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Abstract

Background: Beginning in 2019, stepped-wedge designs (SWDs) were being used in the investigation of
interventions to reduce opioid-related deaths in communities across the United States. However, these interventions
are competing with external factors such as newly initiated public policies limiting opioid prescriptions, media
awareness campaigns, and the COVID-19 pandemic. Furthermore, control communities may prematurely adopt
components of the intervention as they become available. The presence of time-varying external factors that impact
study outcomes is a well-known limitation of SWDs; common approaches to adjusting for themmake use of a mixed
effects modeling framework. However, these models have several shortcomings when external factors differentially
impact intervention and control clusters.

Methods: We discuss limitations of commonly used mixed effects models in the context of proposed SWDs to
investigate interventions intended to reduce opioid-related mortality, and propose extensions of these models to
address these limitations. We conduct an extensive simulation study of anticipated data from SWD trials targeting the
current opioid epidemic in order to examine the performance of these models in the presence of external factors. We
consider confounding by time, premature adoption of intervention components, and time-varying effect
modification— in which external factors differentially impact intervention and control clusters.

Results: In the presence of confounding by time, commonly used mixed effects models yield unbiased intervention
effect estimates, but can have inflated Type 1 error and result in under coverage of confidence intervals. These models
yield biased intervention effect estimates when premature intervention adoption or effect modification are present. In
such scenarios, models incorporating fixed intervention-by-time interactions with an unstructured covariance for
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intervention-by-cluster-by-time random effects result in unbiased intervention effect estimates, reach nominal
confidence interval coverage, and preserve Type 1 error.

Conclusions: Mixed effects models can adjust for different combinations of external factors through correct
specification of fixed and random time effects. Since model choice has considerable impact on validity of results and
study power, careful consideration must be given to how these external factors impact study endpoints and what
estimands are most appropriate in the presence of such factors.

Keywords: Stepped wedge design, Cluster randomized trials, Study design, Confounding, Secular trends, Analysis,
Opioids, COVID-19, Epidemic, Pandemic

Background
Stepped wedge designs (SWD) are a uni-directional
crossover design in which clusters switch from the control
to the intervention condition at varying time points. The
first phase is usually a baseline period in which no clusters
receive intervention. During the second phase, clusters
are randomly assigned to intervention at pre-selected time
points until all clusters receive the intervention. The third
phase corresponds to the follow-up period in which all
clusters receive the intervention. An example of a SWD is
provided in Fig. 1 and discussed in “Motivating example:
HEALing communities study” section.
SWDs can be useful in public health settings where

rolling out the intervention to all clusters at once is infea-
sible; they also ensure that all clusters in the study even-
tually receive the intervention [1, 2]. The SWD is partic-
ularly suitable for implementing and evaluating complex
health interventions [3–5]. The current COVID-19 pan-
demic and opioid epidemic provide settings in which such
designs may prove useful; effective combinations of inter-
ventions are needed as soon as possible, but rolling them
out to each community in a short time period may not
be feasible. In this paper, we use the design of SWDs to
combat the opioid epidemic between 2019 and 2022 as
an illustrative example. In 2019, the National Institute on
Drug Abuse (NIDA) awarded Kentucky and Ohio roughly
$100 million each to implement an integrated set of inter-
ventions in high-risk communities using a SWD, with the
objective of reducing opioid overdose deaths by 40% over
a three-year period [6–10].
Like most clinical trial designs, SWDs may be impacted

by external factors that influence the primary outcomes.
The term ”rising tide” has been used to describe the sit-
uation when there is a drift towards improvement in the
outcomes due to factors external to the study [11]. A
rising tide may be seen in the current opioid epidemic,
where the severity of this crisis has led to new public
policies, media awareness campaigns, and external inter-
ventions that will improve outcomes in concurrence with
any proposed interventions. For example, public policies
were implemented to limit opioid prescriptions in both
Kentucky and Ohio in the summer of 2017 [12]. In

addition, the Center for Disease Control and Prevention
launched intensive media awareness campaigns on the
dangers of opioids in these states in September of 2017
[13]. In the current COVID-19 pandemic, interventions
rolled out at the community level will compete with social
distancing measures, novel treatments, and other inter-
ventions aimed at improving patient care. Such external
factors may confound estimates of the intervention effect
estimate in SWDs. This occurs when (i) factors external
to the study (e.g., new public health policy) influence the
primary outcomes over time, and (ii) the proportion of
communities exposed to the intervention also increases
with calendar time. This situation has been referred to as
confounding by calendar time; [2, 14] an example of such
confounding is the rising tide described above.
Failure to account for confounding by time might

result in severely biased intervention effect estimates
[2, 3, 14–20], and lead to both Type 1 and Type 2 errors.
Hussey and Hughes suggested the use of mixed effects
models for analyzing data from SWD [17]. To account
for potential confounding by time, they recommend the
incorporation of fixed time effects. However, models that
incorporate secular trends common to all clusters may
not be appropriate in this setting, because only some of
the communities may be exposed to the external factors.
Furthermore, the impact of these external factors on the
outcome will likely differ in each community.
For these reasons, Girling and Hemming, Hooper et al.,

and Hemming et al. have suggested incorporating ran-
dom cluster-by-time effects into the mixed effects models
[14, 18, 21]. This class of models captures confounding
by time through these random effects. This is especially
useful when the timing and level of exposure to exter-
nal factors are unknown. However, thesemodels implicitly
assume that the random effect variance is the same for all
clusters across all time points, and that the random time
effects are independent within each cluster. Kasza et al.
propose models with more general within-cluster corre-
lation structures [22]. These models are more applicable
to the scenarios discussed here, since outcomes within a
community are more likely to be similar for time periods
before or after exposure to external factors. Furthermore,
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Fig. 1 Proposed SWD for 18 South Carolina communities. ‘C’ indicates cluster receives control and ‘I’ indicates cluster receives intervention. All
clusters are in the control condition during the pre-intervention phase (months 0 through 6). During the roll-out phase (months 6 through 33), two
clusters crossover to the intervention condition at the beginning of each time period. In the follow-up phase (months 33-39), all clusters receive the
intervention

