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Abstract

Background: When quantifying the probability of survival in cancer patients using cancer registration data, it is
common to estimate marginal relative survival, which under assumptions can be interpreted as marginal net survival.
Net survival is a hypothetical construct giving the probability of being alive if it was only possible to die of the cancer
under study, enabling comparisons between populations with differential mortality rates due to causes other the
cancer under study. Marginal relative survival can be estimated non-parametrically (Pohar Perme estimator) or in a
modeling framework. In a modeling framework, even when just interested in marginal relative survival it is necessary
to model covariates that affect the expected mortality rates (e.g. age, sex and calendar year). The marginal relative
survival function is then obtained through regression standardization. Given that these covariates will generally have
non-proportional effects, the model can become complex before other exposure variables are even considered.

Methods: We propose a flexible parametric model incorporating restricted cubic splines that directly estimates
marginal relative survival and thus removes the need to model covariates that affect the expected mortality rates. In
order to do this the likelihood needs to incorporate the marginal expected mortality rates at each event time taking
account of informative censoring. In addition time-dependent weights are incorporated into the likelihood. An
approximation is proposed through splitting the time scale into intervals, which enables the marginal relative survival
model to be fitted using standard software. Additional weights can be incorporated when standardizing to an
external reference population.

Results: The methods are illustrated using national cancer registry data. In addition, a simulation study is performed
to compare different estimators; a non-parametric approach, regression-standardization and the new marginal
relative model. The simulations study shows the new approach is unbiased and has good relative precision compared
to the non-parametric estimator.

Conclusion: The approach enables estimation of standardized marginal relative survival without the need to model
covariates that affect expected mortality rates and thus reduces the chance of model misspecification.
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Background
When quantifying the probability of survival in cancer
patients using cancer registration data it is common to
estimate marginal relative survival, which under assump-
tions can be interpreted asmarginal net survival [1, 2]. Net
survival is a hypothetical construct giving the probability
of being alive if it was only possible to die of the cancer
under study. In these studies cause of death information is
either unavailable or, more commonly, deemed unreliable
[3, 4] and so expected mortality rates are incorporated so
that mortality in excess of that expected can be estimated.
Relative survival is likely to vary by demographic fac-

tors such as age and sex, and disease severity, but is often
reported as a marginal estimate giving the average sur-
vival in the study population. To ensure fair comparisons
between population groups age-standardization is gener-
ally performed [5] where a common age distribution is
forced on the groups being compared. The arguments for
standardization could also apply to other covariates that
vary between groups being compared.
Marginal relative survival can be estimated non-

parametrically using the Pohar Perme estimator [6]. In
order to age-standardize when using the Pohar Perme
estimator it is usual to obtain separate estimates for dif-
ferent age groups, with the marginal estimate obtained
through a weighted average of the age group specific
effects. An alternative is to up or down weight individuals
relative to a reference population [7, 8]. Standardization
can also be performed using a modeling approach [9–11],
which allows estimation of conditional effects and well
as marginal estimates, through regression standardization
[2, 12].
In a standard survival model, i.e. not in the relative sur-

vival framework,if one is just interested in an estimate
of marginal survival, then it is not necessary to model
any covariates. This means that for a reasonable para-
metric model with no covariates the estimated survival
function should be in good agreement with the non-
parametric Kaplan-Meier curve. However, in the relative
survival framework there will be a difference between the
estimated relative survival from a model with no covari-
ates and a non-parametric (Pohar Perme) estimate. This is
due to need to incorporate expected mortality rates that
vary between individuals (by age, sex, calendar year etc) in
the relative survival model. Thus, red when using a relative
survival model to estimate, marginal relative survival, then
covariates that affect expected mortality rates should be
modelled so that themarginal effect can then be estimated
through regression standardization [2, 12].
The need to model covariates that affect expected mor-

tality rates, even when interest only lies in marginal
relative survival, increases the likelihood of model mis-
specification, particularly as it is very common to have to
model time-dependent effects (non-proportional excess

hazards). In this paper we propose a model that directly
estimates marginal relative survival and thus removes
the need to model variables that reflect the variation in
expected mortality rates. In the “Methods” section we
define the conditional and marginal models and describe
how incorporation of individual level weights allows exter-
nal age standardization and enable covariates to be incor-
porated. The “Results” section includes a simulation study
evaluating statistical properties of different estimators and
illustrates the methods using an example of individuals
diagnosed with melanoma. The paper is concluded with a
discussion.

