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Abstract

Background: In infectious disease transmission dynamics, the high heterogeneity in individual infectiousness
indicates that few index cases generate large numbers of secondary cases, which is commonly known as
superspreading events. The heterogeneity in transmission can be measured by describing the distribution of the
number of secondary cases as a negative binomial (NB) distribution with dispersion parameter, k. However, such
inference framework usually neglects the under-ascertainment of sporadic cases, which are those without known
epidemiological link and considered as independent clusters of size one, and this may potentially bias the
estimates.

Methods: In this study, we adopt a zero-truncated likelihood-based framework to estimate k. We evaluate the
estimation performance by using stochastic simulations, and compare it with the baseline non-truncated version.
We exemplify the analytical framework with three contact tracing datasets of COVID-19.

Results: We demonstrate that the estimation bias exists when the under-ascertainment of index cases with 0
secondary case occurs, and the zero-truncated inference overcomes this problem and yields a less biased estimator
of k. We find that the k of COVID-19 is inferred at 0.32 (95%CI: 0.15, 0.64), which appears slightly smaller than many
previous estimates. We provide the simulation codes applying the inference framework in this study.

Conclusions: The zero-truncated framework is recommended for less biased transmission heterogeneity estimates.
These findings highlight the importance of individual-specific case management strategies to mitigate COVID-19
pandemic by lowering the transmission risks of potential super-spreaders with priority.

Keywords: COVID-19, Transmission, Superspreading, Heterogeneity in infectiousness, Contact tracing, Statistical
inference
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Introduction
One of the main determinants of infectious disease dy-
namics is the infectiousness of its etiological agent [1–3],
which is commonly quantified by the reproduction num-
ber, denoted by R. The R is defined as the average num-
ber of secondary cases generated by a typical infectious
individual [4]. However, population estimates of R may
undermine the considerable individual heterogeneity in
infectiousness, as highlighted by numerous superspread-
ing events [5–8], in which certain individuals infected
unusually large numbers of secondary cases. Such het-
erogeneity in transmission can be estimated by describ-
ing the distribution of the number of secondary cases
generated by each index case as a negative binomial
(NB) distribution with dispersion parameter, k [9, 10].
Thus, k < 1 suggests that transmission is overdispersed,
and hence outbreaks is likely involving superspreading
events.
The heterogeneity in transmission is determined by

many factors including the characteristics of host and
pathogen, the setting of transmission [11], contact pat-
terns, viability of the pathogen, and environmental com-
ponents. The risk management and disease control
strategies may vary and be adjusted in response to differ-
ent levels of the individual heterogeneity in transmission
[6, 10, 12]. As demonstrated theoretically [10], with R
fixed, a smaller k results in a lower effectiveness of non-
pharmaceutical interventions in controlling the epi-
demics, which is also discussed in [12]. Hence, methods
for inferring the degree of heterogeneity in transmission,
i.e., k, from transmission chain data have important ap-
plications in infectious disease surveillance and control.
The estimation of k requires real-world observations

of offspring case number generated by each individual
index case, which are commonly presented in the histo-
gram as illustrated in Fig. 1. The sampling of offspring
case number observations is conducted by extracting the
information from the contact tracing surveillance data.
However, this sampling process among contact tracing
individuals might encounter sampling bias when dealing
with sporadic cases. The sporadic cases, also known as
single index cases, were those without known epidemio-
logical link, and considered as independent clusters of
size one [7]. Another similar type of cases is the terminal
cases, and as for distinguishment, the terminal cases
were those with known epidemiological links but have 0
secondary case generated. As illustrated in Fig. 1, spor-
adic and terminal cases are all index cases who generate
0 secondary case.
Since terminal case has its linked index case, they can

be collected from the contact tracing data directly. By
contrast, due to lack of epidemiological link in many sit-
uations, sporadic cases are more likely under-ascertained
in contact tracing program or disease screening. Some

sporadic infections with sub-clinical conditions may re-
main undetected after recovery. Although sporadic cases
are presumed to have limited contribution to the disease
transmission, under-ascertainment of these sporadic
cases affects the estimation of individual heterogeneity
in transmission. Specially, sporadic case is a special type
of terminal case, whose index case (if any) remains un-
known. In this aspect, sporadic cases need to be consid-
ered when inferring k. However, although sporadic cases
are considered and sometimes included in the dataset
used for inferring k [11, 13], the likelihood of under-
ascertainment of such cases is usually neglected, which
may potentially bias the estimates, and thus adjustment
on the analytical framework may resolve this issue.
The coronavirus disease 2019 (COVID-19), caused by