since exposure to external factors may increase with time,
variation in the outcome may change with time as well.
The models described above assume that the random

effects are identically distributed across clusters. This
assumption may not appropriate in settings where the
impact of external factors systematically differs between
intervention and control communities. Kasza et al showed
that the random effect covariance structure can have an
important impact on the sample size and power [22], and
that misspecification of this covariance structure can lead
to biased estimates of the intervention effect [23].
Given the discussion above, we consider three mech-

anisms through which time-varying external factors can
impact SWD studies: a) confounding of the effect of inter-
est by time, b) inducing or facilitating non-compliance,
and c) time-varying effect modification. The models we
discuss below can accommodate all of these mechanisms,
but interpretation of results requires consideration of the
way in which external factors are operating. Noncom-
pliance might arise, for example, through exposure to
state-wide policies and media awareness campaigns that
cause control communities to adopt available components
of the intervention prior to the scheduled roll-out time.
Premature adoption of components of the intervention
may be seen as a form of rising tide; but its impact in
this case arises through the effect of time on exposure
to intervention. This differs conceptually from confound-
ing by time in which the outcome, measured over time, is
impacted by confounding factors that are unrelated to the
intervention itself. Differential impact of external factors
on intervention compared to control communities may be
viewed as time-varying effect modification; we return to
this point in the discussions below.

This paper discusses the issues described above in the
context of a proposed SWD to reduce opioid-related
mortality in South Carolina, and shows these issues can
be addressed through appropriate choice of mixed effects
models, with regard to both fixed time effects and ran-
dom effect covariance structure. Our objectives are to (1)
consider the implications of assumptions regarding the
impact of external factors for choice of mixed-models –
with a focus on our motivating example; (2) extend these
models to accommodate different combinations of exter-
nal factors; (3) conduct an extensive simulation study to
examine the performance of mixed effects models under
different model assumptions. Performance is assessed
based on the bias, confidence interval coverage, power,
and Type 1 error of the intervention effect estimate. We
describe more fully what this estimate represents below.
An important component of our simulation study is the
generation of latent external factors from different dis-
tributions than that assumed by the model, i.e. normal
distribution for random effects. This allows for investi-
gation of the robustness of our methods to violations of
model assumptions.
The outline of this paper is as follows. “Motivating

example: HEALing communities study” section intro-
duces the motivating example. In “Methods” section, we
examine existing mixed effects models for SWD, discuss
their limitations, and introduce alternative models that
improve robustness to different combinations of external
factors. “Simulation study” section conducts an exten-
sive simulation study to examine the adequacy of these
mixed-effects models under different scenarios regarding
external factors. Discussion, extensions, and concluding
remarks are provided in “Discussion” section.
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Motivating example: HEALing communities study
The HEALing Communities Study: Developing and Test-
ing an Integrated Approach to Address the Opioid Cri-
sis[7] is used as an example to illustrate confounding by
time in SWD. The purpose of this initiative was to develop
and integrate a set of evidence based interventions using
cluster randomized trials to reduce opioid overdose fatal-
ities by 40% over a 3-year period in communities across
the United States. In response to this research funding
announcement, our research team proposed a SWD to
implement a comprehensive external facilitation inter-
vention in 18 of South Carolina’s counties that were hit
hardest by the opioid crisis.
The proposed SWD design is displayed in Fig. 1. Each

cluster consists of all individuals in a given county. Each
time interval corresponds to a 3-month study period.
The pre-intervention phase consists of two time peri-
ods between (study) month 0 and month 6, in which all
clusters are in the control condition. The roll-out phase
consists of nine time periods between months 6 through
33, where two clusters are randomly assigned to receive
the intervention at the beginning of each time period. The
post-intervention phase, in which all clusters receive the
intervention, occurs between months 33 through 39. Data
pertaining to the communities considered in our proposal
are provided in Supplementary Table S1. The outcome,
recorded at the end of each time period, consists of the
total number of opioid overdose deaths in each cluster
during the 3-month time interval.
The proposed external facilitation intervention included

the following components: 1) Integration of screening,
intervention, and referral to treatment within health care
settings; 2) implementation of programs and providers
prescribing medication-assisted treatment and linkage
to such treatment for people with opioid use disor-
der (OUD); 3) implementation of evidence-based school
and community-based OUD prevention programs; and 4)
increasing availability and use of naloxone by first respon-
ders and the community. Given the amount of effort and
resources currently directed to the fight against the opioid
epidemic, there is potential for other events to affect the
outcome. For example, in 2018 Executive Order No. 2017-
43 was passed in South Carolina; this order set a 5-day
limit for certain opioid prescriptions [24]. Also in 2018,
the South Carolina Division of Alcohol and Other Drug
Abuse Services rolled out a media campaign to raise com-
munity awareness of opioid addiction [25]. This campaign
included digital, social, and traditional media tactics, and
was intended to cover all counties in South Carolina.
These external factors are part of a rising tide of interven-
tions and are expected to reduce the opioid-related death
count over time. Failing to account for this rising tide in an
analysis will cause an upward bias in the estimation of the
intervention effect. Similarly, an influx of synthetic opi-

oids into the population will likely be associated with an
increase in the death rate over time. A failure to account
for this will cause underestimation of the intervention
effect and may lead to Type II error. Another possibility is
that control communities prematurely adopt components
of the intervention before the scheduled roll-out time. For
example, the opioid overdose reversal medication nalox-
one may become widely available in control communities
prior to the scheduled roll-out time. Therefore premature
adoption of a successful intervention will improve the out-
come in control communities and attenuate the estimate
of the intervention effect if unaccounted for.

