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Abstract

Background: In survival analysis, data can be modeled using either a multiplicative hazards regression model (such as
the Cox model) or an additive hazards regression model (such as Lin’s or Aalen’s model). While several diagnostic tools
are available to check the assumptions underpinning each type of model, there is no defined procedure to fit these
models optimally. Moreover, the two types of models are rarely combined in survival analysis. Here, we propose a
strategy for optimal fitting of multiplicative and additive hazards regression models in survival analysis.

Methods: This section details our proposed strategy for optimal fitting of multiplicative and additive hazards regression
models, with a focus on the assumptions underpinning each type of model, the diagnostic tools used to check these
assumptions, and the steps followed to fit the data. The proposed strategy draws on classical diagnostic tools
(Schoenfeld and martingale residuals) and less common tools (pseudo-observations, martingale residual processes, and
Arjas plots).

Results: The proposed strategy is applied to a dataset of patients with myocardial infarction (TRACE data frame). The
effects of 5 covariates (age, sex, diabetes, ventricular fibrillation, and clinical heart failure) on the hazard of death are
analyzed using multiplicative and additive hazards regression models. The proposed strategy is shown to fit the data
optimally.

Conclusions: Survival analysis is improved by using multiplicative and additive hazards regression models together,
but specific steps must be followed to fit the data optimally. By providing different measures of the same effect, our
proposed strategy allows for better interpretation of the data.

Keywords: Multiplicative hazards regression model, Additive hazards regression model, Survival analysis

Background
Clinical studies are often aimed at assessing the relation-
ship between explanatory variables and time-to-event
outcomes such as survival time. In survival analysis, the
presence of censored observations requires the use of
specific models. The most commonly used models for
this purpose focus directly on the hazard function and

can be divided into two types: multiplicative hazards re-
gression models and additive hazards regression models.
The most popular multiplicative hazards regression
model is the Cox proportional hazards model [1]. In this
model, covariates act multiplicatively on the baseline
hazard, which is expressed as a time-dependent function
without assumptions regarding its shape. The Cox pro-
portional hazards model has two main advantages: it
gives a hazard ratio, which allows for interpreting covari-
ate effects as relative risks, and it is easy to compute,
which means that it can be applied with practically any
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statistical software. However, this model is based on two
assumptions that must be satisfied to ensure correct fit-
ting of the data, and, consequently, correct interpret-
ation of covariate effects. The first is that covariate
effects are constant over time; this rather strong assump-
tion, known as the proportional hazards assumption, re-
sults in biased estimates when it is violated [2]. A
second assumption, known as the assumption of log-
linearity, is that the effects of continuous covariates are
log-linear. One typically uses an extended Cox model
with time-varying effects when the first assumption is
not met [3, 4] and an extended Cox model with non-
log-linear effects when the second assumption is not
respected [4].
By contrast, in additive hazards regression models, co-

variates act additively on the baseline hazard. The first
additive hazards regression model was proposed by Aalen
[5, 6]. In this non-parametric model, covariates effects are
modeled as regression functions that can vary over time,
which means that the proportional hazards assumption
does not apply. Indeed, the only assumption underpinning
this model is the linearity of continuous covariates. Aalen’s
model gives hazard differences that are then interpreted
by plotting cumulative hazards over time. The main ad-
vantage of this model is that it allows for investigating the
effects of a given covariate over time. Although this model
is more flexible than the Cox proportional hazards model,
it is less commonly used because it is not well-known and
because cumulative hazards are more difficult to interpret
than hazard ratios. In case of time-constant effect of the
covariates, one can use the additive model proposed by
Lin et al. [7], which is a particular case of Aalen’s model.
In Lin’s model, regression functions are constant except
for the baseline hazard.
While both multiplicative and additive hazards regression

models capture the effects of covariates, they allow for inter-
preting these effects differently. The hazard ratio given by
multiplicative models is interpreted as a relative risk. By con-
trast, the cumulative hazard given by additive models is inter-
preted as the difference in outcome incidence due to
exposure when the cumulative hazard is small (interpretation
becomes much more difficult when the cumulative hazard is
important) [8]. Accordingly, one can choose either model de-
pending on whether a hazard ratio or a cumulative hazard is
preferred as a measure of covariate effects. Generally speak-
ing, additive hazards regression models are more appropriate
to determine the effects of exposure in an epidemiologic con-
text [9, 10], and multiplicative hazards regression models are
preferred in all other situations. To date, however, the two
models have rarely been combined in survival analysis.
Moreover, no procedure has been defined to perform opti-
mal fitting of the two models, i.e. which allows obtaining
models that fit the data while respecting the assumptions
underpinning each type of model.

The aim of this study is to propose a strategy for the
optimal fitting of multiplicative and additive hazards re-
gression models in survival analysis.
The structure of the article is as follows. The Methods

section begins by detailing our strategy for optimal fit-
ting of multiplicative and additive hazards regression
models, with a focus on the assumptions underpinning
each type of model, the diagnostic tools used to check
these assumptions, and the steps followed to fit the data.
The section ends by summarizing the differences be-
tween multiplicative and additive hazards regression
models. In the Results section, our proposed strategy is
applied to a dataset of patients with myocardial infarc-
tion (TRACE data frame) to analyze the effects of 5 co-
variates (age, sex, diabetes, ventricular fibrillation, and
clinical heart failure) on the hazard of death. Finally, the
Discussion section provides an interpretation of our
findings along with concluding remarks.

Methods
The proposed strategy
Our strategy for optimal fitting of multiplicative and additive
hazards regression models is detailed below. In all equations,
x is a vector of k covariates (xTi ¼ ðxi1;…; xikÞ), and λ0(t) is
the baseline hazard as a non-parametric function of time. To
simplify notation, all the presented covariates are time-
independent covariates but all the models and the diagnostic
tools can be used, unless otherwise specified, with time-
dependent covariates [4, 11].

