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Abstract

Background: Waist circumference is becoming recognized as a useful predictor of health risks in clinical research.
However, clinical datasets tend to lack this measurement and self-reported values tend to be inaccurate. Predicting
waist circumference from standard physical features could be a viable method for generating this information
when it is missing or mitigating the impact of inaccurate self-reports. This study determined the degree to which
the XGBoost advanced machine learning algorithm could build models that predict waist circumference from
height, weight, calculated Body Mass Index, age, race/ethnicity and sex, whether they perform better than current
models based on linear regression, and the relative importance of each feature in this prediction.

Methods: We trained tree-based models (via XGBoost gradient boosting) and linear models (via regression) to
predict waist circumference from height, weight, Body Mass Index, age, race/ethnicity and sex (n = 60,740
participants). We created 10 iterations of each model, each using 90% of the dataset for training and the remaining
10% for testing performance (this group was different for each iteration). We calculated model performance and
feature importance as an average across 10 iterations. We then externally validated the ensembled version of the
top model.

Results: The XGBoost model predicted waist circumference with a mean bias ± standard deviation of 0.0 ± 0.04 cm
and a root mean squared error of 4.7 ± 0.05 cm, with performance varying slightly by sex and race/ethnicity. The
XGBoost model showed varying degrees of improvement over linear regression models. The top 3 predictors were
Body Mass Index, weight and race (Asian). External validation found that on average this model overestimated waist
circumference by 4.65 cm in the United Kingdom population (mainly due to overprediction in females) and
underestimated waist circumference by 1.7 cm in the Chinese population. The respective root mean squared errors
were 7.7 cm and 7.1 cm.
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Conclusions: XGBoost-based models accurately predict waist circumference from standard physical features. Waist
circumference prediction using this approach would be valuable for epidemiological research and beyond.

Keywords: Waist circumference, Machine learning, Gradient boosted trees, Multilayer perceptron

Background
Epidemiological research studies often assess adiposity
and its associated health risks from a standard set of
physical features. Body Mass Index (BMI) is a measure
of general adiposity and is calculated from height and
weight and assessed against age and sex-based disease
risk thresholds. It predicts generalized mortality [1] and
illnesses like colon cancer [2] and incident diabetes [3].
New indices like Body Shape Index and Waist-to-Height
ratio have respectively improved predictions of mortality
[4] and cardiometabolic risk [5] in recent years. Both in-
dices require waist circumference. However, since the
value of waist circumference has become apparent only
recently, it has not been routinely collected in clinical
practice [6] and it is less likely to appear in clinical data-
bases. Even when waist circumference information is
present, it is frequently collected through self-report,
which despite being highly accurate for weight and
height is notoriously inaccurate for waist circumference
[7]. This limits the use of these new and improved
indices.
Existing methods of dealing with missing waist cir-

cumference values have limitations. Excluding subjects
without waist circumference information limits sample
size and in many cases affects sample representativeness;
often epidemiological research depends on representa-
tive population samples. Mean replacement is undesir-
able because it provides no information about individual
subjects. Multiple imputation is a common way of esti-
mating missing values within a dataset based on a sub-
ject’s covariate information and uses Bayesian regression
techniques. Finally, some studies have used standard lin-
ear regression to deliberately model the relation between
readily available covariates and waist circumference to
estimate missing waist circumference values or evaluate
the accuracy of self-reported waist circumference values.
Bozeman et al. [8] have formalized such an approach
and derived a dedicated equation to predict waist cir-
cumference based on Body Mass Index, age, sex, and
race/ethnicity. While this approach was highly accurate,
its accuracy may nevertheless be limited by not account-
ing for the possibility of non-linear relations and interac-
tions between variables (the Bozeman approach
accounts for just one non-linearity: it derives separate
coefficients for female ages above and below 35). It does
not consider the non-linearity of Body Mass Index with
waist circumference (opting instead to exclude subjects