Methods
We first introduce some notation. We denote Yij as the
summarymeasure of the outcome for cluster i during time
period j, i = 1, ...,N and j = 1, ..., n, where N denotes
the number of clusters and n denotes the number of time
periods in the study, which are assumed to be common to
all clusters. In the motivating example, Yij is an aggregate
count of opioid deaths in county i between months j and
j + 1. Using summary measures for the outcome in each
cluster has implications when estimating the intervention
effect under certain distributional assumptions for the
outcome. We discuss this further in “Estimation” section.
We assume that the expected outcomes, denoted by

μij = E[Yij], come from a generalized linear mixed effects
model (GLMM) with link function g. In the motivating
example we consider μij = E[Yij/Oi], where Yij assumes
a Poisson distribution (g = log link), and Oi is an offset
for the population size of cluster i. We also assume that
all clusters receive the full intervention effect immediately
after the scheduled implementation, i.e., that the inter-
vention effect does not change with time. We denote the
intervention effect by θ , and set the corresponding design
matrix Xij = 1 if clusters i receives intervention at time j,
and 0 otherwise.

Random intercept model to adjust for confounding by time
To adjust for confounding by calendar time, Hussey and
Hughes recommended incorporation of a time effect in
the GLMM [17]:

g(μij) = α + θ × Xij + βj + b0i, (1)

where α is the intercept, θ is the intervention effect, βj is

the discrete time effect, and b0i
iid∼ N(0, σ 2

b0) for i = 1, ...,N
are the random intercepts for each cluster.
In some cases, the timing and location of external fac-

tors are known in each cluster and their effects can be
modeled. Often, investigators are unaware of all factors
affecting the outcome. Throughout this paper we assume
exposure to these factors are unknown. By incorporat-
ing only a single fixed effect for each time step, the stan-
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dard Hussey and Hughes model requires that the effects
of time are common to all clusters, and that the correla-
tion between any two observations in the same cluster are
independent of the time step. We note that with proper
specification of the time effect, inference based on this
model adjusts for such confounding even when it can-
not be measured. Therefore, the resulting intervention
effect estimate is unbiased. However, correct specification
of the random effect structure is necessary for optimal
precision.

Random period models to adjust for confounding by time
As misspecification of the time effects can lead to biased
estimates of the intervention effect and its standard error,
random cluster-by-time period interaction effects have
been incorporated in models [14, 18, 21]. This formula-
tion, referred to as the Hooper/Girling model [22, 23],
allows the random intercept for each cluster to vary by
time period. This model is discussed in “Random clus-
ter-by-discrete time effect (uncorrelated, with single
variance)” section below.

Random cluster-by-discrete time effect (uncorrelated, with
single variance)

g(μij) = α + θ × Xij + βj + bij, (2)

where bij
iid∼ N(0, σ 2

b ) are the time-varying random inter-
cepts for each cluster i at time period j, i = 1, ...,N and j =
1, ..., n. These cluster-specific random effects are intended
to capture the effects of confounding factors on the out-
come by allowing unique secular trends for each cluster.
We note that throughout this paper, we may use the term
”confounding factors” to indicate the presence of external
factors that do not differentially impact intervention and
control clusters.
There are limitations to the model above that arise

from the distributional assumptions regarding the ran-
dom effects bij: Constant variance over time, indepen-
dence of the random effects, and identical correlation
between two observations in the same cluster between
any two time periods. If exposure to confounding fac-
tors increases over time, the variance of the random effect
may increase as well. The assumption of independence of
the random effects may be violated in the scenario where
confounding factors impact clusters at all time intervals
after exposure. Such a scenario could lead to greater sim-
ilarity of random effects during time intervals that are
entirely before or entirely after exposure than for ran-
dom effects for a mix of intervals that are both before and
after exposure. Furthermore, while the Hooper/Girling
model allows both within-cluster and within-period varia-
tion, it imposes a constant correlation across time (for
observations in the same cluster).

Random cluster-by-discrete time effect (unstructured
covariance)
To account for the limitations described above, we
propose an unstructured covariance for the random
cluster-by-discrete time interaction terms:

g(μij) = α + θ × Xij + βj + b∗
ij, (3)

where b∗
i = (b∗

i1, ..., b∗
in)

iid∼ N(0,�b∗) for i = 1, ...,N .
Similar to model 2, the cluster-specific random effects b∗

ij
allow unique secular trends for each cluster. However, the
unstructured covariance matrix �b∗ imposes no restric-
tions on the variance across time periods nor on the corre-
lation between the latent time effects within each cluster,
albeit with the assumption that the correlation structure
is the same for all clusters. While model 3 imposes fewer
restrictions than model 2, it requires the estimation of
(n+1)×n

2 covariance parameters, which may greatly reduce
the power to detect an intervention effect and may lead to
issues of identifiability of regression parameter estimates.

Random cluster by linear time effect
An alternative to models 2 and 3 is to include a random
slope for time in each cluster:

g(μij) = α + θ × Xij + βj + b0i + b1i × tj, (4)

where (b0i, b1i) ∼ N(0,�b0,b1) and �b0,b1 is the 2 × 2
covariance matrix for (b0i, b1i), i = 1, ...,N , and tj is the
time between the study start date and the beginning of
time period j. The random effects b1i allow for unique lin-
ear time trends in each cluster. Model 4 assumes the vari-
ance in the outcome changes monotonically with time and
imposes restrictions on the correlation between observa-
tions within a cluster, and is therefore more restrictive
than model 3.

