22. Frightened going out at night 2.2 (1.9–2.6) 0.8 1.4 1.6 –

23. Enjoy social functions less 2.7 (2.3–3.2) 1.1 1.5 1.7 –

24. Ashamed that you can’t see 2.4 (2.0–2.9) 1.4 1.9 2.3 –

25. Become a burden on others 2.2 (1.8–2.6) 1.3 1.8 2.0 –

26. Frightened to lose remaining vision 2.0 (1.7–2.3) 0.8 1.4 1.7 –

27. Do you have reduced vision 2.2 (2.0–2.5) −0.1 1.3 1.8 –

33. Do you have blurred vision 2.2 (1.9–2.5) 0.2 1.3 1.9 –

Factor 2: Bright Lights

16. Seeing inside after being out in sunlight 2.2 (1.8–2.5) 0.3 1.4 1.8 2.8

28. Dazzled in bright light 2.5 (2.1–2.9) 0.4 1.4 1.8 –

29. Blurry vision in the sunlight 3.5 (2.9–4.2) 0.2 1.2 1.7 –

30. Bright light hurt your eyes 2.9 (2.4–3.3) 0.5 1.2 1.8 –

31. Vehicle light makes you close your eyes 1.9 (1.6–2.2) −0.4 0.9 1.3 –

Key: (a) beta-threshold representing visual difficulty theta level at which it becomes more likely for participant to choose option 2 vs option 1 on the 5-point
Likert scale
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Table 4 Items with significant uniform and non-uniform differential item functioning

Subgroup Discrimination B2
threshold

B3
threshold

B4
threshold

B5
threshold

P-value
(BH) a

P-value
(DIF) b

Factor 1: Daily Activities

Uniform Differential Item Functioning

23: Enjoy social functions less No
depression

2.4 1.5 c 2.0 2.3 – 0.008 < 0.001

Depression 2.4 1.3 1.7 2.0 –

25: Become a burden on
others

No
depression

1.8 2.0 2.8 2.9 – 0.004 < 0.001

Depression 1.8 1.5 2.0 2.2 –

26: Frightened to lose
remaining vision

No
depression

1.6 1.2 2.1 2.4 – < 0.001 < 0.001

Depression 1.6 0.8 1.5 1.9 –

27: Do you have reduced
vision

No
depression

2.0 0.1 1.7 2.2 – 0.006 < 0.001

Depression 2.0 0.0 1.5 2.2 –

33: Do you have blurred vision No
depression

2.0 0.4 1.7 2.4 – 0.006 < 0.001

Depression 2.0 0.4 1.5 2.2 –

Non-Uniform Differential Item Functioning

24: Ashamed that you can’t
see

No
depression

2.6 1.9 2.4 2.7 – 0.01 < 0.001

Depression 1.6 1.5 2.3 2.9 –

Factor 2: Bright Lights

Uniform Differential Item Functioning

31: Vehicle light makes you
close eyes

Male 1.8 −0.7 0.8 1.3 – 0.003 =0.001

Female 1.8 −0.5 1.0 1.4 –

Key: (a) Benjamini-Hochberg adjusted p-value significance threshold; (b) unadjusted raw p-value (results of the likelihood ratio test (uniform or non-uniform DIF vs
base model)); (c) beta-threshold representing the individuals’ visual difficulty theta level at which it becomes more likely for them to choose that option on the 4-
or 5-point Likert scale, i.e. at visual difficulty theta level 1.5, it becomes more likely for an individual without depression to choose option 2 rather than option 1
on the 4-point scale

Fig. 4 Test characteristic curve (TCC) for factor 1 (DIF on depression for items 23–27, and 33)
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the HOMES study (with an average age of 74–75 years
old) limits the generalizability of current findings, mak-
ing it potentially less applicable to a general community
population. Indeed, the high missingness for 5 of the ori-
ginal items (which were subsequently removed from fur-
ther analyses) may have been because those tasks are
not routinely performed by aged care residents (i.e.
climbing stairs or climbing onto/off buses). The rela-
tively high proportion of participants with depression
may have partially contributed toward our not finding a
clinically distinct domain for psychosocial impact. While
the RMSEA for our proposed Factor 2 (bright lights) di-
mension was > 0.10 (similarly to the RMSEA for the
equivalent dimension in the original model, and poten-
tially indicative of poor fit), we note that the items we
retained for Factor 2 form a distinct clinical entity and
are more homogeneous than the items proposed in the
original factor. In addition, the high TLI of > 0.98 for
this dimension and for our model as a whole in our CFA
analysis are supportive of its inclusion – also supported
elsewhere [40]. Finally, the generalizability of our find-
ings is also limited by the exclusion of participants with
impaired cognition or medical comorbidities precluding
participation.

Conclusion
Here, we applied Factor Analysis, Item Response Theory,
and Differential Item Functioning psychometric-
validation techniques to the IND-VFQ-33 questionnaire.
We identified 2 discrete (but somewhat correlated) fac-
tors with 26 uniquely-loading items. These 2 factors are
clinically representative of difficulty performing daily ac-
tivities and experiencing difficulty due to bright light or
glare, respectively. Our modified 26-item scale may be

useful in evaluating symptomatic disease progression or
response to treatment, particularly in an older aged
population in India.
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