Methods
In the relative survival framework it is assumed that the
overall all-cause mortality rate, h(t|XXXi), for an individual
with covariate patternXXXi, is the sum of the expected mor-
tality rate, h∗(t|XXXi), and the excess mortality rate, λ(t|XXXi).

h(t|XXXi) = h∗(t|XXXi) + λ(t|XXXi) (1)
For simplicity it is assumed that covariates, XXXi, are the

same for the expected and excess mortality rates, but this
can be relaxed. Expected mortality rates are stratified by
age, sex, calendar year and potentially other demographic
covariates. The relative survival for covariate patternXXXi is,

R(t|XXXi) = exp
(

−
∫ t

0
λ(u|XXXi)du

)

The marginal relative survival, Rm(t|XXX), is the expec-
tation over covariates, XXX, i.e. EXXX [R(t|XXX)]. This can be
estimated in a modelling framework when incorporating
these covariates, XXX, by averaging the individual estimates,
R̂(t|XXXi).

R̂m(t|XXX) = 1
N

N∑
i=1

R̂(t|XXXi)

The marginal excess mortality rate function, λm(t|XXX)

can be obtained through the usual transformation from
survival to hazard function, h(t) = −d ln[S(t)]

dt .

λm(t|XXX) = EXXX [R(t|XXX)λ(t|XXX)]
EXXX[R(t|XXX)]

(2)

and can be estimated in a parametric modeling framework
when modeling covariatesXXX by,

λ̂m(t|XXX) =
1
N

∑N
i=1 R̂(t|XXXi)̂λ(t|XXXi)
1
N

∑N
i=1 R̂(t|XXXi)

A conditional model with no covariates for the excess
mortality rate
Consider the conditional model in Eq. (1) without includ-
ing covariatesXXXi for the excess mortality rate.

h(t|XXXi) = h∗(t|XXXi) + λ(t) (3)
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This assumes that the excess mortality rate, λ(t), is the
same for all individuals. This would mean that all-cause
mortality rate would vary between individuals only due
to variation in the expected mortality rates and not vari-
ation in excess mortality rates. This is different from that
defined in Eq. (2) where the individual excess mortality
rates vary between individuals.

Likelihood
We adopt a fully parametric approach, so will model
how excess mortality rates vary over time from diag-
nosis and by covariates. For an observed all-cause sur-
vival/censoring time, ti and event indicator for death due
to any cause, di, the log-likelihood contribution of the ith
individual with covariate pattern,XXXi, for a relative survival
model is

ln Li = di ln
[
h∗(ti|XXXi) + λ(ti|XXXi,βββ ,γγγ )

]−�(ti|XXXi,βββ ,γγγ )

where �(t|XXXi,βββ ,γγγ ) is the cumulative excess mortality
function with parameters, βββ , modelling covariate effects
and,γγγ , modeling the effect of time from diagnosis [11, 13].
For a marginal model with no covariates the marginal

excess mortality rate, λm(t|XXX), as defined in Eq. (2), needs
to be directly estimated; XXX thus denotes covariates that
can impact on both expected and excess mortality rates.
Rather than incorporate, h∗(ti|XXXi), the individual expected
hazard for the ith individual at time ti, a suitable estimate
of the marginal expected mortality rate needs to be incor-
porated. A naive way to do this would be including the
mean of h∗(ti|XXXi) among those at risk at time ti. However,
net survival is defined in the hypothetical world where it
is not possible to die from other causes, but it is estimated
in the real world where individuals may die from both
their cancer and from other causes. This means that with
increasing time from diagnosis individuals with a higher
risk of dying from other causes will be underrepresented.
This should be taken into account in both the likelihood
and when estimating the mean expected mortality rate. A
similar idea to that proposed by Pohar Perme et al. [6] for
the non-parametric estimator is used by upweighting by
the inverse of the expected survival, S∗(t|XXXi), where,

S∗(t|XXXi) = exp
(

−
∫ t

0
h∗(u|XXXi)du

)

and defining the individual level, time-dependent weights
w∗
i (t) as

w∗
i (t) = 1

S∗(t|XXXi)