with Body Mass Indexes over 40), and it does not con-
sider potential interactions among predictors (e.g., with
respect to race) other than for sex, which it addresses by
deriving separate equations for males and females. Such
relations occur frequently among variables within bio-
logical systems, but they are not frequently investigated.
This issue could be addressed with a machine learning

approach. Advanced machine learning algorithms make
it possible to automatically and efficiently model com-
plex non-linear relations and interactions involving mul-
tiple predictors [9]. This automaticity of modeling is
beneficial compared to traditional statistical regression
that requires explicit modeling of each relation since it
increases the likelihood of identifying novel complex re-
lations (particularly subtle ones) that are not feasible to
model manually. This increases the comprehensiveness
of the model and thus improves prediction accuracy.
The large datasets characteristic of epidemiological stud-
ies provide the statistical power necessary to identify
these novel and subtle relations in clinically diverse pop-
ulations [10]. Compared to traditional statistical model-
ing techniques, machine learning models allow more
flexibility in mapping inputs to outputs (compared with
deterministic functions), and they are not subject to po-
tentially invalid assumptions like homoscedasticity in the
data [11]. Thus, they can potentially be more precise and
generate more accurate predictions, while still providing
interpretability through calculations of predictor import-
ance. It has yet to be determined how predictive models
for waist circumference perform using advanced ma-
chine learning techniques.
This study investigated the degree to which the com-

bination of height, weight, Body Mass Index (calculated
from height and weight), age, race/ethnicity, and sex
predict waist circumference using machine learning. We
trained a predictive model using an XGBoost machine
learning algorithm and then validated its accuracy on an
independent portion of the dataset that was not used in
training. To determine whether this model adequately
accounted for sex differences, we also trained and tested
separate models for males and females and compared
their performance to the sex-aggregated model. To de-
termine whether our machine learning approach was
beneficial compared to traditional statistical regression,
we trained and tested 3 regression models (a linear re-
gression using a semi-Bayesian ridge regression tech-
nique, a linear regression using the Bozeman technique,

Zhou et al. BMC Medical Research Methodology           (2021) 21:47 Page 2 of 10



and a linear regression incorporating all possible pre-
dictor interactions) and compared their performance to
our sex-aggregated XGBoost model. We evaluated
model performance overall, by sex, and within sex-race
groups. We anticipated that all models would yield
highly accurate predictions (based on good past per-
formance with linear models using similar predictors
[8]), and that our sex-aggregated XGBoost model would
perform similarly to sex-specific XGBoost models and
better than any of the linear regression approaches. Fi-
nally, we externally validated an ensemble of our sex-
aggregated XGBoost models on two external datasets to
determine how they perform on disparate populations.

Methods
Participants
For model building and internal validation we obtained
height (centimeters), weight (kilograms), age (years),
race/ethnicity (mutually exclusive categories were Asian,
Black, white, Hispanic (of any race), with each coded as
a binary variable; other/mixed race served as the base-
line), sex (male/female), and waist circumference (centi-
meters) information for 60,740 subjects from the
physical examination records of Chinese patients at
Nanjing Drum Tower Hospital (affiliated with Nanjing
University Medical School) and from publicly available
American data collected in the 1999–2017 survey years
of the National Health and Nutrition Examination Sur-
vey (NHANES) [12]. Chinese data was collected in con-
junction with routine annual physical examinations and
thus these patients were considered generally healthy.
All subjects met the following inclusion criteria: (1) only
one record per participant was used (if there were mul-
tiple visits on file), (2) complete information for all vari-
ables, (3) an age of 18 or older, and (4) no outliers
(defined as 3 standard deviations above or below the
mean). Participants provided written informed consent
to have their data used in the study and the study proto-
col was approved by the Nanjing University Research
Ethics Board and the National Center for Health Statis-
tics Research Ethics Review Board, respectively.
Study participants were 56% male and 44% female.