the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was firstly reported in late 2019 [14–16],
then spread to over 200 countries globally in a short
period of time [17, 18], and poses serious threat to pub-
lic health. On one hand, similar to the previous severe
acute respiratory syndrome (SARS) epidemics in 2003
[19–21], the superspreading potentials and traceable
events of COVID-19 transmission were frequently re-
ported in terms of the scale of k estimates [8, 11, 13, 22].
Thus, given the challenges in mitigating the ongoing
COVID-19 pandemic, the inference of superspreading
risk is of public health importance in informing the dis-
ease control strategic-making process. On the other
hand, evidences that COVID-19 cases were under-
ascertained were found in previous studies [16, 23]. The
COVID-19 infection ascertainment surveillance process
based on contact tracing is considered more likely to de-
tect the cases with close contacts who are also infected,

Fig. 1 The demonstrative histogram shows the distribution of
secondary cases number of each index case. For illustration, the
histogram is generated by setting reproduction number, R = 2, and
dispersion parameter, k = 0.5, for the negative binomial (NB)
distribution. The index cases with 0 secondary case generated is
divided into two sub-groups including sporadic (in green) and
terminal cases (in blue)
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which was discussed previously [24–26]. We argue a
(relatively higher) possibility of under-ascertainment of
sporadic COVID-19 cases. To infer the superspreading
potentials, an approach is needed to overcome the im-
pacts due to sporadic case.
In this study, we develop a zero-truncated likelihood-

based framework to estimate the individual heterogen-
eity in infectiousness, k. We demonstrate that the esti-
mation bias exists when the under-ascertainment of
index cases with 0 secondary case occurs, and the zero-
truncated inference overcomes this problem and yields a
less biased estimator of k. We exemplify the inference
framework with three contact tracing datasets of
COVID-19 for demonstration and comparison.

Methods
Heterogeneity of individual infectiousness
We consider the heterogeneity of the individual-level in-
fectiousness as a quantifiable scale that affects the distri-
bution of the number of offspring infectees generated by
each infector. Following previous study [10], we intro-
duce the mean number of offspring infectee generated
by an infector, denoted by r, as a random variable from
a Gamma distribution, denoted by h(∙), with a constant
mean, R (> 0), and dispersion parameter, k (> 0). Here, R
is the populational reproduction number that is defined
as the expected (or average) number of secondary cases
caused by one typical infected individual. Thus, we have
r follows the distribution h(R, k). The dispersion param-
eter k governs the dispersion of the Gamma distribution.
Poisson process with rate r, denoted by f(r), is adopted

to address the stochastic effects in transmission, and to
govern the number of offspring infectees generated by
each infector, which is a random variable denoted by Z
(≥ 0) [27]. Thus, we have Z follows f(r) = f(R, k). Straight-
forwardly, f(R, k) is a negative binomial (NB) distribution
with mean R and variance R∙(1 + R/k). By the definition
of NB distribution, the probability that one infector gen-
erates a cluster with size j (≥ 1), which is denoted by
Pr(Z = j) = Lj, is given in Eq. (1).

Pr Z ¼ jð Þ ¼ Lj

¼ Γ kjþ j − 1ð Þ
Γ kjð Þ∙Γ jþ 1ð Þ ∙

R
k

� � j − 1

1þ R
k

� �kjþ j − 1 : ð1Þ

Here, Γ(∙) denotes the Gamma function.
Specially, the NB distribution f(∙) reduces to a Geomet-

ric distribution when k = 1, and it further reduces to a
Poisson distribution when k approaches infinity. Import-
antly, a smaller value of k indicates larger heterogeneity
in individual infectiousness.

Likelihood-based inference framework and simulation
scheme
We consider the two versions of the likelihood frame-
work for the fitting and estimation. They include non-
and zero-truncated versions formulated in the following
Sections. We implemented the two likelihood-based in-
ference frameworks to fit the real-world number of sec-
ondary cases observations. By fitting to the real-world
observations, the dispersion parameter, k, can be esti-
mated by using the maximum likelihood estimation ap-
proach. The 95% confidence intervals (95%CI) are
calculated by using the profile likelihood estimation
framework, which is determined by a Chi-square-
distributed cutoff threshold [28, 29].
The estimating performance is evaluated by stochastic

simulation with different levels of under-reporting ratio,
w, of index cases who have 0 secondary case associated,
which is introduced in the following Sections.

