
TECHNICAL ADVANCE Open Access

Deep generative models in DataSHIELD
Stefan Lenz* , Moritz Hess and Harald Binder

Abstract

Background: The best way to calculate statistics from medical data is to use the data of individual patients. In
some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible
to pool routine data from different hospitals for research purposes without the consent of the patients.

Methods: The DataSHIELD software provides an infrastructure and a set of statistical methods for joint, privacy-
preserving analyses of distributed data. The contained algorithms are reformulated to work with aggregated data
from the participating sites instead of the individual data. If a desired algorithm is not implemented in DataSHIELD
or cannot be reformulated in such a way, using artificial data is an alternative. Generating artificial data is possible
using so-called generative models, which are able to capture the distribution of given data. Here, we employ deep
Boltzmann machines (DBMs) as generative models. For the implementation, we use the package
“BoltzmannMachines” from the Julia programming language and wrap it for use with DataSHIELD, which is based
on R.

Results: We present a methodology together with a software implementation that builds on DataSHIELD to create
artificial data that preserve complex patterns from distributed individual patient data. Such data sets of artificial
patients, which are not linked to real patients, can then be used for joint analyses. As an exemplary application, we
conduct a distributed analysis with DBMs on a synthetic data set, which simulates genetic variant data. Patterns
from the original data can be recovered in the artificial data using hierarchical clustering of the virtual patients,
demonstrating the feasibility of the approach. Additionally, we compare DBMs, variational autoencoders, generative
adversarial networks, and multivariate imputation as generative approaches by assessing the utility and disclosure of
synthetic data generated from real genetic variant data in a distributed setting with data of a small sample size.

Conclusions: Our implementation adds to DataSHIELD the ability to generate artificial data that can be used for
various analyses, e.g., for pattern recognition with deep learning. This also demonstrates more generally how
DataSHIELD can be flexibly extended with advanced algorithms from languages other than R.

Keywords: Privacy/statistics and numerical data, Biomedical research/methods, Deep learning, Distributed system

Background
In large consortia, pooling of individual level data is
often not possible due to data security and data pro-
tection concerns. Thus, techniques for distributed
privacy-preserving analysis are needed. For example,
the MIRACUM consortium [1], a joint project of ten
university hospitals in Germany, aims to show how

patient data that are distributed across sites can be
jointly analysed. In this consortium, a particular goal
is to apply advanced machine learning techniques for
identifying complex interaction patterns in medical
data.
One general way to enable such analysis techniques on

distributed data is to use a synthetic data approach. Syn-
thetic datasets mimic statistical features of the original
data without any linkage to individuals in the original
data. These synthetic data can then be shared across the
sites for joint analyses. For simple statistical analyses,

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: lenz@imbi.uni-freiburg.de
Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical
Center – University of Freiburg, Freiburg, Germany

Lenz et al. BMC Medical Research Methodology (2021) 21:64
https://doi.org/10.1186/s12874-021-01237-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01237-6&domain=pdf
http://orcid.org/0000-0001-9135-1743
http://orcid.org/0000-0003-4021-1796
http://orcid.org/0000-0002-5666-8662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lenz@imbi.uni-freiburg.de

this approach has been found to work well [2–4], and
there are even commercial offerings for business data
[5]. Multivariable statistical analyses are also feasible. For
example, an approach using bivariate copulas can recre-
ate complex marginal distributions and provide results
similar to the original data when using multivariable
linear mixed regression for analysis [6].
However, it is still not fully resolved how to create

synthetic data that also reflect complex patterns, which
might then, e.g., be analysed using machine learning
tools. This may require more complex approaches to
generate the synthetic data. Generative adversarial net-
works (GANs) [7], among other generative approaches
[8], have been proposed as a solution. In particular,
generative deep learning approaches might be useful, as
they can represent complex patterns [9] and have been
shown to be feasible for small sample sizes [10, 11].
Correspondingly, we decided to develop an implementa-
tion for artificial data based on deep learning within the
DataSHIELD framework for distributed analysis. Data-
SHIELD [12] is a software tool used in many multicentre
studies for distributed privacy-preserving analysis, and
which offers many statistical tools for researchers. Its
implementation is based on meta-analysis techniques or
parameter estimation via distributed calculation. A
synthetic data approach in DataSHIELD will thus pro-
vide even more flexible data analysis tools to an already
very active user community.
In the following, we present the implementation of

our approach using deep Boltzmann machines (DBMs)
[13] as generative models in DataSHIELD. Deep
Boltzmann machines were chosen as generative models
for synthetic data on the basis of their good performance
on data sets with small sample sizes, also compared to
variational autoencoders (VAEs) and GANs [10, 11].
This is of particular importance, e.g., when the overall
sample size is moderate, but sample size per site is small.
We implemented the algorithms for fitting DBMs in the
Julia programming language [14], which is, compared to
R, better suited for implementing deep learning algo-
rithms. To access the algorithms in DataSHIELD, we in-
tegrated them in the statistical analysis environment R
[15], which is the basis for DataSHIELD, via a package
for interfacing Julia and R.
We demonstrate our approach based on genetic vari-

ant data, specifically single nucleotide polymorphism
(SNP) data. Similarly to electronic patient records, these
contain highly sensitive information about individuals,
and are therefore particularly interesting for distributed
privacy-preserving analyses. We also show the feasibility
of the approach with empirical studies investigating dif-
ferent numbers of sites and sample sizes per site in a dis-
tributed analysis, and compare our approach to other
types of generative models, namely GANs, VAEs, and

additionally multivariate imputation by chained equa-
tions (MICE).

Methods
DataSHIELD
DataSHIELD is open-source software that is already
used in the field of epidemiology for the analysis of
multi-centre cohort studies. Analyses in DataSHIELD
are performed without individual data leaving the sites.
This is possible by using reformulated algorithms that
solely rely on aggregated statistics. Only those aggre-
gated statistics leave the sites and are used to calculate
the final result. In this way, the DataSHIELD software al-
lows users to perform several types of descriptive statis-
tics and standard statistical models. For example, it is
possible to compute linear regression models via Data-
SHIELD on data sets that are distributed among several
sites, and get the same results as with pooled data. The
user can access the DataSHIELD functionality by using
functions of specific packages in the R programming lan-
guage [15].
The Opal web server software [16], running in separ-

ate instances at each of the sites participating in a feder-
ated analysis, provides the decentralised data. Its
interface is secured by authentication and authorization.
Some users may have the right to view data, while others
may only access aggregated data by calling specific R
functions that are approved by the organisation operat-
ing the Opal instance. These R functions, most of which
are collected in packages specifically for use in Data-
SHIELD, must only return data that does not disclose
information about individuals. The official DataSHIELD
packages are designed and reviewed specifically to min-
imise the disclosure risk. In addition to the existing
package ecosystem, the infrastructure is extensible and
allows developers to write their own R packages, which
then can be installed by administrators of Opal
instances.