With respect to race/ethnicity, 42% were Asian, 14%
were black, 16% were Hispanic 1% were of mixed/other
race and 27% were white. Means and standard deviations
for age, height, weight, and waist circumference were
49.0 ± 17.6 years, 167.7 ± 9.3 cm, 75.6 ± 16.7 kg, and
92.6 ± 14.4 cm, respectively.
For external validation we obtained nationally repre-

sentative data for the United Kingdom from the 2000–
2001 survey year of the National Diet and Nutrition Sur-
vey (NDNS) [13], and nationally representative data for
China from the 2015 survey year of the China Health
and Nutrition Survey (CHNS) [14]. Participants provided

written informed consent to have their data used in the
study and the study protocol. NDNS received ethics ap-
proval from the Multi-centre Research Ethics Commit-
tee (MREC) and National Health Service Local Research
Ethics Committees (LRECs). CHNS received ethics ap-
proval from the Institutional Review Board of the Uni-
versity of North Carolina at Chapel Hill, the National
Institute for Nutrition and Food safety at China Center
for Disease Control and Prevention, and the Human and
Clinical Research Ethics Committee of the China-Japan
Friendship Hospital. We recalibrated sample weights to
ensure representativeness by sex-race/ethnicity group
after removing samples with missing data (78% of data
remained in NDNS; 85% in CHNS). Waist circumfer-
ence in these datasets was reliably measured by a trained
professional.

Waist circumference prediction models
Model types
We trained and tested several types of models to predict
waist circumference from a set of predictors that in-
cluded: height, weight, Body Mass Index (calculated
from weight and height as kg/m2), age, race/ethnicity,
and sex. For the machine learning model, we initially
considered neural network-based models via the multi-
layer perceptron algorithm and decision tree-based
models via Random Forest and XGBoost algorithms. All
are well established supervised learning algorithms that
allow modeling of non-linear relations and interactions
among predictors. We ultimately selected gradient-
boosted trees via the XGBoost algorithm because empir-
ically this performed best in our preliminary investiga-
tion. We ultimately used XGBoost to train a sex-
aggregated model using all predictors, as well as separate
models for each sex separately. We did this so we could
compare their performance and confirm that the aggre-
gated model adequately accounted for sex differences.
To assess the potential advantages of machine learning

over traditional approaches, we further trained and eval-
uated the performance of three regression models: semi-
Bayesian ridge regression (commonly employed in mul-
tiple imputation of missing values), linear regression
using the current gold standard Bozeman technique, and
linear regression incorporating all potential interactions
among predictors so that we could determine whether
XGBoost model performance was superior. All three
were sex-specific models so they could account for
known sex differences. We used the semi-Bayesian ridge
regression method (BayesianRidge function, scikit-learn
0.24.1 package; https://scikit-learn.org/) to generate a
distribution of predictions and then took the mean of
that prediction (it was semi-Bayesian in that an expected
distribution was not supplied a priori). The Bozeman
technique was a linear regression that did not include
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height and weight, but included separate age terms (co-
efficients) for females under 35 years of age and females
35 years of age or older. Our linear regression consid-
ered all predictors and all interactions among predictors
to maximize information gain from predictor interac-
tions. Within each sex, these interactions included 2-way
up to 5-way predictor-predictor interaction terms. We
selected terms with coefficient p-values < .05 for inclu-
sion in the final model. Such terms had robust (statisti-
cally significant) correlations with waist circumference
that are likely to generalize well beyond any one sample
to positively impact model performance.

Training and testing paradigm
We randomly allocated participants into ten equally
sized folds. We then used a 10-fold cross-validation
technique to train and test 10 iterations of each model.
For each of the 10 iterations, 9 of 10 folds were used to
train the model and the remaining fold was used to as-
sess model performance. Calculating accuracy on this
unused portion of the data that was not used in training
ensured that estimates of model performance for each it-
eration were not influenced by overfitting to the training
data. We then calculated performance as the mean
across all 10 model iterations. This provided an estimate
of overall performance that was generalizable to the en-
tire dataset (rather than just one data partition) and ul-
timately to populations that are represented by the
dataset.