Non-truncated version
We consider observed number of offsprings from N in-
fectors. Considering the infector who generates a cluster
with size j (≥ 1), we denote the number of these infec-
tors by nj. Straightforwardly, we have ∑j > 1nj =N. Then,
following the previous studies [7, 11], the likelihood of
observing nj clusters of size j is Lj

n j . Thus, we construct
the overall likelihood function, denoted by ℓ0, as in Eq.
(2).

ℓ0 ¼
Y

j≥1
Lj

n j : ð2Þ

Zero-truncated version
Same collection of notations as in the Section above are
also used in this section. For all the infector who gener-
ates a cluster with size j > 1, we adjusted for this trunca-
tion based on the likelihood framework in Eq. (2).
Namely, a zero-truncated NB-distributed likelihood
framework is adopted here, and similar models with zero
truncation were used previously [30]. As such, the likeli-

hood of observing nj clusters of size j (> 1) is ð L j

1 − L1
Þn j

.

Hence, we construct the adjusted overall likelihood func-
tion, denoted by ℓA, as in Eq. (3).

ℓA ¼
Y

j>1

Lj

1 − L1

� �n j

: ð3Þ

Simulation framework
To evaluate and compare the estimates from the non-
and zero-truncated likelihood frameworks, we imple-
mented the two inference frameworks to the random
samples generated by the stochastic simulation with a
known fixed k. For each run of the simulation, we
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generate the random samples with sample size at 300
from a NB distribution with k fixed. We estimate k from
each 300 random samples generated. We fix k at 3 levels
including 0.1, 0.3, or 0.9 for demonstration. For each k,
we repeat estimating k for 100 runs of the simulation
with different values of R randomly generated by a Uni-
form distribution ranging from 0.5 to 2.
For each set of 300 samples, we remove a fraction, w,

of samples with value 0. This setting mimics the under-
reporting of index cases who have 0 secondary case as-
sociated in the real-world situation, and thus the param-
eter w is the under-reporting ratio. For demonstration,
we fix w at 3 levels including 40, 60%, or 80%. As such,
we have (3 × 3 =) 9 simulation scenarios in total, which
is shown in the panel labels in Fig. 2.
The codes for simulations applying the inference

framework are provided in the supplementary file of this
study.

Datasets for exemplification
For the real-world observations, we adopt three COVID-19
contact tracing datasets collected in mainland China (la-
belled as dataset #1), Hong Kong (labelled as dataset #2),
and Tianjin, China (labelled as dataset #3) for
exemplification.
One of the major differences of interest for the datasets is

that dataset #1 does not include sporadic cases, but datasets
#2 and #3 include sporadic cases. All datasets were collected
with systematic and strict ‘inclusion-and-exclusion’ screening
criteria based on plausible epidemiological evidence, and
rigorous consistency-checking by several researchers inde-
pendently under the supervision of a senior author.

Dataset #1: COVID-19 contact tracing data in mainland
China
For dataset #1, we used the COVID-19 surveillance data
previously published in [11], and the dataset can be

Fig. 2 The estimation of dispersion parameter, k, under scenarios with different under-reporting ratios, w, of index cases who have 0 secondary
case associated and different true values of k. In each panel, the curves show the log-likelihood profiles, and the triangular dots indicate the
maximum likelihood estimates (MLE) of k. The zero-truncated version is shown in red, the non-truncated version is shown in blue, and the true
values of k is indicated by the vertical green line
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accessed freely via the public respiratory https://github.
com/linwangidd/covid19_transmissionPairs_China/blob/
master/transmission_pairs_covid_v2.csv. The same data-
set was also adopted in [12], in which the estimation of
k was conditioned on excluding sporadic due to data
unavailability.
The dataset contains 1407 transmission pairs that are

identified and reconstructed according to the previous
studies, governmental news release, and official situation
reports in mainland China. We identified 807 infectors,
and we extract the information about the number of off-
spring infectees generated by each infector. There are
1241 terminal cases identified from the transmission
pairs. This dataset was originally collected for character-
izing the epidemiological features in transmission pairs,
e.g., serial interval, and thus no sporadic case is involved
in this dataset.