The mean expected mortality rate at time ti incorporat-
ing weights, w∗

i (ti), is

h̄∗(ti) =

∑
j∈R(ti)

w∗
j (ti)h∗(ti|XXXj)

∑
j∈R(ti)

w∗
j (ti)

(4)

whereR(ti) is the set of those at risk at time ti.
The weighted marginal expected mortality rates, h̄∗(ti)

can then be incorporated into the weighted likelihood
rather than h∗(ti|XXXi) together with weights, w∗

i (ti),

ln Li = diw∗
i (ti) ln

[
h̄∗(ti) + λm(ti|γγγ )

]

−
∫ ti

0
w∗
i (u)λm(u|γγγ )du

(5)

Note that Eq. (4) only needs to be calculated at event
times and is not needed for individuals with censored
times. The integral in Eq. (5) will generally not be ana-
lytically tractable. A numerical integration method, such
as Gaussian quadrature, could be incorporated into the
estimation process. However, we choose to split the time-
scale into a number of intervals and assume that the
weight is constant within each interval. The likelihood
then becomes,

ln Li = diw∗
i (ti) ln

[
h̄∗(ti) + λm(ti|γγγ )

]

−
Mi∑
k=1

w∗
i (tk)

(
�m(ti(k)|γγγ ) − �m(ti(k−1)|γγγ )

)

(6)

where Mi is the number of intervals for the ith subject.
An advantage of this approach is that after splitting the
time-scale and calculating the weights, standard paramet-
ric relative survival models can be used. This requires the
software to incorporate both weights and left truncation
into the likelihood. There needs to be a choice of how
finely to split the time-scale. As the weights depend upon
expected mortality rates, the weights will vary continu-
ously, so a choice needs to be made at what point within
the interval to calculate the weight. We use the mid-point
of the interval [14]. More time intervals will result in
greater precision, but increase computational time. The
choice of the number of time intervals is investigated in
the example in the “Results” section. The weights vary
within individuals and leads to within-subject correlation.
Therefore, a cluster robust sandwich estimator of the vari-
ance is used [15]. This is similar to other methods that
use time-dependent weights, such as the Fine and Gray
subhazard model [16] or the parametric equivalent [17].

External age-standardization
In order to compare estimates of marginal relative sur-
vival between different population groups it is necessary
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to age-standardize to the same age distribution. In the
non-parametric setting the usual approach is to estimate
marginal relative survival separately within age groups
and then obtain a weighted average of the age-specific
estimates, with weights equal to the proportion within
each age group in the reference population. In a mod-
elling framework regression standardization is performed
with each individual up or downweighted using the ratio
of the proportion in the age group to which the individ-
ual belongs and the proportion in the reference age group
[2]. A similar idea can be used within the marginal model
that enables externally age-standardized estimates to be
obtained without the need to model, or stratify by, age.
Let pai be the proportion in the age group to which

the ith individual belongs and pRi be the corresponding
proportion in the reference population. Weights can be
defined to upweight or downweight individual relative to
the reference population.

wa
i = pRi

pai
(7)

These weights can then be combined with the inverse
expected survival weights,

wi(t) = wa
i w

∗
i (t)

These weights are the same as those defined by Sasieni
and Brentnall [7] for use in non-parametric relative sur-
vival estimators. The weights need to be used when calcu-
lating h̄∗(ti) by substitutingw∗

i (t) forwi(t) in Eq. (4) and in
the likelihood in Eq. (6). It is common just to standardize
by age, but the approach is applicable when standardizing
over multiple covariates.

Modeling covariates
When the aim is to make contrasts between differ-
ent population groups then covariates can be added to
the marginal model. For example, these covariate could
be different regions/countries, socio-economic groups,
time-periods or sexes. As the age distribution may vary
between the groups being compared it is important to
age-standardize, but now the weights defined in Eq. (7)
should be calculated separately within subgroups. In addi-
tion, h̄∗(ti) should be calculated separately within each
subgroup.