XGBoost model and training parameters
XGBoost (Extreme Gradient Boosting; https://github.
com/dmlc/xgboost) is a machine learning algorithm for
building gradient-boosted decision trees and it is well-
suited for regression [15]. Briefly, the algorithm builds
an initial decision tree. It then builds subsequent deci-
sion trees to predict the residuals (errors) after applying
the first tree. It scales this residual by a pre-defined
learning rate (lower learning rates favor less variance/
overfitting), and then adds its the scaled residual to the
original prediction to produce a slightly improved pre-
diction. It goes on to build additional trees in this way to
incrementally increase the prediction accuracy until it
reaches a pre-defined number of trees (determined as
the number of trees at which additional trees no longer
improve performance). Extreme gradient-boosted trees
(in XGBoost) are unique in that they cluster residuals
into leaves (determine branch splits) based on similarity
scores. Groups of leaves are pruned if the gain in the
group’s similarity versus the parent leaf does not exceed
a user-defined value (lambda); this is a form of
regularization intended to reduce overfitting. We empir-
ically determined the best parameters to be a maximum
tree depth of 5, 1000 trees, 80% sub-sampling and a

learning rate of .02. The number of trees was selected
empirically by increasing the number of trees by a factor
of 10 until there was no additional gain in performance,
and then reducing the number of trees until perform-
ance began to decline.

Assessment of model performance
We assessed the performance of each model by calculat-
ing the mean and standard deviation of various perform-
ance metrics across the 10 iterations of each model.
Performance metrics calculated for all models were root
mean squared error (RMSE) and mean bias (prediction
minus the reference value). They were calculated overall,
for males, for females, and for each sex-race/ethnicity
combination. We used a t-test to determine whether the
performance of a given model statistically differed from
the performance of our sex-aggregated XGBoost model
(comparator model).
For the sex-aggregated XGBoost model we determined

additional performance metrics and model details. We
calculated the mean ± 95% confidence interval for mean
bias, error standard deviation and Pearson correlation.
Pearson correlation and its standard deviation were cal-
culated by taking the square root of the mean explained
variance and its standard deviation across all 10 model
iterations. We visualized performance over the full range
of waist circumferences using a scatter plot and Bland
Altman plot to assess correlation and agreement, re-
spectively. Finally, we calculated proportional import-
ance of each model predictor using a function built into
the XGBoost analytical package and reported its mean
and 95% confidence interval.

External validation
We further assessed the performance of the sex-
aggregated XGBoost model on two nationally represen-
tative external datasets: the National Diet and Nutrition
Survey (United Kingdom) [13] and China Health and
Nutrition Survey (The People’s Republic of China) [14].
We took the mean of the predictions from each of the
10 versions of the model (each derived on a different
fold of the training dataset) to generate an ensembled
prediction for the model. We then calculated the RMSE
and mean bias overall, by sex and by sex-race group for
each dataset. These calculations considered sample
weights and thus were nationally representative.

Results
XGBoost outperforms regression models
We assessed whether the waist circumference model
trained with XGBoost would outperform linear regres-
sion models in terms of error (RMSE) or mean error
(bias). We found that the XGBoost model trained on
both males and females (sex-aggregated) achieved an
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RMSE of 4.70 ± 0.05 and a bias of 0 ± 0.04 overall (a fur-
ther breakdown of performance by sex and race is
shown in Table 1). The two models trained on each sex
separately did not perform statistically better than the
sex-aggregated model, and so we used the sex-
aggregated model moving forward.
The root mean square error (RMSE) of all models was

either equivalent to or higher than that of the sex-
aggregated XGBoost model overall, by sex, and across all

sex-race/ethnicity categories. The semi-Bayesian ridge
regression and Bozeman regression models had higher
RMSEs overall (4.89 ± 0.05 cm; p < .001 and 5.01 ± 0.06
cm; p < .001, respectively). RMSEs in the Bozeman re-
gression models were as much as 12% higher than in the
XGBoost model for some sex-race/ethnicity categories.
Our linear regression model with all predictor interac-
tions performed only marginally worse than our sex-
aggregated XGBoost model. Its overall RMSE overall

