
RESEARCH ARTICLE Open Access

Dealing with missing delirium assessments
in prospective clinical studies of the
critically ill: a simulation study and
reanalysis of two delirium studies
Rameela Raman1,2*, Wencong Chen1,2, Michael O. Harhay3,4,5, Jennifer L. Thompson1,2, E. Wesley Ely2,6,
Pratik P. Pandharipande2,7 and Mayur B. Patel2,6,8

Abstract

Background: In longitudinal critical care studies, researchers may be interested in summarizing an exposure over
time and evaluating its association with a long-term outcome. For example, the number of days a patient has
delirium (i.e., brain dysfunction) during their critical care stay is associated with the presence and severity of long-
term cognitive problems. In large pragmatic trials and multicenter observational studies, particularly when
electronic medical record data is used, the information on daily exposure status may be available at some time
points and not at others. Model-based multiple imputation is a well-established, widely adopted method to deal
with missing data. But the uncertainty around multiple imputation for summary exposure variables is whether the
imputation is to be performed at the summary level or at the daily assessment level.

Methods: We compare the following approaches to imputing and summarizing partially missing longitudinal data:
1) active imputation, where we impute the summary; 2) passive imputation, where we impute the daily missing
data, and then compute the summary; 3) ad hoc methods where we assume all missing time points have the a)
most or the b) least extreme value; and 4) complete case analysis where only participants with complete data are
analyzed. These methods were applied under different missingness mechanisms, varying proportions of
missingness, and association of missingness with an auxiliary variable using simulations that closely mirrors real-life
critical care data to be relevant to real-world clinical practice. The performance of the approaches were compared
using bias of the estimated coefficients, standard error of the estimate and coverage. We also apply these
imputation strategies to two datasets in critical care.
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Results: Simulations show that all methods performed comparably when the proportion of missingness was small,
indicating that in such instances, the gain over using any imputation model is minimal. But as the proportion of
missingness increases, the passive imputation approach provides efficient and less biased estimates under the
missingness at random and missingness completely at random mechanism.

Conclusions: For longitudinal data where a summary exposure is of interest, we recommend practitioners
adopting the passive imputation strategy.

Keywords: Summary exposure, Missing data, Critical care, Passive imputation, Active imputation, Longitudinal data,
Long-term outcome, Delirium

Background
In clinical research, longitudinal time-varying exposure
for a participant is often condensed into a summary ex-
posure. This is particularly common in critical care
research, where the total duration of an event like mech-
anical ventilation, delirium (i.e., brain dysfunction), or
other organ failure states are compared to assess the
comparative effectiveness of interventions or prognosti-
cate long-term morbidity and mortality [1]. Summariz-
ing a longitudinal variable using one value is done to
describe the participants’ overall exposure and when the
goal is to correlate the exposure to a long-term outcome.
Doing this also enables use of univariate approaches
such as a t-test or a Wilcoxon rank-sum test to compare
summaries between study groups [2].
Missing data is inevitable in clinical research. In a ran-

domized clinical trial, participants may drop out due to
adverse effects, lack of efficacy, or measurements may be
missing due to death. In observational studies, especially
ones that derive the data from the electronic medical
record, missing data can be frequent. Summary variables
are hard to compute when the daily assessments that
form it are missing at specific time points. This poses
the question of how to use all available data while redu-
cing the chance that missing data will bias results.
The commonly adopted method for missing data is

multiple imputation [3]. It involves assumptions regard-
ing the missingness mechanism and the specification of
an imputation model. Although the advantages of mul-
tiple imputation over complete case analyses are widely
recognized, literature is limited on the performance of
imputation strategies in the context of summary statis-
tics computed from longitudinal data. The goal of this
paper is to evaluate strategies to impute summary statis-
tics, such as the duration of an exposure when daily as-
sessments needed to compute it has missingness.