Deep Boltzmann machines (DBMs) as generative models
The goal of generative models is to capture the probabil-
ity distribution of multiple variables in a model, allowing
new samples to be drawn from the model according to
this distribution. Generative models are trained in an
unsupervised manner with data from the original distri-
bution as input. In many cases, they can also be used to
find higher-level representations of the data [9] by ana-
lysing the model parameters.
Here, we will focus on deep Boltzmann machines as

generative models. General Boltzmann machines are sto-
chastic neural networks whose nodes have an activation
probability p(v, h) that is determined by the energy func-
tion E of the network.

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 2 of 16

p v; hð Þ ¼ e − E v;hð Þ

Z
with Z ¼

X

v;h

e − E v;hð Þ

Thus, Boltzmann machines are so-called “energy-
based” models. The nodes are divided into two groups.
The visible nodes (v) receive the data input, while the
hidden nodes (h) encode latent variables of the data.
The normalization constant Z is also called the partition
function. Due to the large number of terms in the sum
for Z, which runs over all possible configurations of acti-
vations of nodes, computing the real value of the prob-
ability is too complex for most use cases. In practice,
Gibbs sampling is used instead to sample from the
model. With Gibbs sampling, it is also easy to sample
conditionally on specific variables, which makes it pos-
sible to use Boltzmann machines as generative models in
“what-if” scenarios. For example, in a medical setting, a
Boltzmann machine trained on patients’ diagnoses can
be used to generate synthetic patient data with specific
disease patterns, even if these patterns are relatively rare
in the original data. A use case for this may be to simu-
late a population of patients for planning a new study.
The network of general Boltzmann machines is a

complete undirected graph, where all nodes are con-
nected to each other (see Fig. 1 a). A first step in making
Boltzmann machines practically usable was to use
restricted Boltzmann machines (RBMs). These restrict
the connections in the graph, disallowing connections
between visible nodes as well as connections between
hidden nodes. Thereby, the graph of the network forms
a complete bipartite graph that partitions the set of ver-
tices into the set of visible nodes, the visible layer, and

the set of hidden nodes, the hidden layer (see Fig. 1 b).
This allows for the rapid calculation of the conditional
probabilities because in this case it is possible to derive
simple formulas for the conditional probabilities, which
can be calculated for all nodes in a layer in a vectorised
way. This is the basis for an effective training algorithm
for RBMs called contrastive divergence [17]. RBMs can
also be used as generative models but the restrictions on
the connections in the network also limit their power to
model distributions.
Subsequently, it was discovered that stacking restricted

Boltzmann machines on top of each other (see Fig. 1 c)
by training the next restricted Boltzmann machines with
the hidden activations of the previous one enabled the
networks to learn features of increasing abstraction. The
resulting model is a deep belief network (DBN), and the
training procedure is called greedy layer-wise training
[18]. Although their architecture is well suited for di-
mension reduction, DBNs are less powerful than the
next stage of development, the deep Boltzmann ma-
chines (DBMs). Deep belief networks can be used as
generative models by sampling in the last restricted
Boltzmann machine and then using the conditional
probabilities to propagate the activation to the visible
nodes. This way, the full information of the network is
not harnessed equally to generate new samples. Deep
Boltzmann machines, on the other hand, have the same
network layout as deep belief networks, but generate
samples employing the full network. This is similar to a
general Boltzmann machine, albeit restricted to a layered
layout. For training, DBMs are optimised with an algo-
rithm for maximising the variational lower bound of the
likelihood in the Boltzmann machine model. This

Fig. 1 Overview of different types of Boltzmann machines. The visible nodes are depicted as doubled circles, hidden nodes are single circles. a:
General Boltzmann machine, with all nodes connected to each other. b: Restricted Boltzmann machines, with two layers of nodes. c: Deep belief
network (DBN) or deep Boltzmann machine (DBM), consisting of multiple layers. The architecture of DBNs and DBMs is the same but the
algorithms for training and sampling are different

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 3 of 16

algorithm is also referred to as fine-tuning because
greedy layer-wise pre-training is carried out to provide a
good starting point for the variational likelihood algo-
rithm, which would otherwise not succeed in finding a
good local optimum.
Due to the intractable nature of the partition function,

monitoring the optimisation process and evaluating the
resulting model is difficult. For restricted Boltzmann
machines, the reconstruction error is a proxy measure
that follows the likelihood of the model very well. It is
calculated by taking the data as activation of the visible
nodes, calculating the probabilities for the activations in
the hidden layer conditioned on the data input and then
again calculating the probabilities of the visible layer
conditioned on the hidden probabilities. This last result
is called the reconstruction of the data input. The recon-
struction error is the distance to the original data. It can
also be used to monitor the greedy layer-wise training of
deep belief networks and for the pre-training of deep
Boltzmann machines.
With a stochastic algorithm called annealed import-

ance sampling (AIS), it is possible to estimate the likeli-
hood of restricted and deep Boltzmann machines [19]. It
is needed in particular to measure the training objective
of DBMs, the variational lower bound of the likelihood.
We employ a package for the Julia programming

language [14] that implements these algorithms and pro-
vides a user-friendly interface for training and evaluating
deep Boltzmann machines [20]. Further on, we show
how we integrate this with the DataSHIELD software
and concept.

Implementation of deep Boltzmann machines in
DataSHIELD
The developed software allows users to remotely train
deep Boltzmann machines without requiring the users to
have access to the individual-level data. Trained models
can be used, e.g., to generate synthetic data as depicted
in Fig. 2.
We provide our implementation of DBMs in Data-

SHIELD as open-source software. It consists of a client-
side R package [21] and a server-side R package [22] that
can be installed in an Opal server and called from the
client-side. The server-side needs Julia with the package
“BoltzmannMachines” installed in addition. The func-
tionality of the “BoltzmannMachines” Julia package is
imported into R via the “JuliaConnectoR” R package
[23]. This provides a generic interface that allows the
use of Julia functions in R and thereby makes it possible
to obtain the speed advantages of the Julia code while
using the DataSHIELD R interface.
According to the design principle of DataSHIELD, the

parts of the algorithms that need access to individual-
level data are executed on the server-side, where the
data is stored, and only aggregated data leaves site. Our
approach follows this principle. The training procedure
for the DBMs, which needs access to individual-level
data, is performed on the server-side. Only the generated
synthetic data and information for monitoring the train-
ing success are communicated with the client.
From a technical perspective, it is straightforward to

also transfer the models themselves outside via Data-
SHIELD, because the DataSHIELD infrastructure can