Table 1 Model performance comparison between sex-aggregated XGBoost, sex-separated XGBoost, semi-Bayesian ridge regression,
Bozeman linear regression and linear regression with all possible interaction terms

Model: XGBoost Semi-Bayesian Ridge
Regression

Bozeman Linear
Regression

Linear Regression

Sex: Aggregated Separate Models Separate Models Separate Models Separate Models

Count RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

Overall 60,740 4.70 ±
0.05

0 ± 0.04 4.71 ±
0.04
0%

0 ± 0.05 4.89 ±
0.05***
4%

0 ± 0.04 5.01 ±
0.06***
7%

0 ± 0.04 4.72 ±
0.05
0%

0 ± 0.04

Female 26,750 5.41 ±
0.09

0.01 ± 0.07 5.43 ±
0.09
0%

0 ± 0.08 5.67 ±
0.1***
5%

0 ± 0.07 5.95 ±
0.12***
10%

0 ± 0.06 5.46 ± 0.1
1%

0 ± 0.06

Asian 8402 4.4 ±
0.13

0.07 ± 0.17 4.39 ±
0.12
0%

− 0.01 ±
0.16

4.7 ±
0.12***
7%

0.68 ± 0.16*** 4.67 ±
0.12***
6%

0 ± 0.16 4.54 ±
0.11*
3%

0 ± 0.17

Black 4321 5.94 ±
0.16

−0.06 ±
0.23

5.98 ±
0.17
1%

0.05 ± 0.2 6.24 ±
0.23**
5%

− 0.89 ±
0.23***

6.67 ±
0.23***
12%

0.01 ± 0.29 5.91 ±
0.16
0%

0.01 ± 0.22

Hispanic 5298 5.62 ±
0.31

−0.01 ±
0.36

5.65 ±
0.32
1%

− 0.01 ±
0.37

5.83 ± 0.34
4%

− 0.41 ± 0.36* 6.12 ±
0.31**
9%

0 ± 0.38 5.65 ±
0.31
1%

0 ± 0.35

Other/
Mixed

343 5.66 ±
0.68

− 0.83 ±
0.64

5.66 ±
0.56
0%

−0.55 ±
0.57

5.61 ± 0.79
− 1%

−0.91 ± 0.7 6.2 ± 1.15
10%

0.05 ±
0.67**

5.76 ±
0.66
2%

− 0.02 ±
0.8*

White 8386 5.87 ±
0.16

0.04 ± 0.23 5.9 ±
0.15
0%

0 ± 0.24 6.12 ±
0.19**
4%

0.08 ± 0.25 6.53 ±
0.17***
11%

0 ± 0.27 5.9 ± 0.15
0%

0 ± 0.23

Male 33,990 4.05 ±
0.05

− 0.01 ±
0.07

4.05 ±
0.05
0%

0 ± 0.06 4.18 ±
0.05***
3%

0 ± 0.07 4.13 ±
0.05**
2%

0 ± 0.06 4.04 ±
0.05
0%

0 ± 0.06

Asian 17,056 3.90 ±
0.08

− 0.02 ±
0.12

3.89 ±
0.08
0%

0.01 ± 0.11 3.98 ± 0.08*
2%

− 0.33 ±
0.11***

4 ± 0.07 **
3%

0 ± 0.11 3.9 ± 0.08
0%

0 ± 0.12

Black 3951 4.40 ±
0.24

0.13 ± 0.19 4.4 ±
0.23
0%

0.05 ± 0.19 4.8 ± 0.22**
9%

0.99 ± 0.2*** 4.56 ± 0.25
4%

0 ± 0.19 4.37 ±
0.24
− 1%

0 ± 0.19

Hispanic 4691 3.88 ±
0.12

− 0.02 ±
0.14

3.88 ±
0.13
0%

− 0.02 ±
0.15

3.96 ± 0.12
2%

0.47 ± 0.16*** 3.9 ± 0.13
0%

0 ± 0.15 3.87 ±
0.12
0%

0 ± 0.15

Other/
Mixed

381 4.52 ±
0.58

−0.25 ± 0.7 4.6 ±
0.62
2%

− 0.33 ±
0.63

4.75 ± 0.64
5%

0.67 ± 0.73* 4.7 ± 0.64
4%

1.2 ±
0.68***

4.52 ±
0.51
0%

−0.03 ±
0.69

White 7911 4.25 ±
0.12

− 0.05 ±
0.1

4.25 ±
0.12
0%

− 0.01 ±
0.09

4.37 ± 0.13*
3%

− 0.08 ± 0.09 4.28 ± 0.12
1%

−0.06 ±
0.09

4.23 ± 0.1
0%

0 ± 0.09

Values represent mean ± standard deviation across the 10 iterations of each model
Percentage change for RMSE is relative to sex-aggregated XGBoost model
RMSE root mean squared error
*p < .05, **p < .01 and ***p < .001 for statistical significance by two-tailed t-test versus sex-aggregated XGBoost model
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(4.72 ± 0.05 cm) was statistically equivalent. It was statis-
tically higher for the Asian female group, although the
difference was small (only 3%). The mean bias of all