Multiplicative hazards regression model

Cox proportional hazards model The main model in
our strategy is the popular Cox proportional hazards
model [1]. Two assumptions underpin this model: the
proportional hazards assumption and the assumption of
log-linearity.
In the Cox proportional hazards model, for a given subject

i, the hazard is written mathematically as λiðtjxiÞ ¼ λ0ðtÞ
ex

T
i β , where β is the vector of k parameters β= (β1,…, βk)

T

measuring the effects of the covariates on the hazard. The
parameter β is estimated by maximization of the partial like-

lihood. The exponential of the estimated parameter β̂, i.e. the
hazard ratio, is interpreted as a relative risk.
Thus, for two subjects i and j, the hazard ratio is con-

stant over time and is written as:

λi tjxið Þ
λ j tjx j
� � ¼ λ0 tð ÞexTi β

λ0 tð ÞexTj β
¼ ex

T
i β

ex
T
j β
:

Extended Cox model in case of non-proportional
hazards In our strategy, two diagnostic tools are used to
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check whether or not the proportional hazards assump-
tion is satisfied. The first is a common test which con-
sists in estimating the correlation between the
Schoenfeld residuals and the rank order of event times
[12]. The proportional hazards assumption is considered
satisfied when the p-value is greater than 0.05. The sec-
ond diagnostic tool is the graphical approach most com-
monly used to represent the effects of a covariate on the
hazard over time. In this approach, the Schoenfeld resid-
uals [13] obtained with a Cox proportional hazards
model fitted with each covariate are plotted against the
rank order of event times, and a smooth curve is then
superimposed on the plot. The obtained curve repre-
sents the variation of parameter β (i.e. the log-hazard ra-
tio of the covariate effects) over time. The proportional
hazards assumption is considered satisfied if the curve is
horizontal.
When the proportional hazards assumption is respected

for a given covariate, the Cox proportional hazards model is
fitted with this covariate.
When the assumption is not satisfied, an extended Cox

non-proportional hazards model is fitted with a function of
the time-dependent parameter β(t) [4]. Here, the hazard is

written as λiðtjxiÞ ¼ λ0ðtÞexTi βðtÞ, where β(t) is defined based
on knowledge of the variation or on the results obtained with
either of the diagnostic tools above.
The above process is repeated until the proportional

hazards assumption is satisfied for each covariate.

Extended Cox model in case of non-log-linearity As
noted earlier, the Cox proportional hazards model as-
sumes the log-linearity of continuous covariates. Thus,
for a continuous covariate x and two subjects i and j, the

hazard ratio is written as λiðtjxiÞ
λ jðtjx jÞ ¼

λ0ðtÞexiβ
λ0ðtÞex jβ

¼ exiβ

ex jβ
¼ eðxi−x jÞβ

and depends only on the difference between xi and xj.
For instance, for the continuous covariate “age”, the rela-
tive risk between a 25- and a 26-year-old is the same as
that between an 80- and an 81-year-old.
In our strategy, the assumption of log-linearity is

checked by representing the effects of each continuous
covariate on the hazard using the martingale residuals
[14]. The martingale residuals are defined as the differ-
ence between the observed number of events for an indi-
vidual (i.e. 1 when there is an event; 0 otherwise) and
the number of events estimated with the Cox propor-
tional hazards model. The lowess smooth of the martin-
gale residuals obtained with a null Cox proportional
hazards model (i.e. a Cox model with no fitted covariate)
is plotted against the continuous covariate, which gives
the functional form of this covariate on the hazard [4]. If
the obtained curve is straight, then the assumption of
log-linearity is satisfied.

When the assumption of log-linearity is satisfied for a
given covariate, the Cox proportional hazards model is
fitted with the non-transformed covariate.
When this assumption is not satisfied, the best functional

form is selected for each covariate using an extended Cox

model. In this model, the hazard is written as λiðtjxiÞ ¼ λ0ðtÞ
e f ðx

T
i Þβ, where f(x) is the functional form of covariate x. Differ-

ent functional forms of the continuous covariate are modeled
directly using special functions like fractional polynomials or
regression splines. Then, the lowess smooth of the martingale
residuals obtained with the extended Cox model fitted with
these functional forms is plotted against the continuous covari-
ate [15]: the functional forms that give roughly horizontal
curves are considered good candidates to satisfy the assump-
tion of log-linearity. The best functional form is then selected
using a model selection criterion - for instance, the Akaike in-
formation criterion (AIC) for non-nested models.
The above process is repeated until the assumption of

log-linearity is met for each continuous covariate.
In case of time-dependent continuous covariate, there

is no single value for each subject, so the lowess smooth
of the martingale residuals cannot easily be plotted
against the continuous covariate [4]. The assumption of
log-linearity must be checked with another diagnostic
tool presented below.

Extended Cox model in case of non-proportional
hazards and non-log-linearity The diagnostic tools used
to check the proportional hazards assumption (Schoenfeld
residuals) and the assumption of log-linearity (martingale re-
siduals) for a single continuous covariate rely on the other as-
sumption being true. While different methods can be used
to check the two assumptions simultaneously (Sasieni and
Winnett [16] and Pohar Perme and Andersen [17]), our
strategy employs that proposed by Pohar Perme and Ander-
sen [17]. This method is based on pseudo-observations,
which were introduced for regression modeling in event-
history analysis by Andersen et al. [18].
In survival analysis, for an individual i, the pseudo-

observation ŜiðtÞ is defined as the difference between n times

the survival ŜðtÞ estimated with the Kaplan-Meier method on

the whole sample and n minus one times the survival Ŝ
−iðtÞ

estimated with the Kaplan-Meier method after leaving out
the ith individual. One pseudo-observation is thus obtained
for each individual at each event time. To check the two as-
sumptions simultaneously, the pseudo-observations are trans-
formed to obtain a linear expression between survival and
covariate effects. Thus, for a continuous covariate z, the haz-
ard is written as λ(t| z) = λ0(t)e

zβ such that survival is S(t| z) =
exp(− ∫ λ(t| z)dt) = exp(− ∫ λ0(t)e

zβdt) = exp(−Λ0(t)e
zβ), where

Λ0ðtÞ ¼
R t
0 λ0ðtÞdt . With the cloglog transformation of the

smoothed curves of pseudo-observations, we obtain log(−
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log(S(t| z))) = log(Λ0(t)) + zβ. The effects of the covariate on
survival are represented by plotting the cloglog-transformed
smoothed pseudo-observations against the continuous covari-
ate. Because covariate effects can vary over time, pseudo-
observations are usually plotted at selected time points (e.g. 9
curves corresponding to 9 deciles of the event times distribu-
tion). The two assumptions are satisfied if the obtained curves
are parallel straight lines with the same slope β.
When the two assumptions are satisfied for a given co-

variate, the Cox proportional hazards model is fitted
with the non-transformed covariate.
When neither of the assumptions is satisfied, an extended

Cox model with time-varying effects and non-log-linear ef-
fects is used. In this model, for a continuous covariate z, the
hazard is written as λiðtjziÞ ¼ λ0ðtÞe f ðziÞβðtÞ . The model is
fitted with functions of the time-dependent parameter and
with functional forms of the continuous covariate.
The above process is repeated until both the propor-

tional hazards assumption and the assumption of log-
linearity are satisfied for each continuous covariate.