Random group-by-period models to adjust for
confounding by time and early adoption or time-varying
effect modification
The models described in “Random period models to
adjust for confounding by time” section are insufficient
for the setting where external factors differentially impact
intervention and control clusters. Examples of such sce-
narios are provided in Table 1. Events leading to pre-
mature adoption of intervention components by control
clusters - a form of intervention noncompliance - will dif-
ferentially impact intervention and control clusters. We
refer to this scenario as early adoption, and assume this is
unbeknownst to the investigator. To model this scenario,
we need to include group×time interaction terms, i.e.,
different fixed and random effects for control and inter-
vention clusters. Unlike group×time interaction models
for time-varying treatments, these models accommodate
situations in which secular trends systematically differ
between intervention and control clusters.
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Table 1 Description and examples of mechanisms through which external factors can impact SWD studies

Scenario Description Example

Confounding by calendar time External factors that vary over time and
affect the outcome independently of the
intervention under study

Statewide policies limiting initial opioid
prescriptions to a 7 day-supply

Early intervention adoption
(noncompliance)

Partial or full adoption of the intervention
before its scheduled roll-out time; such
events differentially impact intervention and
control clusters

Use of opioid overdose reversal medication,
naloxone, by first responders prior to the
scheduled roll-out time for the community

Time-varying effect modification External factors that differentially impact the
outcome overtime; depending on whether
or not they are receiving the intervention

Changes in insurance policies to limit access
to standard opioid treatments

In models 5 through 7, we incorporate a fixed discrete
time effect, βj, that is common to all clusters. Because
incorporating a group-by-discrete time interaction may
lead to loss of power and potentially also to nonidentifia-
bility, we include a fixed linear time effect in the control
group by incorporating the term γ ×tj×1{Xij=0} in models
5 through 7. In this setting, incorporation of a linear time
effect in the control group models the effect of early adop-
tion of a beneficial intervention on overdose death rates as
a monotonic decrease with time.
We note that these same set of models would also be

appropriate for the setting of time-varying effect mod-
ification. An example would be changes in insurance
policy that either enhance the effect of the intervention
(because access to opioid treatments that are not part of
the intervention is reduced in control clusters) or reduce it
(because such access is increased in control clusters). Both
scenarios can be accommodated by the models below. In
these models, the estimate of θ provides the intervention
effect estimate, and γ captures the effect of early adop-
tion. When time-varying effect modification is present,
the parameter γ captures the difference in the effect of
external factors between intervention and control groups.
We discuss these models below.

Random cluster-by-intervention-by-discrete time effect
(uncorrelated, with single variance for each group)

g(μij) = α + θ × Xij + βj + γ × tj × 1{Xij=0} + bij + cij × 1{Xij=0},

(5)

where γ × tj is the difference in the time effect between
control and intervention clusters at time period j, and cij ∼
N(0, σ 2

c ) is a random time effect for control cluster i at
time period j for i = 1, ...,N and j = 1, .., tIi , where tIi is the
time period in which the intervention was scheduled to
be rolled-out to cluster i. For control clusters that prema-
turely adopt intervention components, the cluster-specific
random effects (cij) would be expected to be larger (in
magnitude) than those that do not. Model 5 is an exten-
sion toModel 2 (Hooper/Girling), in which the variance of

the cluster-by-time period random effects systematically
differ between intervention and control clusters. This
model is subject similar limitations as those discussed
in “Random cluster-by-discrete time effect (uncorrelated,
with single variance)” section.

Random cluster by-intervention-by-discrete time effect
(unstructured covariance for each group)
To account for the limitations of model 5, we pro-
pose allowing an unstructured covariance for the random
cluster-by-discrete time interaction terms in each group:

g(μij) = α + θ × Xij + βj + γ × tj × 1{Xij=0} + b∗
ij + c∗ij × 1{Xij=0},

(6)

where c∗i = (c∗i1, ..., c∗i,tIi
)

iid∼ N(0,�c∗i ) for i = 1, ...,N .

Here �c∗i consists of the first tIi rows and columns of
�c∗ , where �c∗ is the unstructured covariance matrix
for a control cluster scheduled to receive the interven-
tion during the final period of the roll-out phase. Simi-
lar to model (5), the cluster-specific random effects, c∗ij,
are intended to capture the effects of premature expo-
sure to intervention components. This is an extension of
model 3, which assumes the random cluster-by-discrete
time effects shared a common (unstructured) covari-
ance matrix. While the random effect covariance struc-
ture in model 6 has less restrictions than in model 5, it
requires the estimation of (n+1)×n+(nτ −1)×(nτ −2)

2 covari-
ance parameters and is subject to similar limitations
as discussed in “Random cluster-by-discrete time effect
(unstructured covariance)” section. Here we define nτ as
the number of time periods prior to the follow-up phase
of the study.

Random cluster by-intervention-by-linear time effect
Similar tomodel 4, we can impose a random slope for time
in each group.

g(μij) = α + θ × Xij + βj + γ × tj × 1{Xij=0} + b0i + b1i
× tj + (c0i + c1i × tj) × 1{Xij=0}, (7)
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where (c0i, c1i) ∼ N(0,�c0,c1) and�c0,c1 is the 2×2 covari-
ance matrix for (c0i, c1i), i = 1, ...,N . The cluster-specific
random effects c1i allow for unique linear time trends in
each control cluster and are intended to capture the effects
of premature adoption of intervention components.