models was minimal (< 1 cm), except for the Bozeman
regression, which overpredicted waist circumference by
1.2 cm in males of mixed/other race. Overall, the relative
superiority of XGBoost in terms of error justifies its use
in place of linear regression where the minimization of
error is concerned.

Model performance details
Overall, the sex-aggregated model performed similarly
from one validation split to the next (see Fig. 1 and Sup-
plemental Table 1). The mean Pearson correlation (95%
confidence interval) between observed and predicted
values was 0.945 (0.944–0.946) and the mean bias (95%
confidence interval) ± error standard deviation (95% con-
fidence interval) between observed and predicted values
was − 0.003 (− 0.032–0.027) ± 4.70 (4.67–4.73) cm over
all 10 iterations of the model. Predictions tracked ob-
served values well in all validation splits across the full
range of waist circumferences, as assessed visually by
correlation and agreement (Fig. 1).
For females specifically, the mean Pearson correlation

(95% confidence interval) between observed and pre-
dicted values was 0.942 (0.940–0.944) and the mean bias
(95% confidence interval) ± standard deviation (95% con-
fidence interval) between observed and predicted values
was − 0.018 (− 0.058–0.095) ± 5.41 (5.35–5.48) cm over
all 10 iterations of the model. Predictions tended to
track observed values quite well across a range of waist
circumferences, as assessed by correlation and agree-
ment (Fig. 2). Asian females tended to have smaller waist
circumferences (Fig. 2) and proportionally smaller errors
(Table 1). The largest errors tended to be in black fe-
males (Table 1).

For males specifically, the mean Pearson correlation
(95% confidence interval) between observed and pre-
dicted values was 0.947 (0.947–0.949) and the mean bias
(95% confidence interval) ± standard deviation (95% con-
fidence interval) between observed and predicted values
was − 0.014 (− 0.061–0.034) ± 4.05 (4.01–4.08) cm over
all 10 iterations of the model. Predictions tracked ob-
served values well across the full range of waist circum-
ferences, as assessed by correlation and agreement
(Fig. 3). As with females, Asian males tended to have
smaller waist circumferences (Fig. 3) and proportionally
smaller errors (Table 1). Hispanic males also had pro-
portionally smaller errors (Table 1).

Feature importance and model details
We next calculated the mean proportional importance
(± 95% confidence interval) for all predictors in the sex-
aggregated XGBoost model across all 10 iterations of the
model. Body Mass Index (65.6% ± 0.3%), weight
(16.8% ± 0.2%) and Asian race (5.9% ± 0.1%) were the
most important features for predicting waist circumfer-
ence (Fig. 4). The remaining features of white race, age,
sex, Hispanic ethnicity, Black race and height all had less
than 5% feature importance. For a sample decision tree
diagram, see Supplementary Fig. 1.