Choice of parametric model
The likelihood defined in Eq. (6) could be used for a vari-
ety of parametric models. Here we use flexible parametric
survival models on the log-cumulative excess hazard scale
[9] that incorporate restricted cubic splines to model the
effect of time from diagnosis. An advantage of model-
ing on the log-cumulative excess hazard scale is that the
it provides an analytical form for the cumulative excess
hazard that is required for the likelihood in Eq. (6). The

model for the log cumulative excess hazard, �(t|k0k0k0,γγγ ),
where k0k0k0 is a vector of knots and γγγ the associated splines
parameters, is

ln
[
�(t|k0k0k0,γγγ )

] = η(t|k0k0k0,γγγ ) = s
(
ln(t)|k0k0k0,γγγ

)

where s
(
ln(t)|k0k0k0,γγγ

)
is a restricted cubic spline function

of log time. The number of parameters to model the
baseline is determined by the number of knots for the
restricted cubic spine function with the number of param-
eters (including the intercept) being equal to the number
of knots. Simulation studies have shown that the mod-
els give negligible bias when estimating survival functions
across a wide range of scenarios [18, 19]. For more details
on these models see Royston and Lambert [13].
After fitting a model the estimated marginal relative

survival and marginal excess mortality functions can be
estimated,

R̂m(t|XXX) = exp[− exp(̂η(t|k0k0k0,γγγ ))]

λ̂m(t|XXX) = ds
(
ln(t)|k0k0k0, γ̂γγ

)
dt

exp[ η̂(t|k0k0k0,γγγ )]

In Appendix I, we describe how a semi-parametric
marginal model could be fitted through estimation of
a separate parameter for each event type using Poisson
regression and how this is a equivalent to the Pohar Perme
non-parametric estimate when not modeling covariates in
order to demonstrate how the methods are related. How-
ever, we do not advocate this approach due to the compu-
tational intensity of splitting the time scale at unique time
points and estimating a separate parameter for each time
interval.

Simulation study
A small simulation study was performed to quantify any
potential bias in the different methods, the coverage prob-
abilities and the variation in the estimates. We simulate
two scenarios where there is substantial variation in rel-
ative survival by age, a situation which leads to higher
bias for some methods [2]. In Scenario 1 the variation the
excess hazard ratio decreases over time and in Scenario 2
we assume the effect of age is proportional over time. The
simulation strategy is outlined below.

1 The sample size of each dataset was set at 1000.
2 All subjects were assumed to be male and diagnosed

in one calendar year, 2009.
3 Age at diagnosis was sampled from a Normal

distribution with mean 66 and standard deviation 13.
4 Times of death due to cancer was generated with the

baseline survival (at the mean age) having a Weibull
distribution with shape paramater, γ = 0.5, and scale
parameter, λ = 0.2. The hazard function for the
Weibull model is λγ tγ−1.
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5 The effect of age at diagnosis (agediag) varied
between the 2 scenarios.

Scenario 1 agediag was assumed to be
non-proportional over time with an excess hazard
ratio of exp(0.1 − 0.01(agediag − 66)t). The
time-dependent excess hazard ratios and relative
survival for selected ages are shown in Fig. 1. Note
that the excess hazard ratios get closer to the null
as time increases.

Scenario 2 agediag was assumed to be
non-proportional over time with an excess hazard
ratio of exp(0.03(agediag − 66)). The excess
hazard ratios and relative survival for selected ages
are shown in Fig. 1.

6 Times to death from other causes were generated
from exponential distributions with mortality rates
obtained from expected population mortality rates in
England in 2009 [20]. A different rate was used for
each year of follow to account for the fact that
attained age was increasing. If the simulated value
was greater than 1 for any yearly interval then the
individual was assumed to be alive at the start of the
next interval. If the value was less than one, it was
assumed that the individual died in the interval.

7 The observed time to death was taken as the
minimum of the cancer specific time to death and
the other cause time to death.

8 The following analyses were performed on each
simulated data set. All flexible parametric models
used 6 knots to model the effect of follow-up time.

a The non-parametric Pohar Perme method to
estimate marginal relative survival [6].

b A conditional flexible parametric relative
survival model with no-covariates, see Eq. (3).

c A conditional flexible parametric relative
survival model fitting a linear effect of age and
assuming proportional hazards, see Eq. (1).
The marginal relative survival was estimated
using regression standardization.

d A conditional flexible parametric relative
survival model with the effect of age modelled
using restricted cubic splines (4 knots) and
allowing for non-proportional hazards with an
interaction between the age splines and spines
variables to model the effect of follow-up time,
see Eq. (1). Marginal relative survival was then
estimated using regression standardization.

e A flexible parametric marginal model to
directly estimate marginal relative survival.
The time-scale was split every 0.2 years to
incorporate the weights.