Goodness-of-fit assessment using Arjas plots The
goodness-of-fit of the multiplicative hazards regression
model fitted with each covariate is assessed using the
method proposed by Arjas [19]. This method known as
Arjas plots consists in plotting the observed number of pa-
tients with the event against the number of patients with
the event estimated with the model. If the observed num-
ber and the estimated number of patients with the event
are close and the obtained curve roughly matches the di-
agonal line, then the model has goodness-of-fit. Note that
in the case of continuous covariates, groups of individuals
are defined by dividing the continuous covariate distribu-
tion into several strata (e.g. 4 strata according to the quar-
tiles of the continuous covariate distribution).
The model has no goodness-of-fit when the curves

systematically deviate from the diagonal for some groups
of individuals, indicating an excess or a lack of predicted
events. When this occurs, the proportional hazards as-
sumption and the assumption of log-linearity must be
checked again for each covariate (as described above)
until goodness-of-fit is achieved.

Multivariate multiplicative model The proportional
hazards assumption is checked for the multiplicative
model fitted with all covariates by testing the correlation
between the Schoenfeld residuals and the rank order of
event times. The goodness-of-fit of the multivariate
model is then assessed using Arjas plots. The entire
process is repeated until the proportional hazards as-
sumption is satisfied for all covariates and the multivari-
ate model has goodness-of-fit.

Step-by-step strategy for optimal fitting of multiplicative
hazards regression models To summarize, in order to
optimally fit a multiplicative hazards regression model in
survival analysis, the following step-by-step strategy is
implemented:

1. Check the assumption of log-linearity for each con-
tinuous covariate using the martingale residuals (or
the plot of the cloglog-transformed smoothed
pseudo-observations against the time-dependent
continuous covariate). In case on non-log-linearity,
select the best functional form of the continuous
covariate using an extended Cox model. Repeat this
step until the assumption of log-linearity is satisfied
for each continuous covariate.

2. Check the proportional hazards assumption for each
covariate by testing the correlation between the
Schoenfeld residuals and the rank order of event times.
In case of non-proportional hazards, model a function
of the time-varying parameter in an extended Cox
model. Repeat this step until the proportional hazards
assumption is satisfied for each covariate.

3. Check simultaneously the proportional hazards
assumption and the assumption of log-linearity by
plotting the cloglog-transformed smoothed pseudo-
observations against each continuous covariate. In
case of non-log-linearity and non-proportional haz-
ards, use an extended Cox model. Repeat steps 1, 2,
and 3 until both assumptions are satisfied for each
continuous covariate.

4. Assess the goodness-of-fit of the multiplicative haz-
ards regression model for each covariate using Arjas
plots. Repeat steps 1, 2, 3, and 4 until the model has
goodness-of-fit for each covariate.

5. Check the proportional hazards assumption for the
multiplicative model fitted with all covariates using
the same procedures as in Step 2. Repeat steps 1, 2,
3, 4, and 5 until the multivariate model has
goodness-of-fit.

Additive hazards regression model

Aalen’s model The additive hazards regression model
proposed by Aalen is used to estimate the additive ef-
fects of a covariate on the baseline hazard [5, 6]. In this
model, for a given subject i, the hazard is written as λiðtj
xiÞ ¼ λ0ðtÞ þ xTi αðtÞ , where α(t) is the vector of k non-
parametric regression functions α(t) = (α1(t),
…, αk(t))

T measuring the effects of the covariates on the
hazard. The non-parametric regression function α(t) is
estimated by the least squares method at each event time
for at-risk individuals only [5, 6]. The only assumption
of this model is that continuous covariates are linear.
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The diagnostic tools used to check this assumption are
presented below.

Lin’s model Lin’s model [7] is a particular case of
Aalen’s model, in which all regression functions except
the baseline hazard are constant over time. Thus, for a
given subject i, the hazard is written as λiðtjxiÞ ¼ λ0ðtÞ
þxTi γ , where γ is the vector of k parameters γ = (γ1,
…, γk)

T measuring the effects of covariates on the hazard.
As in the Cox proportional hazards model, the param-
eter γ is estimated by maximization of the partial
likelihood.
In addition to assuming the linearity of continuous co-

variates, Lin’s model assumes that covariate effects are
constant over time. The assumption of constant effects
is checked for each covariate by plotting the cumulative
hazards estimated with Lin’s and Aalen’s models against
time. The assumption is satisfied if the obtained curve
has a constant slope. If the effects of all covariates are
constant over time, Lin’s model is used; otherwise,
Aalen’s model is used.