External validation of aggregated XGBoost model
We took the mean of the predictions from the 10 ver-
sions of the sex-aggregated XGBoost model to produce
a single (ensembled) waist circumference for each pre-
diction, and then evaluated the accuracy of this overall
model in representative datasets of the United Kingdom
and China (Table 2). We found that waist circumference
was overestimated by 4.63 cm on average in the United
Kingdom multi-racial sample; this positive bias arose
mainly from a tendency to overpredict in females. There
was a small negative bias of − 1.7 cm overall in the

Fig. 1 Model performance for all validation folds of the sex-aggregated XGBoost model. a Scatter plot of measured versus predicted waist
circumference. b Bland-Altman plot. The blue line represents the mean bias and the red line represents one standard deviation from the mean
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Chinese dataset. RMSEs for both external samples were
comparable and approximately 50% larger than the over-
all RMSE calculated for the internal validation of the
sex-aggregated XGBoost model.

Discussion
Our XGBoost model predicted waist circumference with
high accuracy from height, weight, Body Mass Index,
age, race/ethnicity and sex information. We found that it
performed quite well across various sex-race/ethnicity
groups, and very consistently across all 10 model itera-
tions. Together, these features were highly predictive of
waist circumference and the XGBoost algorithm is an ef-
fective way to model these relations. This was expected
given that similar predictors already produced good per-
formance in prior work using linear models [8]. We
found that XGBoost performed significantly better than
semi-Bayesian ridge regression and the Bozeman linear
regression approach [8], likely because the machine
learning aspect identified non-linear relations or interac-
tions that accounted for additional variance; such rela-
tions (particularly non-linearities) are often subtle and

could be difficult to deliberately identify and input as
features. There was also improvement to a lesser degree
against the linear regression model that considered all
possible predictor interactions. Improvement in this case
was likely lower because this model accounted for add-
itional variance by considering all possible predictor
interactions.
Sex-aggregated model performance for males and fe-

males did not significantly differ from sex-specific model
performance, as expected. This suggests that sex-based
differences in waist circumference have been adequately
accounted for in the sex-aggregated model and that the
sex-aggregated model can be used going forward.
Finally, we found that an ensemble of the sex-

aggregated XGBoost model generalized reasonably well
overall to a representative multi-racial sample of the
United Kingdom; the model performed worse in females
(particularly Hispanic females). The ensemble performed
quite well in a representative sample of the Chinese
population. The tendency to overestimate waist circum-
ference in United Kingdom females (particularly of
white, Hispanic and mixed/other backgrounds) did not

Fig. 2 Female performance by race/ethnicity in the sex-aggregated XGBoost model. a Scatter plot of measured versus predicted waist
circumference. b Bland-Altman plot. The blue line represents the mean bias and the red line represents one standard deviation from the mean

Fig. 3 Male performance by race/ethnicity for the sex-aggregated XGBoost model. a Scatter plot of measured versus predicted waist
circumference. b Bland-Altman plot. The blue line represents the mean bias and the red line represents one standard deviation from the mean
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occur in United States females from our original (in-
ternal) dataset and potentially suggests the presence of a
sociocultural factor that could account for this
difference.

Limitations
Even greater accuracy might be achieved by further opti-
mizing the machine learning algorithm via its hyperpara-
meters. Additional features could also be considered to
see if they add information about waist circumference

and thus boost accuracy. The models in the current
study are based on multiple races/ethnicities in partici-
pants with American and Chinese nationalities; further
work along these lines could investigate performance in
additional races/ethnicities and nationalities to deter-
mine how well this model generalizes beyond the groups
studied. Nevertheless, the technique we have utilized in
this study is likely to be effective for training
generalizable predictive models using a diverse set of
participants.