9 1000 datasets were generated. In estimation of the
coverage this gives a standard error of
100

√
(0.95 ∗ 0.05/1000) = 0.69 percentage points.

10 For each method the bias, the mean square error
(MSE), the coverage and relative percentage increase

Fig. 1 True relative survival and excess hazard ratios for selected ages. For the excess hazard ratios the mean age at diagnosis, 66, is the reference
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in precision compared to the non-parametric Pohar
Perme estimator at 1, 5 and 10 years post diagnosis
was reported.

Results
Simulation study
The results of the simulation study for scenarios 1 and
2 are shown in Tables 1 and 2 respectively. In both sce-
narios bias is negligible for the Pohar Perme method, the
marginal model and regression standardization when fit-
ting a model with time-dependent effects for age with
coverage close to 95%. Regression standardization when
assuming proportional hazards gives a bias of 0.4, 0.9 and
2.0 percentage points at 1, 5 and 10 years respectively
for Scenario 1, illustrating the potential issue of fitting an
incorrect model. In Scenario 2 bias was lower as the varia-
tion in excess mortality reduced as a function of follow-up
time [2].

Table 1 Bias (bold font), coverage (italics font) and MSE (normal
font) for simulation scenario 1 comparing the non parametric
Pohar Perme estimator, a conditional model (without covariates),
regression standardization under proportional hazards (PH),
regression standardization under non-proportional hazards (Non
PH) and a marginal model. Bias is expressed as a difference in
probabilities

Years from diagnosis)

Method 1 5 10

Pohar Perme 0.0005 0.0006 0.0006

95.4 95.1 95.4

198.676 302.290 430.220

Conditional Model 0.0261 0.0486 0.0457

53.6 19.5 29.3

873.184 2653.730 2450.234

Regression standardization (PH) -0.0044 -0.0093 -0.0202

92.5 93.5 80.7

204.942 353.266 737.678

Regression standardization (Non PH)∗ 0.0025 0.0016 -0.0006

93.6 97.2 96.5

188.909 283.351 381.325

Marginal model 0.0032 0.0020 0.0018

95.7 95.7 95.5

192.043 288.790 420.932

Relative % increase in precision+

Regression standardization (PH) 7.2 12.9 30.0

Regression standardization (Non PH)∗ 8.6 7.6 12.9

Marginal model 9.0 6.0 3.0

bias, Coverage, MSE
∗ 0.5% of models did not converge
+ compared to Pohar Perme
PH - proportional hazards
Non PH - non proportional hazards

Table 2 Bias (bold font), coverage (italics font) and MSE (normal
font) for simulation scenario 2 comparing the non parametric
Pohar Perme estimator, a conditional model (without covariates),
regression standardization under proportional hazards (PH),
regression standardization under non-proportional hazards (Non
PH) and a marginal model. Bias is expressed as a difference in
probabilities

Years from diagnosis)

Method 1 5 10

Pohar Perme 0.0001 -0.0000 0.0005

94.6 95.1 95.0

180.679 416.913 936.228

Conditional Model 0.0092 0.0274 0.0434

87.8 61.6 34.9

235.224 1052.450 2264.524

Regression standardization (PH) 0.0002 -0.0000 0.0008

88.9 96.1 94.7

154.728 313.687 395.280

Regression standardization (Non PH)∗ -0.0001 0.0006 0.0022

88.6 96.1 96.7

158.038 370.164 630.970

Marginal model -0.0003 0.0011 0.0046

95.5 95.0 93.5

151.551 374.557 888.256

Relative % increase in precision+

Regression standardization (PH) 16.8 32.9 137.1

Regression standardization (Non PH)∗ 14.3 12.7 49.4

Marginal model 19.3 11.7 8.0

bias, Coverage, MSE
∗ 18.3% of models did not converge
+ compared to Pohar Perme
PH - proportional hazards
Non PH - non proportional hazards