Extended Aalen’s model in case of non-linearity Here,
the assumption of linearity of continuous variables is
checked not with the martingale residuals as in the ex-
tended Cox model, but with the pseudo-observations. Spe-
cifically, Lin’s model (based on the assumptions of
linearity and constant effects) is used to model the func-
tional form of the continuous covariate after a transform-
ation of the pseudo-observations. Thus, for a continuous
covariate z, the hazard is written as λ(t| z) = λ0(t) + γz such
that survival is S(t| z) = exp(− ∫ λ(t| z)dt) = exp(− ∫ λ0(t) +

γzdt) = exp(−Λ0(t) − γzt), where Λ0ðtÞ ¼
R t
0 λ0ðtÞdt . After

log-transformation of the pseudo-observations, we obtain
− logðSðtjzÞÞ

t ¼ Λ0ðtÞ
t þ γz. The effect of the continuous covari-

ate on survival is represented by plotting the log-
transformed smoothed pseudo-observations against the
covariate, and then superimposing smooth curves on the
scatter plot. Note that because covariate effects can vary
over time, the pseudo-observations are usually plotted at
selected time points.
The shape of the obtained curves gives the functional

form of the continuous covariate and indicates which
model to use. If the obtained curves are straight lines,
then the assumption of linearity is respected: in that
case, Aalen’s model or Lin’s model is used (depending
on whether or not covariate effects are constant, as ex-
plained above). If the obtained curves are not straight
lines and are not parallel, then neither the assumption of
linearity nor the assumption of constant effects is satis-
fied: in that case, an extended Aalen’s model is used (see
below). Finally, if the obtained curves are not straight
lines and are parallel (with the same slope γ), then the

assumption of linearity is not satisfied but the assump-
tion of constant effects is respected: in that case, an ex-
tended Lin’s model is used (see below).
In the extended Aalen’s model, the functional form of

the continuous covariate is modeled directly using spe-
cial functions like fractional polynomials or regression
splines. Here, the hazard is written as λiðtjxiÞ ¼ λ0ðtÞ
þ f ðxTi ÞαðtÞ, where f(x) is the functional form of the co-
variate x. To determine whether the functional form of
the continuous covariate is appropriate, the variation of
the martingale residual processes over time is assessed
graphically [6]. For a given group of individuals, the cu-
mulative sum of the martingale residual processes is the
difference between the observed number of events and
the number of events estimated with the model fitted for
this group.
First, groups of individuals are defined by dividing the

continuous covariate distribution into several strata (e.g.
4 strata according to the quartiles of the continuous co-
variate distribution). Then, the cumulative sum of the
martingale residual processes for each group is plotted
against time with their confidence bounds. When the fit
is correct, the obtained curves are close to the horizontal
axis and their confidence bounds do not cross the hori-
zontal axis. Finally, chi-square tests are performed at the
end of patient follow-up to compare the observed num-
ber of events to the estimated number of events (for
each stratum and for all strata) [6]. If the obtained p-
value is statistically significant, the functional form is
rejected and another functional form is tested.
The above process is repeated until the assumption of

linearity is met for each continuous covariate.

Extended Lin’s model in case of non-linearity As
noted above, when the continuous covariates are non-
linear and the covariate effects are constant over time,
an extended Lin’s model is used. In this model, the haz-
ard is written as λiðtjxiÞ ¼ λ0ðtÞ þ f ðxTi Þγ where f(x) is
the functional form of the covariate x. Note that the
functional form of the continuous covariate is modeled
directly using special functions like fractional polyno-
mials or regression splines.

Goodness-of-fit assessment using Arjas plots The
goodness-of-fit of the additive hazards regression model
is assessed using Arjas plots [5]. Note that this proced-
ure is not necessary in the case of categorical covariates
because in Aalen’s model the observed number of events
is always equal to the estimated number of events at all
time points.

Multivariate additive model The assumption of linear-
ity is checked for the additive model fitted with all
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covariates by assessing the variation of the martingale
residual processes over time. Then, the goodness-of-fit
of the multivariate model is assessed using Arjas plots.
The entire process is repeated until the assumption of
linearity is satisfied for all covariates and the multivariate
model has goodness-of-fit.

Step-by-step strategy for optimal fitting of additive
hazards regression models To summarize, in order to
optimally fit an additive hazards regression model in sur-
vival analysis, the following step-by-step strategy is
implemented:

1. Check the assumption of linearity for each covariate
using log-transformed smoothed pseudo-
observations. In case on non-linearity, select the
best functional form of the continuous covariate by
assessing the variation of the martingale residual
processes over time. Repeat this step until the as-
sumption of linearity is satisfied for each continuous
covariate.

2. If the assumption of linearity is satisfied, check the
assumption of constant effects for each covariate by
plotting the cumulative hazards estimated with
Lin’s and Aalen’s models against time. If the effects
of all covariates are constant, use Lin’s model;
otherwise, use Aalen’s model.

3. Assess the goodness-of-fit of the additive hazards
regression model for each continuous covariate
using Arjas plots. Repeat steps 1, 2, and 3 until the
model has goodness-of-fit for each continuous
covariate.

4. Check the assumption of linearity for the additive
model fitted with all the covariates using the same
procedure as in step 1. Repeat this step with
another functional form of the continuous covariate
until the assumption of linearity is satisfied for all
covariates.

Differences between multiplicative and additive hazards
regression models
In the Cox proportional hazards model, for a binary co-
variate z, the hazard is written as λ(t| z) = λ0(t)e

zβ. The
effect of the covariate on the hazard is measured by the

hazard ratio, which is written as HR ¼ eβ ¼ λðtjz¼1Þ
λðtjz¼0Þ

¼ λðtjz¼1Þ
λ0ðtÞ . The importance of the effect of the covariate

on the hazard depends on the baseline hazard: when the
baseline hazard is very low, the hazard remains low for
the exposed subject even if the hazard ratio is important.
Moreover, the effect of the covariate is interpreted using
a single parameter - the hazard ratio - which is constant
over time. In the case of the extended Cox model with
time-varying effects, the hazard ratio varies over time,

and so the interpretation requires plotting hazard ratios
against time.
In Aalen’s model, for the same covariate z, the hazard

is written as λ(t| z) = λ0(t) + α(t)z. Here, the effect of the
covariate is measured by the cumulative hazard, which is
written as α(t) = λ(t| z = 1) − λ(t| z = 0). The cumulative
hazard highlights the importance of the effect of expos-
ure over time, whatever the baseline hazard. It repre-
sents the attributable fraction due to exposure, hence its
common use in epidemiology. Since the cumulative haz-
ard is a function, it can be plotted to show the evolution
of the effect over time.
In short, each type of model allows for a different in-

terpretation of the effect of the covariate on the hazard.

Estimating procedures
Estimating procedures for multiplicative and additive
hazards regression models are available in the major
statistical software (SAS, STATA, and R). At the mo-
ment, however, some of the diagnostic tools used in our
strategy are only available in R. All of our analyses were
therefore performed using R software (script provided in
Additional file 1).