Fixed effects for linear time in all clusters
To further limit loss of power and potential noniden-
tifiability due to the large number of parameters, we
replace the fixed discrete time effect in models 5 through
7, βj, with a fixed linear time effect, β × tj, in mod-
els 8 through 10. This strategy may be useful in sit-
uations when the combined effects of external fac-
tors result in monotonic changes in the outcome over
time (e.g., rising tide). For example, the implementation
of a new policy intended to reduce opioid prescrip-
tions in conjunction with media awareness campaigns
may decrease the level of opioid overdose deaths with
time.

g(μij) = α + θ × Xij + β × tj + γ × tj × 1{Xij=0} + bij
+ cij × 1{Xij=0} (8)

g(μij) = α + θ × Xij + β × tj + γ × tj × 1{Xij=0} + b∗
ij

+ c∗ij × 1{Xij=0} (9)

g(μij) = α + θ × Xij + β × tj + γ × tj × 1{Xij=0} + b0i
+ b1i × tj + (c0i + c1i × tj) × 1{Xij=0} (10)

Estimation
The estimands of interest in our setting may depend on
the goals of the study and the nature of the time-varying
external factors that impact the study. In the setting where
only confounding by time is of concern, the causal esti-
mand is the average (across clusters) intervention effect
on the outcome of interest– which is assumed to be fixed.
Unbiased estimation is made possible by inclusion of a
fixed time effect as described above. In the setting of early
adoption, the causal estimand of interest to investigators
might also be the average intervention effect (compared
to the control condition with no early adoption), but unbi-
ased estimation is only possible if either we can accurately
model the effect as a function of time or can measure
the amount of early adoption (we return to this point in
the discussion). Alternatively, investigatorsmight be inter-
ested in the randomized intervention effect as a function
of time; in the presence of early adoption, this effect would
likely wane over time. Finally we consider the setting
where time-varying external factors are effect modifiers.
Here investigators might, once again, be interested in a
causal estimand that is the average effect of intervention
as a function of time. As before, the effect of the exter-
nal factors must be modeled in order to obtain unbiased
estimates of this estimand. We note that although spline

and other flexible models might be used, we considered
only the parametric models described above for inference.
To investigate their robustness, we use different models
for data generation (the mechanism of which is generally
unknown) than for inference.
The models for inference in “Methods” section can be

fit by specifying the Poisson family in the glmer function
(package: lme4) in R [26]. Of note, when the outcome
is a summary measure for each cluster (as is the case
in our motivating example), we ran into estimation diffi-
culties when specifying random cluster-by-discrete time
effects when the outcome distribution was assumed to
be Gaussian. This is due to incorporation of a residual
term for each cluster for each time period, which yields
unidentifiable random effects. This issue does not arise
under Poisson distributional assumptions, since the vari-
ance is directly proportional to the mean and thus residual
terms are not estimated. To accommodate the Gaussian
distribution assumption in this scenario, multiple com-
munities per cluster [14, 18, 21] or multiple intervals per
time period would be needed. We note that the approach
described above can be generalized to any outcome that
can be modeled as arising from an exponential family
distribution.
In the models above, the fixed time effects βj and β are

modeled to capture confounding by time. The fixed time
effects γ captures the effect of early adoption or time-
varying effect modification. These effects are all identifi-
able because the design matrices are full rank. Without
additional assumptions, however, the above models can-
not distinguish among the effects of external factors, early
intervention adoption, or of other time-varying factors.
Rather, they model temporal trends that may be a conse-
quence of these factors; such models allow for assessment
of the impact of such trends on bias, power, and Type
1 error. When used in analysis, our simulation studies
demonstrate that these models can reduce bias in estima-
tion of intervention effects, in the settings appropriate for
their use.

Simulation study
We conduct a simulation study to investigate the impact
of external factors and noncompliance on the bias, cov-
erage probability of 95% confidence intervals, power, and
Type 1 error of the intervention effect estimate. The
data are simulated based on the motivating example
described in “Motivating example: HEALing communities
study” section. In this setting, we have N = 18 clus-
ters and n = 13 time periods. The intervention is rolled
out to each cluster according to the time line provided
in Fig. 1. In all data generating models, the outcomes Yij
are simulated from a Poisson distribution, and represent
the number of opioid overdose deaths in cluster i dur-
ing time period j. Here g is the log link, and the popula-
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tion size of cluster i, Oi, is included as an offset in all
models. That is, g(μij) = log(E[Yij] /Oi). The inter-
cept α is set to -10 and the standard deviation of the
random intercept, σb0 , is set to 0.30. These numbers were
determined using the opioid death counts in the 18 South
Carolina clusters between 2016 and 2018. The data are
provided in Supplementary Table S1. The intervention
effect θ is set to log(0.6), which represents the target
40% reduction in opioid overdose deaths due to interven-
tion (Motivating example: HEALing communities study”
section).

Simulation scenarios
We apply models 1 through 10 under four general sce-
narios: (1) standard, (2) confounding, (3) early adoption,
and (4) confounding + early adoption or effect modifica-
tion. We set the number of simulations for each scenario
at 500. The data generation process for each scenario is

summarized in Table 2, and is described in more detail
below. It is important to distinguish between the data gen-
eration models described in this section, which are used
to simulate the data, and the analysis models (for infer-
ence) described in “Methods” section, which are used
to analyze the data. In these simulations, we intention-
ally generate the data from different models than those
used for analysis. For example, we simulate the effect of
confounding due to a rising tide by randomly selecting
communities exposed to the underlying external event
at each time point, and for each community, randomly
generating the impact of the confounding factors on out-
comes at each time point. This allows for investigation of
the robustness of the proposed analysis models to both
the parameterization of the fixed and random effects and
the underlying processes (e.g., external factors, early adop-
tion, etc.) that cause confounding, noncompliance, and/or
effect modification.

Table 2 Data generation models for simulations under each scenario

Scenario Data generating model and scenario
description

Impact on outcome Index

Standard log(μij) = α + θ × Xij + bi
Description: No confounding, early
adoption, or effect modification

None. 1

Confounding log(μij) = α + θ × Xij + βij + bi
Description: At each time period j, n′

j
clusters randomly exposed to event
inducing confounding for remainder of
study period; n′

j ∼ Binomial(N′
j , 1/N), where

N′
j is total number of clusters unexposed to

event prior to time period j.

βij ∼ unif [−1, 0] if cluster i exposed during
time period j; 0 otherwise.

2.1

βij ∼ unif [ 0, 1] if cluster i exposed during
time period j; 0 otherwise.