Fitting a conditional survival model with no covariates
gives a bias of 2.6, 4.9 and 4.6 percentage points at 1, 5 and
10 years respectively for Scenario 1, with bias of 0.0, 2.7
and 4.3 percentage points for Scenario 2.
The marginal relative survival model has a lowerMSE at

all times when compared to the Pohar Perme method for
both scenarios. Regression standardization of the model
allowing a non-proportional effect of age has similar MSE
to the marginal model at 1 and 5 years, but a lower MSE
at 10 years.
Regression standardization with non-proportional haz-

ards and the marginal model had similar relative increases
in precision when compared to the Pohar Perme estima-
tor at 1 and 5 years. At 10 years, the marginal model had
higher relative precision than the Pohar Perme method,
but the increase was notably greater when using regres-
sion standardization.
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Five (0.5%) of the models with time-dependent effect of
age in Scenario 1 and 183 (18.3%) in Scenario 2 failed to
converge indicating a potential problem in using complex
models to model the non-proportional effects of age when
there are very few individuals still at risk towards the end
of follow-up.
In summary, the simulation study shows the marginal

model has negligible bias and greater precision than the
non-parametric Pohar Perme estimator.

Application to melanoma example
The methods are illustrated using data on 4,744 patients
diagnosed with melanoma (a type of skin cancer) in a
Northern European country between 1985–1994. The
data is from a national cancer registry and so attempts to
capture all diagnosed cases of Melanoma in the country.
These data are distributed with the Stata strs package
[21]. The code to implement the methods are shown in
Appendix II with datasets freely available.
Figure 2a shows the non-parametric Pohar Perme esti-

mator together with the estimated modeled marginal
relative survival. These are internally age standardized
estimates as the expectation is over the observed age dis-
tribution. Here a model with 6 knots (i.e. five restricted
cubic spline variables) were used to model the marginal
log cumulative excess hazard. The time-scale was split
every 0.2 years when incorporating the weights. Agree-
ment can be seen to be very good. A feature of the Pohar

Perme estimator is that it is highly variable towards the
end of follow-up. This is due to the impact of the weights,
with the small number of older individuals who are still
alive having high influence. Also shown on this figure is
the conditional model with no-covariates which shows a
clear difference when compared to the other methods.
Figure 2b shows the externally age-standardized

marginal relative survival using Pohar Perme and the
marginal relative survival model. The age groups were
< 45, 45 − 54, 55 − 64, 65 − 74, 75+ years of age with
standardization weights as defined in the International
Cancer Survival Standard (ICSS) [5]. In order to age-
standardize using the Pohar-Perme estimator separate
estimates for each age group were obtained and then a
weighted average was calculated. The marginal relative
survival model does not need to stratify or model the
effect of age due to the incorporation of the weights
defined in Eq. (7). The Figure shows that, in this example,
external age-standardization makes little difference when
compared to the internally age-standardized estimates
in Fig. 2a as the reference age-distribution was similar to
that observed in the study population.
In Fig. 2 the time-scale was split every 0.2 years with

the weights taken at the midpoint of each interval and 6
knots (5 spline variables) were used to model the base-
line. Table 3 shows the estimated survival at 1, 5 and 10
years using a variety of time splits, at 0.05, 0.1, 0.2, 0.5, 1
and 2.5 years, and various number of knots (4, 6, 8 and

Fig. 2 Estimates of marginal relative survival: Panel (a) shows internally age-standardized estimates using the non-parametric Pohar Perme method
and the marginal relative survival model. Also shown is the estimate from the conditional relative survival model with no-covariates. Panel (b) shows
externally age-standardized estimates from the non-parametric Pohar Perme method and marginal relative survival model. 95% confidence
intervals are shown by either dashed lines or the shaded areas
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Table 3 Estimated marginal relative survival at 1, 5 and 10 years from diagnosis using time splits at 0.05, 0.1, 0.2, 0.5, 1 and 2.5 years and
using 4 6 8 and 10 knots to model the baseline

Time Split 4 knots 5 knots 6 knots 7 knots

1 years 0.05 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.952 (0.944,0.958)

0.1 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.952 (0.944,0.959)

0.2 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.951 (0.943,0.958) 0.952 (0.944,0.959)