Results
Motivating example
In this section, our proposed strategy for optimal fitting
of multiplicative and additive hazards regression models
is applied to a motivating example: the TRACE data
frame provided in the timereg R package. This data
frame is a subset of a dataset extracted from a study of
4259 patients with myocardial infarction who were ad-
mitted to a hospital in Denmark in 1977–1988 and were
followed until death or censoring [20].
The 1878 patients included in the TRACE data frame had

a mean age of 67.0 years (sd: 11.4). Overall, 52.29% of pa-
tients had clinical heart failure, 69.54% of patients were
women, 10.01% of patients had diabetes, and 7.24% had ven-
tricular fibrillation. Median survival was 6.52 years [6.09;
7.25]. The TRACE data frame is interesting for our purposes
because it contains covariates with well-known time-varying
effects on the hazard of death (ventricular fibrillation) as well
as covariates with constant effects on the hazard of death
(diabetes and sex) [21].
Our proposed strategy is used to investigate the hazard

of death in the included group of patients with myocar-
dial infarction. The effects of age (continuous covariate
named age), clinical heart failure (binary covariate
named chf), sex (binary covariate named sex), diabetes
(binary covariate named dia), and ventricular fibrilla-
tion (binary covariate named vf) on the hazard of death
are examined below. Note that because Aalen’s model
assumes no ties between event times, a random number
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has been added to each survival time such that no two
survival times are identical.

Application of the proposed strategy for optimal fitting
of multiplicative hazards regression models
Checking the assumption of log-linearity
To select the best functional form of the continuous co-
variate age, the martingale residuals obtained with a
null Cox proportional hazards model are plotted against
age. As shown in Fig. 1a, the curve representing the
effect of age is not a straight line, indicating a deviation
from log-linearity. Specifically, there is an increase in the
slope of the curve, which suggests an exponential func-
tion and perhaps even a quadratic function.
After dividing age by 100 to avoid too large values, a

Cox proportional hazards model is fitted with an expo-
nential of age/100. Figure 1b shows the plot of the
martingale residuals. The smooth curve is a horizontal
straight line, indicating that the exponential of age/
100 is an appropriate functional form.
A Cox proportional hazards model is then fitted with

a quadratic effect of age/100. The smooth curve ob-
tained after plotting the martingale residuals (Figure not
shown) is also a horizontal straight line.
The AIC of the two models is calculated to determine

which of the last two functional forms is more appropri-
ate. The AIC of the Cox proportional hazards model fit-
ted with the quadratic effect of age/100 (13,533.73) is
greater than that of the Cox proportional hazards model

fitted with the exponential of age/100 (13,531.83). The
latter functional form is selected.

Checking the proportional hazards assumption
The proportional hazards assumption is checked for each
of the 5 covariates by testing the correlation between the
Schoenfeld residuals and the rank order of event times
(Table 1). For the covariates chf and vf, the assumption
of proportionality is not satisfied (p-values < 0.05), indicat-
ing that an extended Cox model with time-varying effects
is needed. By contrast, the effects of the exponential of
age/100, sex, and dia do not vary statistically over
time, and so the effect of each variable is modeled as con-
stant over time.
Figure 2 shows the plot of the Schoenfeld residuals for

each of the 5 predictors. The smooth curves are roughly
horizontal for the exponential of age/100, sex, and
dia, indicating that these covariates have constant ef-
fects over time. Accordingly, a Cox proportional hazards
model is used for these three covariates.
For the covariate chf, the smooth curve decreases

with a roughly constant slope, indicating a linear time-
dependent effect. The covariate chf is thus modeled as

follows: λðtjchf Þ ¼ λ0ðtÞechf�ðβchfþβchft�tÞ . The Schoenfeld
residuals test indicates that the assumption of propor-
tional hazards is satisfied for the parameters βchf and
βchft (p-values of 0.85 and 0.41, respectively).
For the covariate vf, the smooth curve decreases with a

roughly constant slope until 0.64, and then remains

Fig. 1 Martingale residuals plotted against the continuous covariate age with a a null Cox proportional hazards model and with b a Cox
proportional hazards model fitted with the exponential of age/100. A lowess smooth curve is superimposed on each plot (solid line)
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horizontal afterwards. Accordingly, a simple model with a
break of slope accounting for the two variations of the hazard
is used. To choose the best cut-off time for the break of
slope, different cut-off times ranging from 0 to 2.4 (in inter-
vals of 0.01) are assessed using the AIC. The minimal AIC
obtained is 13,824.78 for a cut-off time of 0.15. The covariate

vf is therefore modeled as follows: λðtjvf Þ ¼ λ0ðtÞ
evf�ðβvf þβvft�tþβvft2�ðt−0:15ÞIðt>0:15ÞÞ . The Schoenfeld residuals
test shows that the proportional hazards assumption is satis-
fied for the parameters βvf, βvft, and βvft2 (p-values of 0.60,
0.66, and 0.66, respectively).

Assessing goodness-of-fit
Figure 3 shows the plot of the cloglog-transformed smoothed
pseudo-observations (cloglog transformation being necessary
to check the two assumptions of the Cox model, as shown in

the Methods section) against the continuous covariate age/
100 for the 9 deciles of the event times distribution (in
years). The curves are not entirely straight, which means that
the effect is not fully linear. This is consistent with what was
found using the martingale residuals (Fig. 1). Furthermore,
the curves are not entirely parallel (especially before age/
100= 0.4, i.e. 40 years), indicating that a slightly different
functional form of the covariate is needed. The 5 curves
representing the 2nd to the 6th deciles are roughly horizontal
until 40 years, and then increase afterwards. This indicates an
absence of effect of age until 40 years, followed by an almost
exponential increase of this effect. Based on the study of the
pseudo-observations, the exponential of age/100 is
selected.
Figure 4 shows the Arjas plots for the Cox proportional

hazards model fitted with the continuous covariate age in
4 strata defined according to the quartiles of age distribu-
tion. The Arjas plot corresponding to the linear effect of
age (Fig. 4a) and the Arjas plot corresponding to the ex-
ponential effect of age/100 (Fig. 4b) are not very differ-
ent, but nevertheless suggest that goodness-of-fit is higher
for the exponential effect of age/100 than for the linear
effect of age (as can already be seen in Fig. 3).
Figure 5 shows the Arjas plots for the Cox propor-

tional hazards model fitted with the binary covariate
chf. In Fig. 5a, the binary covariate chf is modeled
without time-dependent effect. The number of estimated
events is more important than the number of observed
events for patients without clinical heart failure, and it is