Fig. 2 Applying the DataSHIELD principle in working with synthetic data from generative models. The standard DataSHIELD approach is depicted
in panel a: The researcher sends a request via the DataSHIELD infrastructure (1). The sites then calculate aggregated statistics (2) and return them
to the researcher (3). These statistics do not allow conclusions about individual patients, but can be used to derive useful information about the
population (4). When working with generated models and synthetic data (panel b), the workflow is similar. The researcher requests the training of
a generative model (1). Once the model has been trained on the server side with access to the individual-level data (2), synthetic samples can be
generated (3). The researcher can use the synthetic data to conduct further analyses (4)

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 4 of 16

transfer arbitrary R objects to the client. It is the respon-
sibility of the developers of DataSHIELD functionality to
ensure that the returned values do not disclose sensitive
information about individuals. For basic aggregated sta-
tistics it is possible to prove mathematically how much
information about individuals is contained. For neural
networks, this is very hard because they are so complex
and usually consist of a very high number of parameters.
In many cases, the number of parameters is even higher
than the number of data points in the training data itself.
Thus, it is very hard to prove that a neural network can-
not be hacked. Model inversion attacks, which aim to
extract information about individual data sets from
trained models, are being researched and developed [24].
Therefore, we do not allow the transfer of the models by
default, but give data custodians the option to explicitly
allow this in the Opal server environment if there is
enough trust in the given setting.
An additional challenge, common to all neural net-

works, is the extensive hyperparameter tuning that the
training requires. Table 1 gives an overview of the tuning
parameters for training a DBM (see function “ds.moni-
tored_fitdbm” in Table 2). As shown in Fig. 3, the num-
ber of epochs and the learning rate, together with the
model architecture, are parameters that are highly im-
portant for successful training. These parameters must
be tuned individually for different data sets, as the learn-
ing rate depends on how informative the different sam-
ples are, and the number of epochs must be adjusted
accordingly. The architecture must be deep enough to
be able to capture the important structure. At the same
time, the model should not have too many parameters
to avoid overfitting and computational costs. To choose
these parameters, our software provides different metrics
to assess the model quality during and after the training.
It offers functions to estimate the likelihood (for RBMs
and DBMs) and the lower bound of the likelihood (for
DBMs) via AIS. For smaller models, it is also possible to
calculate the likelihood exactly. These evaluations can be
collected during training to monitor its success. The
monitoring output can be transferred and displayed to

the DataSHIELD client without privacy issues, even if
the number of training attempts is high, because it does
not contain information about individual patient data. In
this way, the user can see the performance and select
good hyperparameters without having direct access to
the models. After a successful training, the final model
can then be used to generate synthetic data that is
handed to the researcher.

Benchmarking of generative performance
For quantifying the quality of samples, i.e. how well
these match the target distribution, Goncalves et al. [8]
proposed to use the Euclidean distance of the pair-wise
correlation matrices computed from original observa-
tions and generated synthetic data. Here, we employ a
similar approach but use odds ratios instead of correla-
tions. Odds ratios indicate the pair-wise association of
binary variables and are directly related to the probabil-
ity of observing a state for a variable conditional on the
state of another variable. Since we study binary SNP
data, compared to correlations, odds ratios can be inter-
preted more easily in this scenario. Further, odds ratios
are closely linked to logistic regression as a standard
analysis technique.
We evaluate the generative performance of the models

similar to our approach in Nußberger et al. [11]. Specif-
ically, we compute the matrices of pair-wise odds-ratios
for all variables separately for a validation data set xval
and a generated data set xgen. (To get finite values for
the odds ratios in all cases, zeros in cross tables are re-
placed with the value 0.5.) We then compute the loga-
rithm (log) of the odds ratios. Since the resulting
matrices of log odds ratios are symmetric, we only use
the lower half of the matrices to compute the value
d(xgen, xval) as the rooted mean squared error (RMSE)
between the resulting log odds ratios in generated and
original data. The resulting value of d(xgen, xval) indicates
the distance between a generated data set and a valid-
ation data set based on the pair-wise odds ratios in the
respective data sets.

Table 1 Most important hyperparameters for fitting a DBM. These parameters can be specified in the function
“ds.monitored_fitdbm” (see Table 2). The parameters for pre-training can also be controlled individually for each layer (i.e. for each
RBM in the stack) via the function “ds.bm.defineLayer”. Together with the function “ds.bm.definePartitionedLayer”, this allows to also
create models with partitioned architectures

Hyperparameter name Meaning of hyperparameter

learningrate Learning rate for stochastic gradient descent optimization

learningratepretraining Learning rate for pre-training, may be specified separately

epochs Number of training epochs

epochspretraining Number of epochs for pre-training, may be specified separately

nhiddens Number of hidden nodes specified as a vector of numbers, containing one number for each hidden layer

batchsizepretraining Batch size used in pre-training

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 5 of 16

Measuring disclosure
Similarly to Goncalves et al. [8], we want to compare the
models not only by measuring their performance but also
with respect to privacy. Here, we want to consider member-
ship privacy in particular. This privacy notion stems from
privacy breaches where attackers could identify individuals in
published, supposedly anonymized data sets [25]. Metrics for
membership privacy measure the amount of information
about individuals from the input data set that is contained in
a model or in the output of a model. Differential privacy is a
special type of these metrics. Intuitively, an algorithm satisfies
differential privacy with some pre-specified boundary ε, if a
single input vector does not change the result more than it is
allowed by that boundary. This can be achieved by adding
noise and clipping the gradients in the optimisation proced-
ure of neural networks [26]. This, of course, reduces the
quality of the resulting model fit. Another problem of differ-
ential privacy, which has not been solved yet, is a standar-
dised way for determining a value for the parameter ε that is
sufficient for, e. g., applications in health care [27]. Instead,
we use simpler, alternative disclosure metrics for measuring
membership privacy here.
One approach for this is to take a look at the amount

of overfitting in the model, i.e., the extent to which a
model captures the information about the individuals
used for training better than the information about the
general underlying structure. For measuring this extent,
we define the proportion of overfitting as

d xgen; xval
� �

− d xgen; xtrain
� �

d xgen; xval
� � : ð1Þ

The respective data sets are the training data set
xtrain, the validation dataset xval, and the set of
generated data xgen. The proportion of overfitting

indicates how well the model has learned the training
data compared to the validation data. The higher it
is, the more the model has learned about specific
details of the training data rather than about the
underlying structure of the data. If the model learns
too much about the specifics of the training data set,
the probability of disclosure of information about
individuals contained therein increases. If, however,
the model fit is equally good on training and valid-
ation data, the model has only captured more general
information of the data that is not tied to a particular
collection of individuals. Therefore, the proportion of
overfitting can be used as a rough metric to compare
the different generative models with respect to mem-
bership disclosure.
Additionally, we simulate a form of a membership