2.2

Early adoption log(μij) = α + θij × 1{Xij=0} + θ × Xij + bi
Description: At each time period j, n∗

j
control clusters prematurely adopt
intervention components;

n∗
j ∼ Binomial(N∗

j ,
N−N∗

j +1
2×N ), where N∗

j is the
number of control clusters not receiving the
intervention prior to time period j.

θij ∼ unif [ θ , 0] if control cluster i
prematurely adopts intervention at time
period j; 0 otherwise.

3

Confounding + Early adoption (or Effect
modification)

log(μij) = α+βij +θij ×1{Xij=0} +θ ×Xij +bi
Description: At each time period j, n′

j
clusters are randomly exposed to
confounding events and n∗

j control clusters
prematurely adopt intervention
components, where n′

j and n∗
j are defined

above. Control clusters may be exposed to
both confounding factors and early
adoption. Data generation model for effect
modification is similar.

βij ∼ unif [−1, 0] if cluster i exposed to
confounding event during time period j; 0
otherwise. θij is defined as above.

4.1

βij ∼ unif [ 0, 1] if cluster i exposed to
confounding event during time period j; 0
otherwise. θij is defined as above.

4.2

Data is simulated under 4 general scenarios. The data generating model for each simulation scenario is displayed in the second column. Here μij is the expected rate of
opioid overdose deaths in cluster i during time period j, θ is the intervention effect and is set to log(0.6), and Xij is an indicator of whether cluster i is scheduled to receive
intervention during time period j and is based on the SWD represented by Fig. 1. The fixed intercept α is set to -10 and the random intercept bi is simulated from a N(0, 0.30)
distribution. A description of the selection process for exposure to confounding events or early adoption is provided in the second column (below the data generating
model). The impact of confounding factors and/or early adoption on the outcome is detailed in the third column. In scenarios 2 and 4, we allow confounding factors to have
either a positive impact on the outcome (scenarios 2.1 and 4.1) or a negative impact on the outcome (scenarios 2.2 and 4.2)
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In the first scenario (standard) we assume no confound-
ing, early adoption, or effect modification is present; all
clusters receive the intervention during the scheduled
time period and no external factors influence the out-
come. The data are generated according to scenario 1 in
Table 2. The data generation model for scenario 1 is the
same as (analysis) model 1 defined in “Random intercept
model to adjust for confounding by time” section, with
βj = 0 for j = 1, ..., n.
In the second scenario, all clusters not currently exposed

to confounding factors by time period j have a 1 in N
chance of exposure. Once exposed, each cluster contin-
ues to be exposed through the remainder of the study
period. This is intended to reflect the situation where con-
founding factors have long-lasting effects, such as new
public policies limiting opioid prescriptions and media
awareness campaigns. The number of clusters exposed to
confounding factors at each time period j, n′

j, is simulated
from a Binomial(N ′

j , 1/N) distribution, where N ′
j is the

total number of clusters unexposed to the confounding
factors prior to time period j.
Once exposed, the effect of confounding factors on the

outcome in cluster i is set to vary uniformly at each time
period j. Specifically, we let t′i denote the time period in
which cluster i is exposed to confounding factors.We sim-
ulate βij under 2 settings. For j ≥ t′i , we simulate βij ∼
unif [−1, 0], corresponding to a positive effect of con-
founding factors on the outcome opioid overdose deaths
(scenario 2.1). This is intended to represent a rising tide
of events aimed at improving outcomes. We set βij = 0
for j < t′i , indicating that cluster i has yet to be exposed
to confounding factors. To represent a negative impact of
confounding factors on the outcome, we simulate βij ∼
unif [ 0, 1] for j ≥ t′i and βij = 0 for j < t′i (scenario 2.2).
In the third scenario (early adoption), the number

of clusters prematurely adopting intervention compo-
nents during each time period j, n∗

j , is simulated from

a Binomial
(
N∗
j ,

N−N∗
j +1

2×N

)
distribution. Here N∗

j is the

number of control clusters which have not adopted any
intervention components by time period j. This set up
reflects the nature of SWD, where the number of con-
trol clusters at risk for early adoption decreases with time
as more clusters crossover to the intervention group by
design. This formulation allows the probability of expo-
sure to intervention components increase at each time
point j (for an unexposed cluster). This situation is feasible
in certain settings, such as when intervention components
become more widely available with time, thus increasing
the probability of exposure for a control cluster.
For all time periods j in which a cluster is subjected to

early adoption, the magnitude of the early intervention
adoption effect is set to vary uniformly. Denote t∗i as the
time period of early adoption for cluster i and denote tIi as

the time period in which the intervention was scheduled
to be rolled-out to cluster i. We simulate θij ∼ unif [ θ , 0]
for j = t∗i , ..., tIi − 1, and θij = 0 otherwise. Thus the maxi-
mum effect of early intervention adoption on the outcome
for exposed control clusters is set to θ . In this scenario,
the event (i.e., early adoption) has a positive effect on the
outcome in the control group only.
In the fourth scenario, the effects of confounding fac-

tors and early adoption are simulated in the same manner
as in scenario 2 and scenario 3, respectively. In sce-
nario 4.1, confounding factors have a positive effect on
the outcome. In scenario 4.2, confounding factors have
a negative effect on the outcome. The negative impact
of confounding factors on the outcome is partially offset
by the positive impact of early adoption on the out-
come (for control communities) in scenario 4.2. The data
generation model for time-varying effect modification is
similar to the generation model for simultaneous con-
founding and early adoption described in scenario 4. Here,
the parameters βij would be interpreted as the effects
of external factors on the outcomes in the intervention
communities, and θij would be interpreted as the differ-
ences in the effects of external factors between interven-
tion and control communities.