Table 1 P-values of the correlation between the Schoenfeld
residuals and the rank order of event times for the 5 predictive
covariates

Covariate P-value

exp (age/100) 0.29

sex 0.66

chf 1.8 × 10−4

dia 0.23

vf 9.5 × 10−10

Fig. 2 Schoenfeld residuals plotted against the rank order of event times for a the exponential of age/100, b sex, c chf, d dia, and e vf. A
lowess smooth (solid line) corresponding to the parameter β with its 95% confidence intervals (dashed lines) is superimposed on each plot
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less important than the number of observed events for
patients with clinical heart failure. This indicates that
modeling the binary covariate chf without time-varying
effect is inappropriate. In Fig. 5b, the binary covariate
chf is modeled with the linear time-varying effect ob-
tained earlier (see Checking the proportional hazards as-
sumption section). The number of estimated events and
the number of observed events are roughly equal for pa-
tients with or without clinical heart failure, indicating
that modeling the binary covariate chf with the linear
time-varying effect is appropriate.

Fitting the multivariate multiplicative model
Once the proportional hazards assumption has been checked
for each continuous covariate, it is checked for the multivari-
ate model fitted with all the covariates using the same pro-
cedure as in step 2 of the univariate analysis. The Schoenfeld
residuals test is statistically non-significant for all the covari-
ates except for dia (p-value = 0.016). The plot of the correl-
ation between the Schoenfeld residuals and the rank order of
event times (Figure not shown) indicates that a linear time-
dependent effect of dia is needed. A linear time-dependent
effect is added, and so the multivariate model is written as
λðtÞ ¼ λ0ðtÞeβage� expðage100Þþβsex�sexþðβchfþβchft�tÞchfþðβdiaþβdiat�tÞdiaþðβvfþβvft�tþβvft2�ðt−0:15ÞIðt>0:15ÞÞvf . The
Schoenfeld residuals test shows that all the covariates are sta-
tistically non-significant with this model.
In addition, each parameter is shown to be statistically

significant with this model (Table 2). The effects of the
covariates exponential of age/100 and sex are con-
stant over time, while the effects of the covariates chf,
dia, and vf vary over time. The hazard ratio for sex is
1.20 [1.05; 1.38] in women. As the effect of the exponen-
tial of age/100 is log-linear, the effect of age is not
log-linear and is therefore interpreted graphically. As ex-
pected, the hazard ratio for an increase of 1 year in-
creases with age, i.e. the hazard ratio for 1 year of ageing
is more important in older patients than in younger pa-
tients (Fig. 6).
The hazard ratios for the three other binary covariates

are not constant but vary over time. They are therefore
represented graphically to give a clear idea of their evo-
lution over time (Fig. 7). The hazard ratio for chf de-
creases linearly over time, and then becomes non-
significant at the end of patient follow-up (Fig. 7a). By

Fig. 3 cloglog-transformed smoothed pseudo-observations against
age/100 for the 9 deciles of the event times distribution (in years)

Fig. 4 Arjas plots for the Cox proportional hazards model fitted with a the linear effect of age and b the exponential effect of age/100
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contrast, the hazard ratio for dia increases linearly, and
then becomes important at the end of follow-up (Fig.
7b). Finally, the hazard ratio for vf is very important at
first, and then decreases rapidly to become non-
significant after 2 months (Fig. 7c).

Application of the proposed strategy for optimal fitting
of additive hazards regression models
Checking the assumption of linearity
To define the functional form of the continuous covariate
age, the log-transformed smoothed pseudo-observations
(log transformation being necessary to check the assump-
tion of linearity of the additive hazards regression model,
as shown in the Methods section) are plotted against age
for 9 deciles of the event times distribution. As Fig. 8 indi-
cates, the curves are not straight lines, which means that
the effect is not linear, but are nearly parallel, which

means that the effect is constant over time. The 7 curves
representing the 3rd to the 9th deciles are very similar:
they are roughly horizontal until 60 years, and then in-
crease afterwards. This indicates a slight effect of age
until 60 years, and then an exponential increase in the ef-
fect of age. For the other two deciles, the increase is more
important, and also corresponds to an exponential effect.
As the exponential of age can take very large values, this
covariate is initially divided by ten. Then, to check
whether the exponential functional form is appropriate,
the martingale residual processes are plotted against time
in 4 strata defined according to the quartiles of age distri-
bution (Fig. 9a). The plot indicates that the observed num-
ber of younger patients is less important than the
estimated number of younger patients at the end of pa-
tient follow-up. The results of the chi-square test of the
martingale residual processes confirm that modeling with

Fig. 5 Arjas plots for the Cox proportional hazards model fitted a without time-varying effect of chf and b with a linear time-varying effect of chf

Table 2 Parameters β̂ and adjusted hazard ratios with their 95% confidence intervals (CI) for 9 predictive covariates with the
multivariate Cox model

Covariate β̂ Adjusted Hazard Ratio with 95% CI P-value

exp (age/100) 2.87 17.56 [12.35; 24.97] < 2 × 10− 16

sex 0.18 1.20 [1.05; 1.38] 0.00982

chf 0.95 2.57 [2.06; 3.22] < 2 × 10−16

chft −0.08 0.92 [0.86; 0.98] 0.01024

dia 0.35 1.42 [1.09; 1.84] 0.00889

diat 0.09 1.10 [1.01; 1.19] 0.03137

vf 2.24 9.39 [6.32; 13.94] < 2 × 10−16

vft −13.52 1.35 × 10−6 [1.03 × 10−8; 1.77 × 10−4] 5.61 × 10− 8

vft2 13.49 7.22 × 105 [4.93 × 103; 1.06 × 108] 1.15 × 10−7
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the exponential of age/10 is inappropriate (Table 3).
Given that the increase in the slope begins roughly at 70
years, a more flexible functional form is needed to prop-
erly account for the increase in the effect of age. The co-
variate age is therefore modeled as the exponential of
age/10 with a cut-off at 70 years. Figure 9b shows that
when age is modeled in this way, the martingale residual
processes do not significantly deviate from the horizontal
axis (for the 4 strata). Likewise, Table 3 indicates that the

extended Aalen’s model has goodness-of-fit with this
functional form.