attack [8, 28] for measuring the disclosure risk. For this
simulation we use a training data set, a test data set of
the same size as the training data set, and a generated
data set. The attacker guesses whether a certain given
sample is a training sample by whether there is a gener-
ated sample in a pre-specified distance of the given
sample. The distance between samples is measured here
as the absolute-value norm, which is equivalent to the
Hamming distance for binary vectors. For each sample
in the training data set, the attacker may guess right
(true positive) or wrong (false negative). Analogously, for
each sample in the test data set, the attacker may guess
right (true negative) or wrong (false positive). We
summarize the success of the attacker by reporting pre-
cision and sensitivity of the guesses that are performed
with each sample in test and training data. The quality
of the guess depends on the number of generated sam-
ples and the chosen distance. We use generated data of
the same sample size as the training data (500). An ideal

Table 2 Overview of client-side functions for training and using DBM models

Function name Short description

ds.monitored_fitrbm Monitored training of an RBM model

ds.monitored_stackrbms Monitored training of a stack of RBMs. Can be used for pre-training a DBM or for training a DBN

ds.monitored_fitdbm Monitored training of a DBM, including pre-training and fine-tuning

ds.setJuliaSeed Set a seed for the random number generator

ds.dbm.samples/
ds.rbm.samples

Generate samples from a DBM/RBM.
This also allows conditional sampling.

ds.bm.defineLayer Define training parameters individually for a RBM layer in a DBM or DBN

ds.bm.definePartitionedLayer Define a partitioned layer using other layers as parts

ds.dbm.top2LatentDims Get a two-dimensional representation of latent features

ds.rbm.loglikelihood Estimates the partition function of an RBM with AIS and then calculates the log-likelihood

ds.dbm.loglikelihood Performs a separate AIS run for each of the samples to estimate the log-likelihood of a DBM

ds.dbm.logproblowerbound Estimates the variational lower bound of the likelihood of a DBM with AIS

ds.rbm.exactloglikelihood/
ds.dbm.exactloglikelihood

Calculates the log-likelihood for a RBM/DBM (exponential complexity)

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 6 of 16

value for the distance is not known to the attacker.
Therefore, we report the outcome for multiple values.

Comparing DBMs with other deep generative models and
multivariate imputation
In addition to DBMs, we also consider variational
autoencoders (VAEs) [29] and generative adversarial
networks (GANs) [30] as state-of-the-art generative
models for comparison. Both models are, in contrast
to the DBM, feed-forward neural networks and can
be trained with a backpropagation algorithm [31].
Although the gradients are computed differently,
DBMs, VAEs and GANs are all optimised via variants
of gradient descent. This means that the number of
training epochs and the learning rate are important

hyperparameters. We account for this in our experi-
mental setup by choosing a sufficiently small learning
rate and evaluate the models at each epoch, finally
choosing the model with the best performance. For
the implementation of the training of VAEs and
GANs, the model architectures, and the choice of the
hyperparameters, we rely on Nußberger et al. [11],
where we evaluated approaches on similar data. The
complete code is available from GitHub [32] and em-
ploys the Julia package “Flux” [33] for building and
training the networks.
We additionally use the MICE method (Multivariate

Imputation by Chained Equations) via logistic regres-
sion. The algorithm for computing such a generative
MICE model is as follows [8]:

Fig. 3 Example code for training a deep Boltzmann machine and using it as a generative model. First, the user needs to log in to the Opal
server, where the data is stored. If the specified data set is available, and the user has the correct access rights, the data set is loaded into the R
session. The loaded data can be split into training and test data before the training. In the subsequent call to the fitting function, which by
default also collects monitoring data from the training, the most important parameters for training a DBM are included. The numbers of hidden
nodes for each of the hidden layers (“nhiddens”) determine the model architecture. The learning rate and the number of epochs for pre-training
and fine-tuning of the DBM are the most important parameters for the optimisation procedure. If a good solution has been found, the model
can be used to generate synthetic data and return it to the client

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 7 of 16

1. Define a (random) order of the variables.
2. Estimate p(v1). For binary variables, this means

simply calculating the frequency.
3. Calculate logistic regression models R2, …, Rn with

independent variables v1, …, vn − 1 and dependent
variable vn. (In our implementation, the variables
are added consecutively to the model. If adding a
variable leads to collinearity in the model, the
variable is left out in this model and in all further
models as independent variable. Also, if vn is
constant, this constant is simply used as prediction
without fitting a regression model.)

Then data can be generated using this model by at
first sampling ~v1 according to p(v1) and then iteratively
sample ~vn according to the probability predicted by
regression model Rn using ~v1;…;~vn − 1.
To have a measure for a baseline performance, we use

the method of independent marginals (IM) [8]. It uses
only the estimated mean probability of each variable in
the data set to generate synthetic data that are independ-
ent in all of the variables. In particular, for Bernoulli dis-
tributed, binary variables, a value of 1 is generated with
a probability equivalent to the frequency in the empiric-
ally observed data.

Results
As exemplary applications, we consider genetic variant
data, so-called SNPs (single nucleotide polymorphisms).
One main goal of deep learning on genetic data is to un-
cover interactions between genetic mutations that lead
to certain (pathological) phenotypes. Particularly inter-
esting are cases with many interacting mutations that
are jointly responsible for a resulting phenotype. These
cases are hard to detect with univariate testing of SNPs,
which is used in genome-wide association studies
(GWAS).
The analysis of genetic data is a relevant scenario for

distributed privacy-preserving analyses because genetic
data contains highly sensitive information about individ-
uals, which cannot be shared easily across sites. More-
over, it is still expensive to produce this kind of data, so
relatively few samples exist for many research questions.
Therefore, this is a good use case for DBMs, which have
been proven to be useful in this setting [10, 11].