Results
Simulation results are presented in Table 3. Under sce-
nario 1 (standard), all models yield unbiased estimates of
the intervention effect, reach nominal confidence inter-
val coverage rates, and preserve Type 1 error. Model 1,
which does not include any random effects for time, yields
unbiased estimates of the intervention effect in scenario
2 (confounding), where external factors do not differen-
tially impact control and intervention clusters. However,
coverage probabilities are below the nominal level of 0.95
and Type 1 error is inflated. Model 1 is heavily biased in
scenarios 3 (early adoption) and 4 (confounding & early
adoption), where external factors differentially impact
intervention and control clusters.
Models 2 through 4, which include random cluster-by-

time effects, yield unbiased estimates of the intervention
effect when external factors do not differentially impact
control and intervention clusters (i.e., scenarios 1 and
2). Model 3, which assumes an unstructured covariance
for the random cluster-by-time interactions, performs the
best with regard to coverage probabilities of the 95% con-
fidence intervals and Type 1 error preservation. Model 2,
which assume a single variance for the random cluster-
by-time interactions (Hooper/Girling model), perform
slightly worse on these metrics. Model 4, which assume
a random slope for time for each cluster, has the highest
inflation in Type 1 error with coverage probabilities well
below the nominal level of 0.95. Models 2 through 4 are
overpowered for scenarios 1 and 2. These models perform
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poorly when early adoption is present in scenarios 3 and
4 (i.e., when external factors differentially impact inter-
vention and control clusters). The estimated intervention
effect is reduced by 32% to 34.3% in these scenarios.
The performance of models with and without

intervention-by-time interactions is compared in Fig. 2.
Models without intervention-by-time interactions are
displayed in the left column, where the blue shapes corre-
spond to models 2 through 4. For comparison, we include
models which replace the discrete main effect for (fixed)
time in models 2 through 4, βj, with the linear fixed effect
β × tj. These models are labeled by the red shapes in the
left column of Fig. 2. The models in the right column of
Fig. 2 include fixed and random intervention-by-time
interactions. These models correspond to models 5
through 10.
Models 5 through 10 perform well in all simulation sce-

narios. When no confounding, early adoption, or effect
modification is present (scenario 1), these models yield
little bias, reach nominal coverage probabilities for 95%
confidence intervals, and preserve Type 1 error. With
the exception of model 10, all models have less than
10% bias when only confounding is present (scenario 2).
These models generally reach nominal confidence inter-
val coverage probabilities and preserve Type 1 error. The

exceptions are models 7 and 10, which include random
cluster-by-group-by-linear time interaction effects.
When external factors differentially impact interven-

tion and control clusters due to early adoption (scenarios
3 and 4), models 5 through 10 greatly reduce the bias
in the intervention effect estimate compared to models
which do not include intervention-by-time interactions.
Models 6 and 9, which assume an unstructured covari-
ance for the random cluster-by-group-by-discrete time
interactions, generally yield the lowest bias, while reach-
ing nominal coverage probabilities of the 95% confidence
intervals and preserving Type 1 error. Models 5 and 8
(Hooper/Girling models) perform slightly worse on these
metrics. Models 7 and 10 have the highest inflation in
Type 1 error and lowest coverage probabilities.
The choice of a discrete or linear term for the fixed

time effect does not impact power in models without
intervention-by-time interactions. This result is expected
given the findings of Grantham et al. [27]. For mod-
els which include intervention-by-time interaction terms
(i.e., models 5 through 10), the strongest correlate of
power is the fixed effect for time. Models with discrete
time effects, which incorporate a parameter for each time
period, have much lower power compared to models
which incorporate a single parameter corresponding to a

Fig. 2 Performance of models with and without fixed and random intervention-by-time interactions. Models are compared across scenarios listed in
Table 2. First row compares intervention effect estimates ± empirical standard error. Horizontal gray line: true intervention effect θ = log(0.6).
Second, third, and fourth rows compare models on coverage rate of 95% confidence intervals, Type 1 error rate, and power, respectively. Horizontal
gray lines indicate 95% coverage rate, 0.05 Type 1 error rate, and a power of 0.80 in the second, third, and fourth rows, respectively. Covariance
structure for cluster-by-time random effects: Hooper/Girling labeled by circles, unstructured labeled by triangles, and linear labeled by diamonds.
Models which incorporate a discrete term for the main effect for time (fixed) are labeled by blue shapes; models which incorporate a linear term are
labeled by red shapes. Models without intervention-by-time interactions displayed in left column, where blue shapes correspond to models 2
through 4 in “Methods” section. Models with intervention-by-time interactions displayed in right column, and correspond to models 5 through 10 in
“Methods” section. Models 5 through 10 include a linear time effect for the fixed intervention-by-time interaction term



Rennert et al. BMCMedical ResearchMethodology           (2021) 21:53 Page 12 of 14

linear time effect. For a given fixed time effect, models
with a random slope for time achieve the highest power
(model 7 among fixed discrete time effects; model 10
among fixed linear time effects). Models which assume
an unstructured covariance for random cluster-by-time
effects achieve the lowest power (model 6 among fixed
discrete time effects; model 9 among fixed linear time
effects).