Checking the assumption of constant effects
The assumption of constant effects is checked for 6 co-
variates by plotting the cumulative hazards estimated
with Lin’s and Aalen’s models. Figure 10 shows that for
the exponential of age/10, the exponential of (age-
70) × (age > 70), sex, and dia, the cumulative

Fig. 6 Adjusted hazard ratio (solid line) with its 95% confidence interval (dashed lines) against an increase in 1 year of age

Fig. 7 Adjusted hazard ratios (solid lines) with their 95% confidence intervals (dashed lines) against time for the binary covariates chf, dia,
and vf
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hazards estimated with Lin’s model (dashed straight
lines) do not cross the 95% confidence intervals of the
cumulative hazards estimated with Aalen’s model (dot-
ted lines). This indicates that the effect of each covariate
is constant. For chf, the cumulative hazard increases
more quickly at the beginning, and then more slowly
afterwards. For vf, the hazard increases considerably
until 0.1, and then remains constant afterwards. Since
the effect varies over time for some of the covariates, the
extended Lin’s model is not appropriate, and the ana-
lyses are performed using the extended Aalen’s model.

For the covariates exponential of (age-70) × (age >
70) and sex, the estimated cumulative hazards are
negative. This is not an unusual finding in additive haz-
ards regression models.

Assessing goodness-of-fit
Figure 11 shows the Arjas plots for Aalen’s model fitted
with the continuous covariate age, with 4 strata defined
according to the quartiles of age distribution. In Fig. 11a,
Aalen’s model is fitted with the continuous covariate
age without transformation; in Fig. 11b, Aalen’s model

Fig. 8 Log-transformed smoothed pseudo-observations against the continuous covariate age for 9 deciles of the event time distribution

Fig. 9 Martingale residual processes (solid lines) with their confidence bounds (dashed lines) in 4 strata defined according to the quartiles of age
distribution obtained with an extended Aalen’s model fitted with a the exponential of age/10 and b the exponential of age/10 with a cut-off
at 70 years
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is fitted with the exponential of age/10 with a cut-off at
70 (Fig. 11b). Figure 11a shows an important discrepancy
between the number of observed events and the number
of estimated events in the 4 strata, indicating a lack of fit
when the continuous covariate age is modeled without
transformation. By contrast, in Fig. 11b, the number of ob-
served events is close to the number of estimated events.
Accordingly, the continuous covariate age is modeled as
the exponential of age/10 with a cut-off at 70.

Fitting the multivariate additive model
Once the assumption of linearity has been checked for
each continuous covariate, it is checked for the multi-
variate model fitted with all the covariates using the
same procedure as in step 1 of the univariate analysis.
The test of the martingale residual processes (Table 4)
shows no deviation when the continuous covariate age

is modeled as an exponential function with a cut-off at
70 (Figure not shown).
As shown in Fig. 12, the cumulative regression func-

tions estimated with the multivariate Lin’s and Aalen’s
models are significantly different from 0 for all the co-
variates, indicating a significant effect of these covariates
on mortality.
The slope of the estimated cumulative regression func-

tion is positive for all the binary covariates. The effect is
constant for sex and dia but is more important for
dia than for sex, indicating that the excess risk of
death due to diabetes is more important than the excess
risk of death due to sex. For chf, the slope of the esti-
mated cumulative regression function decreases slowly
over time, indicating a decrease in the effect of clinical
heart failure on mortality. For vf, the slope is very high
until 0.1 year, and then becomes horizontal. This indi-
cates that the excess risk of death due to ventricular

Table 3 Results of the chi-square tests of the martingale residual processes for the continuous covariate age entered in two
extended Aalen’s models

Age P-value

exp (age/10) exp (age/10) + exp (age/10–7)(age > 70)

≤59.6 0.007 0.179

(59.6–68.2] 0.310 0.381

(68.2–75.4] 0.459 0.404

>75.4 0.416 0.197

global 0.056 0.221

Fig. 10 Cumulative hazards with their 95% confidence intervals (dotted lines) estimated with Aalen’s model for 6 covariates. The dashed straight
lines represent the cumulative hazards estimated with Lin’s model
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fibrillation is present during the first 0.1 year of patient
follow-up, and then vanishes afterwards. Finally, for the
exponential of age/10, the slope of the estimated cu-
mulative regression function is constant and positive
until cut-off and then constant and negative afterwards,
indicating an absence of variation of the effect over time.
However, while the excess risk of death increases expo-
nentially with ageing until 70 years – as shown by the
exponential functional form – this increase is less im-
portant after 70 years – as shown by the negative slope
(Figs. 12 and 13).

Discussion
This work proposes a strategy for optimal fitting of
multiplicative and additive hazards regression models in
survival analysis. The proposed strategy has been shown
to fit the data optimally. Several points can be made in
this regard.
The first point is that several factors condition the

choice between multiplicative and additive hazards re-
gression models in survival analysis. The most important

factor is knowledge of the effect of the covariate on the
hazard of death. If this effect is known to be multiplica-
tive or additive, then the corresponding model (multi-
plicative hazards regression model or additive hazards
regression model, respectively) is used [22, 23]. However,
the effect of the covariate on the hazard of death is
rarely known in advance. Consequently, the choice be-
tween the two types of models is usually made based on
whether one wants to obtain a relative risk – e.g. the
hazard ratio – or an absolute risk – e.g. the cumulative
hazard – as a measure of the effect of a covariate on
mortality. Thus, the hazard ratio measures the multi-
plicative effect of a covariate on the baseline hazard; it is
interpreted as a relative risk by practitioners, and is fre-
quently reported in clinical and epidemiological studies.
The cumulative hazard measures the actual effect of the
covariate on the hazard of death, i.e. the importance of
mortality due to this covariate. When it is small, the
cumulative hazard is interpreted as the difference in
outcome incidence due to exposure. In an epidemiological
or prevention context, the cumulative hazard is interesting
because it accounts both for the importance of the effect
of an exposure and for the prevalence of this exposure.
Additive hazards regression models seem to us superior

because they allow to directly represent the variation of
covariate effects over time, which corresponds to the non-
parametric estimation of regression function. By contrast,
in the case of multiplicative hazards regression models,
the assumption of constant effects must be checked by
plotting the Schoenfeld residuals; and when this assump-
tion is not satisfied, an extended Cox model must be
performed to model the variation of covariate effects.