Example using simulated SNP data
Firstly, we conducted an experiment with simulated data
to show that is it possible to learn and reproduce
higher-level patterns employing DBMs in SNP-like data
sets and evaluated their performance as generative
models in this setting, showing the effect of the available
sample size in particular (see Fig. 4). The artificial data
set for our experiment consisted of binary data mostly

consisting of zeros with some noise added from a
Bernoulli distribution with a probability of 0.1. There are
50 SNP variables in total. The 500 samples are split
equally into “cases” and “controls”. The “cases” have
groups of five ones at five possible “SNP sets” among the
50 SNP variables. Such a SNP set, consisting of five SNP
variables, could correspond to mutations that may
deactivate a certain pathway, when they occur together.
In this experiment the randomly generated data set is

split equally onto a number of virtual sites, where
models are trained and then used to generate new data.
This new data can then be visually compared with the
original data (see Fig. 4).
The results of the experiment are shown in Fig. 5. The

higher-level patterns, which here are the arrays of co-
occurring SNPs, are preserved in the synthetic data, even
in the case of 20 sites having only 25 patients. However,
one can observe that the noise in the sampling output
increases as the same amount of samples is distributed
among a growing number of sites. Further, it is notable
that there is some price to pay for using synthetic data
since the output is not exactly the same as the input (see
Fig. 5, e.g. comparing panels A and B).
For training the DBMs, we used two hidden layers

comprising 50 and 10 nodes. We pre-trained the DBMs
for 30 epochs with a learning rate of 0.001 and fine-
tuned them with another 30 epochs and a learning rate
of 0.1. To provide a rough idea of the time needed to
train DBMs with our software, we measured the execu-
tion time, using the data set with 50 variables and 500
samples on a standard desktop computer with an Intel
Core i5–4570 processor with 3.2 GHz, and running the
DataSHIELD server in a virtual machine with only 1
CPU. The fitting of the DBM without monitoring took
1.7 s. The training took about 5.8 s with monitoring per-
formed on the training data set and a test data set of 100
samples. (The times were measured after a first training
run in the session to eliminate the precompilation time
of the code in Julia.) The training time scales linearly
with the number of samples, and it scales quadratically
with the number of variables, if the number of hidden
nodes is adjusted proportionally. With the number of
samples scaled up to 2500, the training time became 11 s
with monitoring and 5.2 s without monitoring for the
data set with 50 variables. For 2500 samples, 500
variables, and two hidden layers of 500 and 100 hidden
nodes we measured 4.6 min with monitoring and 2.9
min without monitoring for the training time of the
DBM.

Application on real SNP data and comparison with other
generative models
To evaluate the performance of distributed analysis of
SNP data based on real data, we consider human SNP

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 8 of 16

data as provided in the 1000 Genomes Project [35]. In
total, 5008 chromosomes from 2504 individuals are
available [36]. The 1000 Genomes data, which are also
employed to impute missing loci in genome-wide associ-
ation studies [37], were retrieved from a website pro-
vided for the IMPUTE software [38]. Since the data are
presented in haploid form, they consist of binary vectors
where ‘1’ and ‘0’ indicate the minor and major allele
respectively.
We removed variants with a minor allele frequency

(MAF) below 0.2 to avoid absent minor alleles in small
sub-samples occurring in our small sample-size scenario.
30 loci on chromosome 6, each spanning 50 SNPs, were
randomly selected and were further used to benchmark
our approach. Each chromosome is considered one
sample in our analysis.
To compare the performance of DBMs with GANs,

VAEs and MICE on this data, we used an experimental
setup similar to the one shown in Fig. 4. We split each
of the 30 data sets from the 30 different loci into a
training data set xtrain with 500 samples, a test data set
xtest with 100 samples and a validation data set xval with
1000 samples. These data sets are non-overlapping

random subsamples of the original data set. The training
data set is divided equally across the sites. As shown in
Fig. 4., the generated data xgen is obtained by combining
the generated data from the models on the different
sites, which have been trained on their share of the
training data. Hyperparameter optimization is performed
with respect to the RMSE between the log-odds in the
generated data and the test data d(xgen, xtest). Subject to
hyperparameter optimization are the range of training
epochs (up to 2000) and the initialization of the model
parameters (15 different random initializations). Only
the set of models with the best performance, i.e. the low-
est distance of log odds in the validation set and the gen-
erated combined data set, is shown, resulting in one data
point for each combination of data set and model type.
The summary of these results is shown in Fig. 6, Fig. 7,
Fig. 8, Fig. 9, and Table 3.
The architectures for the models are chosen as in

Nußberger et al. [11], with a similar number of hidden
nodes in the different models. The code for the experi-
ment is also adapted from there and can be found on
GitHub [32], together with the data. The code is written
entirely in Julia, without using DataSHIELD, as there are

Fig. 4 Sketch of the experimental setup for the comparison of original and generated data. In the first step, the original data is split into a
number of smaller data sets, which are distributed in equal shares, consisting of consecutive parts of the data set, to the virtual sites. (For
simplicity, only two sites/clinics are shown.) In step 2, separate generative models are trained at each site on their share of the data. In step 3,
synthetic data are generated by each of the models and compiled to again form one overall data set. This synthetic data set will be visually
compared to the original data set. For the results, see Fig. 5 below

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 9 of 16

no corresponding packages for the other approaches in
DataSHIELD yet. Running the complete experiment for
producing the plot took 25 h on a cluster of three com-
puters with 8, 12, and 28 cores with clock speeds of
about 3 GHz and at least than 8 GB RAM per core.
In the results of the experiment shown in Fig. 6 and

Table 3, we can see that both DBMs and VAEs signifi-
cantly outperform the GAN and the MICE approach in
terms of the generative performance, measured by the
RMSE of the log odds ratios. DBMs and VAEs show a
comparable performance. With respect to the proportion
of overfitting (see Fig. 7 and Table 3), the DBM is com-
parable or better than the VAE in our scenario in all
sample sizes. In the scenario with one site and 500
samples, the DBM and the other neural networks overfit
slightly more than the MICE method. In the settings
with up to 250 samples per site, the DBM exhibits less

overfitting than MICE. This is remarkable as it indicates
that the synthetic data generated by the DBM can
generalize the structure from the training data equally
well as sequences of logistic regression models fitted on
the data. In the extreme setting with 20 sites, i.e. only 25
samples and 50 variables, we can observe that overfitting
becomes very strong in all kinds of approaches, which
probably would result in the disclosure of too much in-
formation about the training data.
A higher disclosure risk for the more complex models

cannot be seen in the results of the membership attack
(see Fig. 8 and Fig. 9). The precision of detecting
whether a sample is a training sample is very near to 0.5,
i.e., a random guess, for DBMs and VAEs as well as for
GANs, IM, and MICE (see Fig. 8). With an increasing
number of sites, the precisions of attacking GANs and
IM get unstable but are generally centred around 0.5 as

Fig. 5 Hierarchical clustering view of a data set and associated synthetic data sets. The rows are the patients and the columns are the variables.
The rows are clustered hierarchically [34]. Panel a shows the original data set, panel b shows data generated from one DBM that has been trained
on the original data. Panels c and d show outputs of the experiment conducted with 2 and 20 sites, respectively. The SNP sets with the five
consecutive 1s appear as black blocks in the hierarchical clustering view. The vertical positions of the black blocks change across the different sub
plots because the noise in the other variables also influences the clustering. The horizontal position of the blocks, which is determined by the
position of the genetic features, is the same in all four plots