0.5 0.952 (0.944,0.958) 0.952 (0.944,0.959) 0.952 (0.944,0.958) 0.952 (0.945,0.959)

1 0.952 (0.944,0.959) 0.952 (0.944,0.959) 0.952 (0.944,0.959) 0.953 (0.945,0.960)

2.5 0.954 (0.946,0.960) 0.954 (0.946,0.961) 0.954 (0.946,0.960) 0.955 (0.947,0.961)

5 years 0.05 0.787 (0.769,0.805) 0.786 (0.767,0.803) 0.786 (0.767,0.803) 0.786 (0.767,0.803)

0.1 0.788 (0.769,0.805) 0.786 (0.767,0.803) 0.786 (0.767,0.804) 0.786 (0.767,0.803)

0.2 0.788 (0.770,0.806) 0.787 (0.768,0.804) 0.787 (0.768,0.804) 0.787 (0.768,0.804)

0.5 0.790 (0.772,0.807) 0.789 (0.770,0.806) 0.789 (0.770,0.806) 0.789 (0.770,0.806)

1 0.793 (0.775,0.810) 0.792 (0.773,0.809) 0.792 (0.773,0.809) 0.792 (0.773,0.809)

2.5 0.803 (0.786,0.820) 0.801 (0.783,0.818) 0.801 (0.783,0.818) 0.801 (0.783,0.818)

10 years 0.05 0.737 (0.700,0.770) 0.742 (0.703,0.777) 0.743 (0.703,0.779) 0.743 (0.701,0.780)

0.1 0.737 (0.700,0.771) 0.742 (0.703,0.777) 0.744 (0.703,0.780) 0.744 (0.702,0.780)

0.2 0.739 (0.702,0.772) 0.744 (0.705,0.778) 0.745 (0.705,0.781) 0.745 (0.703,0.782)

0.5 0.742 (0.706,0.775) 0.747 (0.709,0.782) 0.749 (0.709,0.784) 0.749 (0.708,0.785)

1 0.748 (0.712,0.780) 0.753 (0.715,0.786) 0.754 (0.716,0.789) 0.754 (0.714,0.789)

2.5 0.767 (0.734,0.796) 0.772 (0.738,0.803) 0.774 (0.739,0.806) 0.774 (0.738,0.806)

Point estimates are in bold with 95% confidence intervals in braces
Point estimates shown in bold font and 95% confidence intervals in normal font

10). There is very little difference in any of the estimates at
1-year with the largest difference, 0.002. With increasing
time there is more variation, but for time-splits from 0.05
to 0.2 years yields a difference of 0.002 or less at 10 years.
Larger time-splits lead to larger differences, which is not
surprising as the weights are forced to be constant within
each interval.
If the mean expected mortality defined in Eq. (4) is cal-

culated separately for males and females then the effect
of sex can be modelled. When doing so one will gen-
erally want to age-standardize as the age distributions
of the groups being compared could differ. There is a
choice here about what age distribution to standardize
to. This could be the ICSS weights used above, which
would allow comparisons with other studies using the
same age standard. Alternatively, if measures more rele-
vant to the study population are required then this could
be the joint age distribution of male and females or the
age distribution of one of the groups. Here the age dis-
tribution of males will be used to illustrate some useful
interpretations.
It could be simplistically assumed that the marginal

excess mortality rates are proportional. Fitting such a
model yields a marginal excess mortality rate ratio for
females compared to males of 0.70 (95% CI: 0.59 to

0.83). The assumption of proportional marginal haz-
ards can be relaxed by incorporating an interaction
between the effect of being female and the effect of
time. This was done using a spline term with 4 knots,
i.e. three additional parameters. The excess mortal-
ity rates for both the proportional hazards model and
non-proportional model are shown in Fig. 3a with the
corresponding marginal relative survival functions in
Fig. 3b. The curves for each sex are very similar as the
proportionality assumption appears reasonable here; (a
decrease in log-likelihood of 0.71 with 3 degrees of free-
dom).
As we have standardized each of these estimates to

the age distribution of males the curves give the factual
estimates for males, i.e. given their own age distribution
and the counterfactual effect for males if they had the
same relative survival as females. This is because the age-
distribution for males is being applied to the effect of
females.
Figure 4 shows the difference in the two marginal rela-

tive survival functions with 95% confidence intervals. As
the age distribution of males has been used as the age
reference, this gives an estimate how much the marginal
relative survival would increase if males had the same
relative survival as females.
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Fig. 3 Estimated marginal excess mortality rate (panel (a)) and marginal relative survival functions (panel (b)) for proportional and non-proportional
models. Estimates have been standardized to the age distribution of the males