Fig. 11 Arjas plots for Aalen’s models fitted with a age without transformation and b the exponential of age/10 with a cut-off at 70

Table 4 Results of the chi-square tests of the martingale
residual processes for the continuous covariate age with in an
extended Aalen’s model

Age P-value

≤59.6 0.542

(59.6–68.2] 0.481

(68.2–75.4] 0.756

>75.4 0.316

global 0.589
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As we have seen, our strategy combining multiplicative
and additive hazards regression models is interesting be-
cause it accounts for different relationships between the
hazard function and the covariate. In fact, the two types
of models complement each other: by providing different
measures of the same effect, they make for a better in-
terpretation of the data. An alternative strategy is the
combined multiplicative-additive hazards regression
models, as the Cox-Aalen model [24] or the Lin’s

additive-multiplicative hazard model [25], in which the
covariates are split into two parts according to their -
multiplicative or additive - effect on the hazard. How-
ever, these models cannot allow to select the type of the
effect of the covariates (i.e. additive or multiplicative ef-
fect) using the AIC because the likelihood of these
models is intractable [25]. We refer the reader to the
specific literature on this topic, as this is not the focus of
the present article [24–26].

Fig. 12 Cumulative hazards with their 95% confidence intervals (dotted lines) estimated with the multivariate Aalen’s model for 6 covariates. The
dashed lines represent the cumulative hazards estimated with the multivariate Lin’s model

Fig. 13 Cumulative hazards with their 95% confidence bounds (dotted lines) estimated with the multivariate Lin’s model for the continuous
covariate age at 1 year
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Second, our proposed strategy for optimal fitting of
multiplicative and additive hazards regression models is
quite easy to implement, and uses diagnostic tools that
are available in the major statistical software. As regards
multiplicative hazards regression models, our strategy
relies not only on classical diagnostic tools (the Schoen-
feld and martingale residuals) to check the proportional
hazards assumption and the assumption of log-linearity,
but also on pseudo-observations and Arjas plots to as-
sess goodness-of-fit. Other approaches for fitting multi-
plicative hazards regression model have been proposed.
Thus, Sasieni and Winnett [16] have introduced a new
kind of residuals, the martingale difference residuals,
which is used to check both the proportional hazards as-
sumption and the assumption of log-linearity. The limi-
tation of this approach is that it does not require a
precise definition of the functional form, even for very
large datasets. By contrast, in our strategy, pseudo-
observations are used to graphically represent not only
the functional form of the continuous covariate but also
its variation over time. As such, our strategy helps to se-
lect the best functional form for the multivariate model
(whether multiplicative or additive). Abrahamowicz and
McKenzie [27] have proposed a multiplicative hazards
regression model that relaxes both the proportional haz-
ards assumption and the assumption of log-linearity.
However, this model is highly flexible, and can conse-
quently result in overfitting. Our approach limits the risk
of overfitting by requiring the definition of the functional
form and that of the covariate effect – though it should be
noted that this can sometimes be time-consuming.
In our strategy, additive hazards regression models are

fitted using pseudo-observations, martingale residual
processes, and Arjas plots. Other tools have been pro-
posed to assess goodness-of-fit for this type of model.
Martinussen and Scheike have introduced two tests
based on Gaussian processes to help choose between
Aalen’s and Lin’s model in the case of time-invariant ef-
fects [28]. Contrary to our approach, in which the as-
sumption of constant effects is checked using a graphical
tool, Martinussen and Scheike’s approach has two limi-
tations: the possibility of discordance between the results
of the two tests, and the rejection of the null hypothesis
when the sample size increases even if the effect is low.
McKeague & Utikal [29] have proposed a goodness-of-
fit test for Aalen’s model that compares the estimator
generated with this model to a non-parametric estima-
tor. The limitation of this approach is that it requires a
sample size of at least 1000 subjects to perform satisfac-
torily. Importantly, goodness-of-fit tests do not give the
same information as graphical tools: while the first pro-
vide quantitative measures of fit, the second allow for
selecting the best functions and functional forms for the
multivariate model.

Third, our strategy yields the same results as that pro-
posed by Martinussen and Scheike [21] – who also used
the TRACE data frame – although our additive hazards
regression model is slightly different from theirs. In our
strategy, the multiplicative and additive hazards regres-
sion models allow for different interpretations of the
same data. Indeed, while the effects of the covariates are
significant in both models, they do not act in the same
way on the baseline hazard. As regards the covariates
sex, clinical heart failure, and ventricular fibrillation, the
effect is respectively constant, decreasing, and important
then null in both the multiplicative and additive hazards
regression models. Here, the variation in mortality due
to sex, clinical heart failure, and ventricular fibrillation is
given as a relative risk. For the covariate age, both
models show a constant effect over time until age 70
and an increasing effect with ageing, but this increasing
effect is much greater when given as a cumulative haz-
ard than as a hazard ratio. Thus, the additive hazards re-
gression model better highlights the importance of age
as a cause of mortality. As regards the covariate diabetes,
the effect is constant in the extended Aalen’s model and
increasing in the extended Cox model. In other words,
the extended Cox model shows that the relative risk of
death increases over time for patients with diabetes,
whereas the extended Aalen’s model indicates that mor-
tality due to diabetes is constant over time. The reason
for this discrepancy is that diabetic patients initially have
higher mortality compared to other patients which re-
sults in a sligh decrease of the proportion of diabetic pa-
tients relative to the total sample. Thus, to keep the risk
of death from diabetes constant, the hazard ratio in-
creases artificially. The above suggests that the additive
hazards regression model is a better choice for the ana-
lysis of our dataset.
In conclusion, survival analysis is improved by using

multiplicative and additive hazards regression models to-
gether, but specific steps must be followed to fit the data
optimally. Our proposed strategy allows for better inter-
pretation of the data.
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