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 10 of 16

well. In contrast, the precisions for DBMs and VAEs are
very stable across varying sample sizes and numbers of
sites with very few outliers.
For DBMs and VAEs, the sensitivity of the member-

ship attack (see Fig. 9) is generally high and only slightly
affected by the number of sites. For GANs, IM, and
MICE, however, the sensitivity is relatively poor. The
decrease of the sensitivities for the GANs with an
increasing number of sites (and samples per site) points
to the fact that fitting the GANs becomes increasingly
harder with smaller sample size. More generally, the sen-
sitivity can also be regarded as a measure for the per-
formance on the training set because it measures how
near generated samples are to training samples on the
whole. If there are only few true positives and false

positives, i.e., if the generated samples are mostly far
away from either training or test samples, the variance
of the precision gets higher. The higher variability in the
precision of GANs, IM and MICE can therefore be
explained by their worse overall performance as genera-
tive models in this setting.
The results for DBMs and VAEs for the sensitivity are

also in concordance with their behaviour concerning the
RMSE of odds ratios as performance criterion: While
DBMs and VAEs display a very similar performance
regarding the performance on the validation data, VAEs
have a slightly higher sensitivity in the settings with one
to five sites. This indicates a slightly higher performance
for VAEs on the training set, which is in line with a
higher amount of overfitting.

Fig. 6 Performance comparison of the different model types based on odds ratios. The performance is quantified by the distance (rooted mean
squared error) between log odds ratios computed from generated samples and validation data. Each model is evaluated on the same 30
different data sets. Each of the 30 data sets contains genetic variation data from 50 SNPs from randomly selected genetic locations. As shown in
Fig. 4, the original data sets with 500 samples (chromosomes) are equally split into two, five and 20 sites, respectively. Results are shown for the
combined generated data sets collected from the sites

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 11 of 16

Discussion
While synthetic data are a promising option for enabling a
broad set of statistical analyses in a distributed setting, an
accessible implementation is currently lacking. We
described an extension of the popular DataSHIELD frame-
work for distributed analysis under data protection
constraints. In particular, we leveraged generative deep
learning for obtaining synthetic data. To make these algo-
rithms available in DataSHIELD, we established a connec-
tion from the R environment, which is the basis of
DataSHIELD, to the Julia language, which is better suited
for implementing deep learning algorithms. To the user,
this complexity is masked via a convenient R package.
We chose deep Boltzmann machines (DBMs) as

generative models to be implemented in DataSHIELD
because of their advantages in certain use cases. As

shown in our feasibility study, DBMs can deal with a low
number of training samples and are hard to overfit. This
makes them especially suitable for distributed settings
with small data sets at each of the sites. Nevertheless, it
is possible to train the DBMs also on data sets with a
large number of samples as the training time scales
linearly with the number of samples. Another area in
which DBMs excel is conditional sampling, which can be
implemented in a straightforward way using Gibbs sam-
pling. A possible application of conditional sampling is
using a DBM trained on gene expression data, to simu-
late the up-regulation of one pathway and observe
changes in the expression of other genes. Another
example could be to generate data for medication or
comorbidities conditioned on diagnoses in data from
electronic health records.

Fig. 7 Proportions of overfitting in the models. Overfitting is indicated by a reduction in the distance of the log odds between generated data
and the training data relative to the validation data. (See formula (1) in the methods section for a formal definition.) Positive values indicate
overfitting, while negative values indicate that the approach performed actually better on the validation data than on the training data. All data
points shown relate to the same data and model configurations that produced the results in Fig. 6

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 12 of 16

In recent years, other generative models, most
importantly generative adversarial networks (GANs)
[30] and variational autoencoders (VAEs) [29, 39],
have become popular and have been proven to work
well, particularly on large data sets. In contrast to
deep Boltzmann machines, which rely on Markov
Chain Monte Carlo methods to be trained, GANs
and VAEs are trained using backpropagation of er-
rors, requiring a different implementation approach
for the training. Anyway, the methodology of train-
ing generative models at the different sites, returning
only learning curves and synthetic data via the Data-
SHIELD infrastructure, as done in our implementa-
tion with DBMs, can be extended to all types of
generative neural network models. For models that
are not directly available in R, wrapping techniques
can be used to make them available in DataSHIELD,

as demonstrated here with the JuliaConnectoR for
connecting R to Julia. Due to the good performance
of VAEs, we also plan to implement VAEs as
generative models in DataSHIELD, and to combine
the different types of approaches to minimize the
bias in generated data.
The results of our empirical investigation with simu-

lated data showed that some structure is maintained
even with very small sample sizes, but performance
could potentially still be improved. For example, parti-
tioning of layers can be used to further decrease the
number of samples needed to find informative structure
in the data [10]. The visual inspection of the samples in
the hierarchical clustering shows the utility of the gener-
ated data for clustering. The performance of the DBM
with respect to the error in the odds ratios indicates also
the usability of the generated data for performing other

Fig. 8 Precisions of distance-based membership attacks. The numbers on the x-axes indicate the Hamming distances. All data points correspond
to the same data and model configurations that produced the results in Fig. 6

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 13 of 16

types of analyses, such as logistic regression, where the
odds ratio is used as a score to describe the effect of one
variable on another.
The results of the simulated membership attack do

not show a higher disclosure risk for DBMs and
VAEs compared to the simpler methods MICE and
IM. We also provide another disclosure analysis
based on the degree of overfitting of the studied
approaches. Compared to the differential privacy
measure ε and the simulated membership attack, this
approach does not rely on a potentially arbitrary
threshold and instead directly indicates if a model
has a tendency to focus on highly specific details, i.e.
to copy the data, which could easily be exploited for
identifying individuals based on synthetic data. In
fact, quantifying overfitting has already been
employed to detect data copying by generative

models used for generating synthetic images [40].
Based on the degree of overfitting and the simulated
membership attack as disclosure analyses, we show
that the DBM does not leak more information about
the individuals in the training data than could be ex-
tracted via a sequence of logistic regression models
such as in the MICE method. It can be argued that
this may suffice, since logistic regression results are
also allowed to be communicated in DataSHIELD
[41]. Therefore, this level of data protection may suf-
fice if the data is only analysed by a defined user
group that agreed to a certain code of conduct. This
may apply to the use of DataSHIELD in a defined
research context. Yet, for data that is to be released
to the public without any restrictions, there probably
need to be stricter requirements for privacy. Assert-
ing absolute levels of privacy such as ε-differential

Fig. 9 Sensitivities of distance-based membership attacks. Same as in Fig. 8, the numbers on the x-axes indicate the Hamming distances, and all
data points correspond to the same data and model configurations that produced the results in Fig. 6

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 14 of 16

privacy with a certain ε would certainly be desirable
in such a case, even if the value of ε is still an open
topic and there is no standard value for it such as,
e.g., for the 0.05 significance level.