Fig. 4 Feature importance. Feature importance is expressed as a proportion of total feature importance. Error bars are the 95%
confidence interval

Table 2 Performance of the ensembled sex-aggregated XGBoost model on external datasets

Model: United Kingdom (National Diet and Nutrition Survey;
2000–2001)

People’s Republic of China (China Health and Nutrition
Survey; 2015)

Proportion of Dataset RMSE Bias Proportion of Dataset RMSE Bias

Overall 100 7.65 4.63 100 7.1 −1.7

Female 54.7 9.26 7.34 53.5 7.45 −2.02

Asian 0.4 6.4 4.92 53.5 7.45 −2.02

Black 1.2 4.81 2.85 – – –

Hispanic 0.9 11.18 9.07 – – –

Other/Mixed 1 11.39 8.18 – – –

White 51.3 9.31 7.47 – – –

Male 45.3 5.41 1.73 46.5 6.67 −1.34

Asian 0.5 4.13 0.34 46.5 6.67 −1.34

Black 1 6.68 −3.08 – – –

Hispanic 0.2 2.57 2.37 – – –

Other/Mixed 0.8 4.21 1 – – –

White 42.7 5.42 1.87 – – –

Values represent sample-weighted mean bias or RMSE across the entire dataset
RMSE root mean squared error
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It further remains to be determined whether the rela-
tive performance of the methods in the current study
will generalize to still other training datasets. We antici-
pate it would generalize well given the high degree of
heterogeneity in the current training data, which encom-
passes significant biological diversity by being multi-
racial, and significant of sociocultural diversity given that
data comes from both the United States and China (two
highly disparate populations). Further, the model per-
formed fairly well when externally validated on datasets
from the United Kingdom and China. Further evaluation
in additional populations will be necessary to determine
the accuracy of this approach elsewhere and potentially
identify additional relevant factors that could affect waist
circumference prediction.

Application
The high accuracy of the sex-aggregated XGBoost model
makes it suitable for various purposes. First, it can be
used to fill in missing waist circumferences in medical
datasets. Care should be taken with such an approach
since individuals who are missing waist circumference or
its predictor information may be statistically different in
some way from those who are not (e.g., if their data is
missing not at random). Such a hypothesis could be
tested using logistic regression to try to separate subjects
with missing waist circumferences from subjects without
missing waist circumferences using auxiliary variables,
and then recalibrating sample weights on non-missing
observations accordingly to maintain sample representa-
tiveness. Second, rather than filling in missing data, the
current model could be used to screen existing waist cir-
cumference measurements for errors, given that self-
reported waist circumference measurements tend to be
inaccurate [7]. In this case, it is beneficial to build a
well-defined externally validated model using datasets
with reliable waist circumference information to apply to
the target dataset. If predicted waist circumference is be-
ing used as a covariate in a regression model or math-
ematical equation, it should be considered how the
accuracy of the waist circumference prediction will carry
forward to impact the accuracy of the overall regression
model or equation.
Finally, we acknowledge that since the accuracy of the

XGBoost model is only marginally better than the linear
regression with all interaction terms, it may remain pref-
erable in some applications to sacrifice this small degree
of added accuracy in favor of the more simplistic linear
regression model.
Waist circumference can ultimately be used to help

predict general mortality [1] and specific illness such as
cancers [2], cardiovascular diseases [5] and incident dia-
betes [3]. Future studies could assess the impact of using
predicted waist circumference in evaluating health risks.

Accurate waist circumference prediction achieved using
machine learning could vastly aid future epidemiological
research, particularly when attempting to predict long-
term health outcomes.

Conclusions
This study demonstrates that the XGBoost advanced
machine algorithm produces accurate waist circumfer-
ence prediction models with minimal input data: height,
weight, Body Mass Index (calculated from height and
weight), age, race/ethnicity and sex. This approach could
be immensely useful in epidemiological research, in
health-evaluative tools and potentially even for non-
health-related uses.
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