Dataset #2: COVID-19 contact tracing data in Hong Kong
For dataset #2, we used the COVID-19 surveillance data
previously published in [11], and the dataset can be
accessed freely via the public respiratory https://github.
com/dcadam/cov id -19- s se /b lob /mas te r /da ta /
transmission_pairs.csv.
The dataset contains 169 transmission pairs that are

identified and reconstructed according to governmental
news release, and official situation reports in Hong Kong
[31, 32]. We identified 91 infectors, and we extract the
information about the number of offspring infectees
generated by each infector. There are 153 terminal cases
identified from the transmission pairs, and 46 sporadic

local cases detected in Hong Kong, which are included
in the analysis.

Dataset #3: COVID-19 contact tracing data in Tianjin, China
For dataset #3, we used the COVID-19 surveillance data
previously published in [13], and the dataset can be
freely obtained from the their supplementary materials,
accessed via https://www.mdpi.com/1660-4601/17/10/3
705/s1. This dataset contains 36 cluster of cases includ-
ing 47 COVID-19 cases, which are identified and recon-
structed according to governmental news release, and
official situation reports in Tianjin, China [33], and each
cluster is caused by one primary case. We identified 7
infectors with 11 terminal cases associated, and 29 spor-
adic local cases, which are included in the analysis.

Results and discussion
To compare the inference performance between the
non- and zero-truncated frameworks, we conducted sto-
chastic simulation to evaluate the k estimates from two
approaches, see Fig. 2. We find that for the non-
truncated framework, the estimation bias exists when
the under-ascertainment of index cases with 0 secondary
case occurs, and the bias increases as the level of under-
ascertainment (w) increases. By contrast, for the zero-
truncated framework, the k estimates are less biased for
different levels of under-ascertainment (w).
We exemplify the inference framework with three

datasets of COVID-19, and summarise the estimates in
Table 1. For all datasets, our estimates of k using non-
truncated framework are largely consistent with existing
estimates in [11–13]. However, under non-truncated

Table 1 The summary of the dispersion parameter, k, estimates of COVID-19 transmission in the existing literature and this study.
The highlighted estimates are considered as main results in this study

type of dataset data source truncation dispersion parameter, k estimated in sporadic case included

offspring # of each case Dataset #1: Xu et al. [8] (n = 2214) No 0.70 (0.59, 0.98) He et al. [12] No

0.72 (0.63, 0.89) this study

Yes 0.37 (0.29, 0.48)

Dataset #2:
Adam et al. [11] (n = 290)

No 0.43 (0.29, 0.67) Adam et al. [11] Yes

0.42 (0.26, 0.78) this study

Yes 0.32 (0.15, 0.64) No

Dataset #3:
Zhang et al. [13] (n = 47)

No 0.25 (0.13, 0.88) Zhang et al. [13] Yes

0.22 (0.03, 1.15) this study

Yes 0.18 (0.01, 1.79) No

not included in this study No 0.58 (0.35, 1.18) Bi et al. [34] Yes

range: 0.32–0.82 Lau et al. [22]

0.11 (0.05, 0.25) Tariq et al. [35]

outbreak size not applicable 0.54 (0.01, 6.95) Riou et al. [3] irrelevant

0.10 (0.05, 0.20) Endo et al. [36]

genome sequences 0.32 (0.13, 0.38) Wang et al. [37]
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framework, k is estimated at 0.72 (95%CI: 0.63, 0.89),
0.42 (95%CI: 0.26, 0.78) and 0.22 (95%CI: 0.03, 1.15) for
datasets #1, #2 and #3, respectively, which appear differ-
ent from each other. We find that the k estimates using
zero-truncated framework are smaller than those using
non-truncated framework for all datasets. We note that
due to the small sample size of dataset #3, the 95%CI of
associated k estimates are relatively wide, which is con-
sidered less confident in reflecting the true scale of k,
and thus our interpretations focus on datasets #1 and #2
in this section. Under zero-truncated framework, our es-
timates of k are 0.37 (95%CI: 0.29, 0.48) and 0.32
(95%CI: 0.15, 0.64) for datasets #1 and #2, respectively.
They appear smaller than those using non-truncated
framework, but are consistent with each other.
Notably, given dataset #2 contains some sporadic local