Conclusions
With the presented extension to the DataSHIELD soft-
ware, we add the possibility of generating artificial data
sets that preserve the higher level patterns from individ-
ual patient data that may be distributed among different
sites. These generated data sets can then be analysed to
extract patterns from the original data without access to
individual patient data. The results presented here indi-
cate that our proposed approach is ready for use in real
world applications. This is facilitated by the user-friendly
design of our implementation complemented by exten-
sive documentation. More generally, the proposed im-
plementation provides a sound basis for subsequent
extensions to other generative approaches for synthetic
data in distributed analysis.

Abbreviations
AIS: annealed importance sampling; CPU: central processing unit; DBM: Deep
Boltzmann machine; DBN: Deep belief network; GAN: Generative adversarial
network; GWAS: Genome-wide association study; IM: Independent marginals;
MICE: Multivariate imputation by chained equations; RBM: Restricted
Boltzmann machine; SNP: Single nucleotide polymorphism; VAE: Variational
autoencoder

Acknowledgements
Not applicable.

Authors’ contributions
HB and SL developed the concept for the analysis and the simulation
design. SL designed and implemented the software and conducted the
analyses. MH contributed to design and implementation of the experiment
for comparing the different generative models on genetic variant data. All
three authors contributed to the writing of the manuscript and approved
the final version.

Funding
The work of SL has been supported by the Federal Ministry of Education and
Research (BMBF) in Germany in the MIRACUM project (FKZ 01ZZ1801B). The
work of MH has been supported by the Federal Ministry of Education and
Research in Germany (BMBF) project “Generatives Deep-Learning zur explora-
tiven Analyse von multimodalen Omics-Daten bei begrenzter Fallzahl”
(GEMOLS: Generative deep-learning for exploratory analysis of multi-modal
omics data with limited sample size, FKZ 031L0250A). The funding agencies
had no role in the design, data collection, analyses, interpretation, and
reporting of the study. Open Access funding enabled and organized by Pro-
jekt DEAL.

Availability of data and materials
The analysis based on simulated data is fully described in the article. The
accompanying software is available from GitHub [21, 22]. The original data
for the method comparison on real SNP data can be found on a website
provided for the IMPUTE software (https://mathgen.stats.ox.ac.uk/impute/1
000GP_Phase3.html). The pre-processed data from the randomly selected loci
and chromosomes can be found on the GitHub repository that also contains
the complete reproduction script for the experiment (https://github.com/
stefan-m-lenz/dist-gen-comp/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 July 2020 Accepted: 23 February 2021

References
1. Prokosch H-U, Acker T, Bernarding J, Binder H, Boeker M, Boerries M, et al.

MIRACUM: Medical Informatics in Research and Care in University Medicine.
Methods Inf Med. 2018;57 S 1:e82–91.

2. Nowok B, Raab GM, Dibben C. Synthpop: bespoke creation of synthetic data
in R. J Stat Softw. 2016;74:1–26.

3. Manrique-Vallier D, Hu J. Bayesian non-parametric generation of fully
synthetic multivariate categorical data in the presence of structural zeros. J
R Stat Soc Ser A Stat Soc. 2018;181:635–47.

Table 3 Results for the comparison of different distributed generative models

RMSE of log odds ratios d(xgen, xval): Median (5% quantile - 95% quantile)

1 site 2 sites 5 sites 20 sites

DBM 0.98 (0.82 – 1.21) 1.00 (0.78 – 1.19) 1.03 (0.74 – 1.65) 1.42 (0.89 – 3.85)

GAN 2.17 (1.86 – 3.36) 3.28 (2.12 – 6.33) 3.82 (2.41 – 6.41) 4.00 (2.41 – 6.88)

IM 3.96 (2.33 – 6.95) 3.95 (2.32 – 6.95) 3.97 (2.32 – 6.95) 3.90 (2.30 – 6.84)

MICE 3.72 (2.87 – 6.04) 3.41 (2.76 – 5.13) 3.05 (2.47 – 4.61) 2.84 (1.93 – 4.22)

VAE 1.05 (0.72 – 1.85) 1.02 (0.68 – 1.72) 0.90 (0.61 – 1.50) 0.89 (0.53 – 1.53)

Proportion of overfitting: Median (5% quantile - 95% quantile)

1 site 2 sites 5 sites 20 sites

DBM 0.11 (-0.016 – 0.24) -0.14 (-0.44 – 0.27) -0.15 (-0.39 – 0.24) 0.38 (0.11 – 0.69)

GAN 0.068 (0.013 – 0.17) 0.12 (0.018 – 0.31) 0.22 (0.15 – 0.34) 0.4 (0.29 – 0.55)

IM 0.055 (-0.0045 – 0.099) 0.12 (0.058 – 0.18) 0.22 (0.15 – 0.31) 0.45 (0.30 – 0.63)

MICE 0.031 (0.0022 – 0.08) 0.10 (0.0048 – 0.32) 0.18 (-0.019 – 0.45) 0.45 (0.09 – 0.85)

VAE 0.19 (0.057 – 0.32) 0.27 (0.062 – 0.45) 0.29 (0.064 – 0.56) 0.48 (-0.20 – 0.82)

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 15 of 16

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://github.com/stefan-m-lenz/dist-gen-comp/
https://github.com/stefan-m-lenz/dist-gen-comp/

4. Quick H, Holan SH, Wikle CK. Generating partially synthetic geocoded public
use data with decreased disclosure risk by using differential smoothing. J R
Stat Soc Ser A Stat Soc. 2018;181:649–61.

5. Statice GmbH. Company web site. https://www.statice.ai/. Accessed 27 Aug
2019.

6. Bonofiglio F, Schumacher M, Binder H. Recovery of original individual
person data (IPD) inferences from empirical IPD summaries only:
applications to distributed computing under disclosure constraints. Stat
Med. 2020;39:1183–98.

7. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating Multi-label
Discrete Patient Records using Generative Adversarial Networks. In:
Proceedings of Machine Learning for Healthcare 2017. Northeastern
University, Boston, Massachusetts; 2017. p. 21.

8. Goncalves A, Ray P, Soper B, Stevens J, Coyle L, Sales AP. Generation and
evaluation of synthetic patient data. BMC Med Res Methodol. 2020;20:1–40.