Discussion
SWDs and alternative cluster randomized trials are cur-
rently being used to implement interventions to reduce
opioid overdose deaths in communities across the United
States. However, these interventions are competing with
newly initiated public policies and media awareness cam-
paigns. Furthermore, control communities may adopt
components of proposed interventions as they become
readily available. These scenarios induce confounding by
time, treatment noncompliance, and time-varying effect
modification. Given the difficulties in capturing the tim-
ing and exposure levels of external factors, we consid-
ered mixed-effects models which incorporate fixed and
random time effects to account for these latent factors.
We discussed the limitations of commonly used models
in the context of proposed SWDs to combat the opi-
oid epidemic, and proposed solutions to accommodate
deviations from these assumptions.
Through our simulation study, we showed that mixed

effects models are sensitive to the scenarios considered
here (i.e., confounding, noncompliance, and effect modi-
fication). While the Hooper/Girling model [18, 21] offers
an improvement over the standard Hussey and Hughes
model [17], it may result in severely biased estimates of
the intervention effect when secular trends systematically
differ between intervention and control clusters. Even
in scenarios where these models do capture the secular
trend, we demonstrated how incorrect specification of the
cluster-level covariance over time can yield under cover-
age of confidence intervals and inflation of Type 1 error.
Similar conclusions have been reached in other studies
[3, 23, 28, 29].
Alternatively, models which allow secular trends to

systematically differ between the intervention and con-
trol clusters through incorporation of fixed and ran-
dom group-by-time effects offer a major improvement
in terms of bias reduction. Our simulation studies con-
firmed that models incorporating unstructured cluster-
level covariances for the random intervention-by-cluster-
by-time interaction terms yielded nominal confidence
interval coverage rates and preserved Type 1 error (i.e.,
models 6 and 9). However, these models may be under-
powered for certain parameterizations of the fixed time
effects.

The proposed mixed-effects modeling framework dis-
cussed in this paper treats external factors as latent pro-
cesses; these are accounted for through the incorporation
of fixed and random time effects. This modeling strat-
egy is useful in practice because investigators are often
unaware of all external factors affecting the outcome, let
alone each cluster’s level of exposure to these factors.
For the models considered in this study, correct specifi-
cation of the fixed time effects were primarily responsi-
ble for the attenuation of bias in the intervention effect
estimate.
Our results also have potential implications for data col-

lection in stepped-wedge studies. As previously noted,
unbiased estimation of the estimands of interest in set-
tings of time-varying effect modification and early adop-
tion rely on assumptions about these effects. Information
collected during the study on the processes of interest
could also be incorporated in models. These processes
include potential confounding, early adoption, and effect
modification. Modeling these processes is more straight-
forward in a setting in which external events, such as
changes in insurance policy, cannot be affected by study
outcomes. Even if this condition holds, however, impor-
tant confounding factors may not be known and, even if
known, may not be easy to measure. For issues such as
early adoption of treatment, one must be concerned about
the potential “confounding by indication” wherein partici-
pants or their providers might make choices based on the
individual characteristics as they vary over time. In this
context, unbiased estimation of the average intervention
effect would require correct modeling of the mechanism
that leads to early adoption as a function of measured
confounders for early intervention [30].

Limitations and future research
An important limitation of the models we discussed in
this paper is that they assume the intervention effect
does not vary with time. Models attempting to account
for both secular trends which differ by intervention
group, and time-varying treatment effects, may lead
to unidentifiable intervention effect estimates. Further-
more, the approach discussed here is limited to GLMM.
Generalized estimating equations (GEE) also allow for
correlation in the outcomes, and are robust to misspeci-
fication of the covariance structure [31]. Ren et al. show
that GEE is more robust to model misspecification than
linear mixed models when the random intercepts dif-
fer by intervention group [29]. Furthermore, GEE’s lend
themselves naturally to development of doubly robust
estimators for application to data sets with missing obser-
vations. Future work is needed to explore the performance
of GEE models in the context considered here, where
secular trends in the control and intervention clusters
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arise from different mechanisms, and differentially impact
clusters within each group. Several nonparametric meth-
ods have also been proposed that use within-period
[3, 28, 32] or between period [3] comparisons to account
for confounding by time.While these models are robust to
misspecification of the random effects, the performance
of thesemodels when external factors differentially impact
intervention and control clusters, such as in the case of
early intervention adoption, has not been explored.
Although our paper focused on stepped-wedge designs,

the secular trends in outcomes induced by rising tides
and early intervention adoption may also be present in
other types of cluster randomized trials. Simulation stud-
ies are needed to determine the impact of such scenarios
on the bias of the intervention effect estimate, Type 1
error, and power in these settings.We note that Grantham
et al. establish a sufficient condition for when the choice of
time parameterization does not impact the variance of the
estimated intervention effect in cluster randomized trials
[27]. This information can be useful in the planning of
such trials.While Grantham et al establish that categorical
or linear fixed time effects do not impact the variance esti-
mator of the intervention effect in SWD, this was not the
case when group-by-time interaction terms were modeled
(as demonstrated by our simulation study). Future inves-
tigation is needed to establish sufficient conditions in the
presence of interactions.

Conclusion and recommendations
Stepped-wedge designs are particularly suitable for epi-
demic and pandemic settings, in which interventions need
to be implemented rapidly. In these settings, there is a high
probability of external implementation of other possible
interventions–or even components of the intervention
under study–while the trial is ongoing. As a consequence,
consideration must be given to these scenarios during
the planning stages. Our paper demonstrates that incor-
porating fixed and random group-by-time effects can
reduce bias in settings where external factors differentially
impact intervention and control clusters. As incorpora-
tion of such time effects is likely to impact power, power
calculations must take this into account. We note that for-
mulasmay not be currently available formodels withmore
complex random effect covariance structures - simulation
studies may be needed for accurate estimation of sample
size and power for such settings.
Models incorporating an unstructured covariance for

the random intervention-by-cluster-by-time interaction
effects are most effective in reducing bias, achieving nom-
inal confidence interval coverage, and preserving Type 1
error control; but they can lead to loss of efficiency in
analysis and reduce power when used in conjunction with
discrete fixed time effects. One strategy is to use fixed
parametric intervention-by-time effects with an unstruc-

tured covariance; such models perform reasonably well
in the scenarios considered here. Alternatively, one can
impose a more restrictive covariance structure such as
exponential decay over time, Hooper/Girling covariance,
or random slopes for time. To guard against potential
under coverage of confidence intervals and Type 1 error
inflation, randomization-based inference should be used
for such covariance structures [33, 34].
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