cases, the k estimates under non- and zero-truncated
frameworks, i.e., k = 0.42 and 0.32 respectively, are rela-
tively closer than those inferred from dataset #1, i.e., k =
0.72 and 0.37 respectively, which does not include spor-
adic case. Additionally, we exclude all 46 sporadic cases
in dataset #2 and repeat the estimation using non-
truncated framework for comparison. We find that the k
estimates at 0.55 (95%CI: 0.32, 1.02), which is larger than
that from the zero-truncated framework. If we consider
the involvement of sporadic cases as the ascertainment
of these cases, which is equivalent with respect to the
surveillance datasets, not including or under-
ascertaining sporadic cases can be reflected by the
under-reporting ratio (w) in the simulation scheme.
Similar patterns can be found by using dataset #3, which
also contains sporadic cases. Therefore, the observed dif-
ference in difference between the k estimates from non-
and zero-truncated frameworks across datasets #1 and
#2 (as well as #3, equivalently) is in line with the results
shown in Fig. 2.
By screening the literature about the heterogeneity of

COVID-19 infectiousness, we summarise the k estimates
in Table 1 for comparison. Different settings and modes
of transmission or contact may alter the scale of k [10],
which could partly explain the variation of k estimates in
different studies. For the studies considered sporadic
cases, their k estimates are relatively smaller than those
estimates without sporadic cases. The k estimates with
zero-truncation are smaller than those without zero-
truncation, and the similar patterns can also be observed
in the simulation outcomes in Fig. 2. Another study
using SARS-CoV-2 sequencing data [37], which appears
less affected by the sporadic-case issue, estimated k at
0.32 (95%CI: 0.13, 0.38), and this estimate is highly con-
sistent with our main results (highlighted in Table 1).
We find that zero-truncated framework is likely to

yield a less biased k estimate, and the k of COVID-19 is
inferred (slightly) smaller than many previous estimates

[3, 11, 12]. With R fixed, a smaller k, which means a
higher superspreading potential, leads to a lower effect-
iveness of population-wide non-pharmaceutical inter-
ventions in controlling the epidemics, but the individual-
specific control measures are likely outperforming and
more cost-effective [10, 12]. Therefore, we attach the im-
portance of the individual-specific case management
strategies for mitigate COVID-19 pandemic by lowering
the transmission risks of potential super-spreaders with
priority.
Regarding to the strengths, limitations, and cautious-

ness that need to be noted, we have the following re-
marks. First, as a data-driven study, the quality of
estimates relies on both sophistication of the analytical
framework and accuracy of real-world observations. One
of the major assumptions of our model is that the accur-
acy of the real-world contact tracing surveillance, e.g.,
the three datasets in this study. Specifically, the number
of offspring cases generated from each index case is pre-
sumed to be correct. As such, we acknowledge that our
current modelling framework is unbale to handle the
situation when there is nonnegligible inaccuracy in the
surveillance data, which needs more information on pat-
terns of the systematic error or sampling bias. Second,
although we demonstrated that zero-truncated frame-
work may yield a less biased estimator of k, on the ‘cost’
side, this means all observations of terminal and spor-
adic (if any) cases are excluded from the estimation. As
consequence, more uncertainty, e.g., wider 95%CI, is
likely raised under this framework. Third, more sporadic
case indicated more cases without knowledge of the
source of exposure, and thus implies less effectiveness of
the contact tracing efforts during the surveillance of an
outbreak, which is not a positive sign of disease control.
Under intensive COVID-19 non-pharmaceutical inter-
ventions implemented [38], we comment that the under-
ascertainment of sporadic COVID-19 case is unlikely.
This indicates that for COVID-19, the under-
ascertainment of sporadic case may have less impact on
the k estimates. Fourth, despite the intensive efforts in
contact tracing, the under-ascertainment issue may
occur not only in sporadic cases, though more likely, but
also the cases with epidemiological links in the real-
world situation. A zero-truncated likelihood-based
framework might also bias the estimates of k. However,
if the sporadic cases and infectors, i.e., those with associ-
ated at least one infectee, are equally likely to be un-
detected, the sampling bias will vanish, and the k
estimates will be unaffected. Fifth, our framework ig-
nores the misreport issue, e.g., some sporadic cases are
mistakenly reported as terminal cases, which needs more
information on the misreporting patterns to resolve.
Last, although zero-truncated framework outperforms
the other in terms of the estimation unbiasedness, we
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remark that the original non-truncated framework is ac-
ceptable, if the effects of sporadic case can be justified at
a minor scale. For instance, the situations include inten-
sive surveillance program, and effective contact tracing
when the disease have clear symptoms and strictly posi-
tive serial interval, e.g., pneumonic plague.
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