9. Salakhutdinov R. Learning deep generative models. Annu Rev Stat Its Appl.
2015;2:361–85.

10. Hess M, Lenz S, Blätte TJ, Bullinger L, Binder H. Partitioned learning of deep
Boltzmann machines for SNP data. Bioinformatics. 2017;33:3173–80.

11. Nußberger J, Boesel F, Lenz S, Binder H, Hess M. Synthetic observations
from deep generative models and binary omics data with limited sample
size. Brief Bioinform. 2020. https://doi.org/10.1093/bib/bbaa226.

12. Budin-Ljøsne I, Burton P, Isaeva J, Gaye A, Turner A, Murtagh MJ, et al.
DataSHIELD: an ethically robust solution to multiple-site individual-level data
analysis. Public Health Genomics. 2015;18:87–96.

13. Salakhutdinov R, Hinton G. Deep Boltzmann Machines. Proc AISTATS 2009.
2009;5:448–55.

14. Bezanson J, Edelman A, Karpinski S, Shah V. Julia: a fresh approach to
numerical computing. SIAM Rev. 2017;59:65–98.

15. R Core Team. R: a language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2019. https://www.R-project.
org/.

16. Doiron D, Marcon Y, Fortier I, Burton P, Ferretti V. Software application
profile: opal and Mica: open-source software solutions for epidemiological
data management, harmonization and dissemination. Int J Epidemiol. 2017;
46:1372–8.

17. Hinton GE. A Practical Guide to Training Restricted Boltzmann Machines. In:
Montavon G, Orr GB, Müller K-R, editors. Neural Networks: Tricks of the
Trade: Second Edition. 2012. p. 599–619. https://doi.org/10.1007/978-3-642-3
5289-8_32.

18. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with
neural networks. Science. 2006;313:504–7.

19. Salakhutdinov R, Hinton G. An efficient learning procedure for deep
Boltzmann machines. Neural Comput. 2012;24:1967–2006.

20. Lenz S, Hess M, Binder H. Unsupervised deep learning on biomedical data
with BoltzmannMachines.jl. bioRxiv. 2019;:578252.

21. Lenz S. R package “dsBoltzmannMachinesClient” on GitHub. 2020. https://
github.com/stefan-m-lenz/dsBoltzmannMachinesClient.

22. Lenz S. R package “dsBoltzmannMachines” on GitHub. 2020. https://github.
com/stefan-m-lenz/dsBoltzmannMachines.

23. Lenz S, Hackenberg M, Binder H. The JuliaConnectoR: a functionally
oriented interface for integrating Julia in R. ArXiv200506334 Cs Stat. 2020.
http://arxiv.org/abs/2005.06334.

24. Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit
confidence information and basic countermeasures. In: Proceedings of the
22nd ACM SIGSAC conference on computer and communications security -
CCS ‘15. Denver: ACM Press; 2015. p. 1322–33. https://doi.org/10.1145/28101
03.2813677.

25. Li N, Qardaji W, Su D, Wu Y, Yang W. Membership privacy: a unifying
framework for privacy definitions. In: Proceedings of the 2013 ACM SIGSAC
conference on computer & communications security. New York: Association
for Computing Machinery; 2013. p. 889–900. https://doi.org/10.1145/2
508859.2516686.

26. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep
Learning with Differential Privacy. Proc 2016 ACM SIGSAC Conf Comput
Commun Secur - CCS16. 2016;:308–18.

27. Dankar FK, El Emam K. Practicing differential privacy in health care: a review.
Trans Data Priv. 2013;6:35–67.

28. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating Multi-label
Discrete Patient Records using Generative Adversarial Networks.
ArXiv170306490 Cs. 2018. http://arxiv.org/abs/1703.06490.

29. Kingma DP, Welling M. Auto-Encoding Variational Bayes. ArXiv13126114 Cs
stat. 2013. http://arxiv.org/abs/1312.6114.

30. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C,
Lawrence ND, Weinberger KQ, editors. Advances in neural information
processing systems 27. Curran Associates: Inc; 2014. p. 2672–80.

31. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature. 1986;323:533–6.

32. Lenz S, Hess M, Binder H. Comparison of synthetic data generation using
DBMs, VAEs, GANs and MICE https://github.com/stefan-m-lenz/dist-gen-
comp.

33. Innes M. Flux: elegant machine learning with Julia. J Open Source Softw.
2018;3:602.

34. Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview.
Wiley Interdiscip Rev Data Min Knowl Discov. 2012;2:86–97.

35. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley
DR, et al. A global reference for human genetic variation. Nature. 2015;
526:68–74.

36. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
et al. An integrated map of structural variation in 2,504 human genomes.
Nature. 2015;526:75–81.

37. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. PLoS Genet. 2009;5:e1000529.

38. Howie B, Marchini J. 1,000 Genomes haplotypes - Phase 3 integrated variant
set release in NCBI build 37 (hg19) coordinates. https://mathgen.stats.ox.ac.
uk/impute/1000GP_Phase3.html. Accessed 17 Nov 2020.

39. Rezende DJ, Mohamed S, Wierstra D. Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. ArXiv14014082 Cs Stat.
2014. http://arxiv.org/abs/1401.4082.

40. Webster R, Rabin J, Simon L, Jurie F. Detecting Overfitting of Deep
Generative Networks via Latent Recovery. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019. p. 11265–74.

41. Gaye A, Marcon Y, Isaeva J, LaFlamme P, Turner A, Jones EM, et al.
DataSHIELD: taking the analysis to the data, not the data to the analysis. Int
J Epidemiol. 2014;43:1929–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Lenz et al. BMC Medical Research Methodology (2021) 21:64 Page 16 of 16

https://www.statice.ai/
https://doi.org/10.1093/bib/bbaa226
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://github.com/stefan-m-lenz/dsBoltzmannMachinesClient
https://github.com/stefan-m-lenz/dsBoltzmannMachinesClient
https://github.com/stefan-m-lenz/dsBoltzmannMachines
https://github.com/stefan-m-lenz/dsBoltzmannMachines
http://arxiv.org/abs/2005.06334
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2508859.2516686
https://doi.org/10.1145/2508859.2516686
http://arxiv.org/abs/1703.06490
http://arxiv.org/abs/1312.6114
https://github.com/stefan-m-lenz/dist-gen-comp
https://github.com/stefan-m-lenz/dist-gen-comp
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html.
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html.
http://arxiv.org/abs/1401.4082

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	DataSHIELD
	Deep Boltzmann machines (DBMs) as generative models
	Implementation of deep Boltzmann machines in DataSHIELD
	Benchmarking of generative performance
	Measuring disclosure
	Comparing DBMs with other deep generative models and multivariate imputation

	Results
	Example using simulated SNP data
	Application on real SNP data and comparison with other generative models

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