Discussion
We have demonstrated how marginal estimates of rel-
ative survival can be directly modeled through calcula-
tion of appropriately weighted mean expected mortality
rates and introducing weights into the likelihood. We
have also shown how additional weights can be included
so that age-standardized marginal relative survival is
directly estimated without the need to model or strat-
ify by age. In addition we have shown that contrasts of

marginal relative survival can be directly estimated from
the marginal model. Although the relative survival frame-
work has almost exclusively used within cancer, the meth-
ods described here could be utilized in other disease areas
[22, 23].
When making comparisons between population groups

there is generally a need to age-standardize as in most
situations there will be a difference in the age distribu-
tion and there is usually a strong relationship between

Fig. 4 Difference in marginal relative survival with 95% confidence interval (shaded area) comparing females to males
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age and relative survival. Introducing individual level rel-
ative weights enables external age-standardization with-
out the need to stratify or model age. Rutherford et al
recently advocated the use of individual relative weights
for the non-parametric Pohar Perme estimator for age
standardization when data were sparse [8]. An important
choice when age standardizing is in the age distribution
used. Using ICSS weights allows comparisons with many
other studies using the same weights, but using the age-
distribution observed in the study population may be
more useful for generalizing to a particular population.
As separate effects do not need to be calculated by age
group the use of narrower categories of age for the relative
weights can be used. For example, in practice the oldest
age group when standardizing for most cancer types is
75+. There can be substantial variation in relative survival
within this age group and the age distribution within this
age groupmay vary between population groups. Using the
weighting approach proposed here one could, for exam-
ple, apply the five year age groups presented by Corazziari
et al. [5].
If just an overall summary of marginal relative survival

is needed then the non-parametric Pohar Perme estimate
could be used. An advantage of the marginal model is that
it has negligible bias, but higher relative precision than
then non-parametric approach. Our approach is particu-
larly useful for comparisons between different population
groups.
A limitation of the method is that the user has to choose

the number of knots for the restricted cubic splines. Previ-
ous work has demonstrated that estimates are insensitive
to the number of knots, as long as their are enough to
capture the underlying shape of the hazard functions [18,
19, 24]. However, a sensitivity analysis, such as that dis-
played in Table 3 can be reassuring to both the analyst
and others. Themarginal model approximates the integral
defined in the likelihood by splitting the time-scale (Eq. 6).
The sensitivity analysis shown here shows that as long as
the width of the intervals is at 0.2 years or less there is
very little impact on the estimates, but smaller intervals
would lead to improved accuracy. Although more accu-
rate estimation could be obtained through calculating the
integral numerically for each individual in the estimation
process, we prefer the split time approach as it enables
standard software to be used together with a host of useful
post-estimation prediction commands.
In observational studies with time-to-event outcomes

it is common to use inverse probability weighting (IPW)
to adjust for confounders [25]. However, a conditional
relative survival model without covariates gives a biased
estimate of the marginal survival function (Fig. 2) and
thus the IPW approach in not directly transferable to
the relative survival framework. However, applying the
IPW weights to the marginal model will enable the IPW

approach to be used in the relative survival framework and
this is being further investigated in ongoing work.
When there is interest in more detailed comparisons

between population groups then a conditional model
should be used. For example, to quantify how differences
in relative survival vary by age. However, when there is
only interest in the marginal relative survival and asso-
ciated contrasts, the model proposed here simplifies the
modelling process, has negligible bias and increased pre-
cision over the non parametric Pohar Perme estimate.

Conclusion
When only marginal effects are of interest the model
described here is particularly useful as it less prone to
model misspecification as covariates that are associated
with expected mortality rates do not need to be incorpo-
rated into the model.

Software
Stata code to set-up data and fit the models for the
melanoma example is shown in Appendix II of the supple-
mentary material.
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