Methods
Study design
We compare several approaches: 1) active imputation,
where we impute the summary; 2) passive imputation,
where we impute the daily missing data, and then

compute the summary; 3) ad hoc methods where we as-
sume all missing time points have the a) most or the b)
least extreme value; and 4) complete case analysis. Simu-
lation studies are conducted closely mimicking the data
structure from the Bringing to Light the Risk Factors and
Incidence of Neuropsychological Dysfunction in ICU
Survivors (BRAIN-ICU) study to compare the relative
performance of these approaches to imputing and sum-
marizing partially missing longitudinal data. In addition,
we also illustrate the impact of each imputation tech-
nique using the BRAIN-ICU and the Traumatic Brain
Injury (TBI) studies described below.

Study population
Our study was motivated by two studies, a prospective
NIH-funded observational study and a retrospective ob-
servational study with data extracted from electronic
medical records.

Study 1
Bringing to Light the Risk Factors and Incidence of
Neuropsychological Dysfunction in ICU Survivors
(BRAIN-ICU) was an NIH-funded multi-center pro-
spective cohort study, which enrolled 821 adults with re-
spiratory failure or shock between March 2007 and May
2010. The primary goal of this study was to evaluate the
association between the summary variable delirium dur-
ation over their critical care stay (defined as the number
of days with delirium) and cognitive impairment (mea-
sured using the Repeatable Battery for the Assessment
of Neuropsychological Status instrument-RBANS) at 3-
and 12-months post study enrollment. Trained research
personnel evaluated participants’ delirium status (a yes/
no variable) daily until death, hospital discharge, or
study day 30. Details on how delirium was assessed can
be found in the primary study publication [4].

Study 2
The traumatic brain injury (TBI) study is a retrospective
observational cohort of 4821 participants aged 16 years
or older admitted between August 2006 and July 2012
with TBI requiring hospitalization with at least 1 day in
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the ICU. TBI was classified using the electronic medical
record data based on ICD-9 diagnostic codes and in-
cluded concussion without intracranial hemorrhage.
One of this study’s goals was to evaluate the association
between the summary variable delirium duration and
Functional Independence Measure at discharge, a score
that describes disability and burden of care among TBI
survivors.
These two data sources are similar in that they both

evaluate the association of a summarized exposure vari-
able, delirium duration, and a long-term outcome. But
they vary in the rigor by which the data was collected.
As an NIH-funded observational cohort study, the out-
comes and measures in BRAIN-ICU were prospectively
collected in a consistent, systematic manner in accord-
ance with the study protocol. On the contrary, the TBI
study leveraged existing electronic health records where
investigators typically have no control over the original
collection of the data that was not captured for research
purposes.

Ethics approval
The BRAIN-ICU study was conducted at Vanderbilt
University Medical Center and Saint Thomas Hospital in
Nashville. The study protocol was approved by each
local institutional review board and informed consent
was obtained from all subjects for the original study.
The TBI study involved retrospective data collected from
the electronic health record system at Vanderbilt Uni-
versity Medical Center in Nashville and the study was
approved by the Vanderbilt institutional review board.
The data used in this manuscript from these two studies
for secondary data analyses were deidentified. All
methods were carried out in accordance with relevant
guidelines and regulations. There were no experimental
protocols in this study.

Statistical methods
The computation of a summary exposure, such as the
duration of an event, requires that the event be
assessed and captured for each participant every day
that they are alive and in the hospital. Multiple im-
putation is a well-established, widely adopted method
to deal with missing data. The uncertainty around
multiple imputation for summary exposure variables
is whether the imputation is to be performed at the
summary level or at the daily assessment level. Two
approaches used in this scenario are active and pas-
sive imputation. Passive imputation, also known as
‘impute then transform,’ is where imputation is con-
ducted at the assessment level, and then the summary
exposure is computed [5]. The missing assessments
are imputed B times using multiple imputation, and
the summary statistic is computed for each of the B

imputed datasets. The statistical model is then fit on
the B imputed datasets, and a pooled estimate of the
association effect is obtained using Rubin’s rules [3].
Concerns about passive imputation include misspecifi-
cation of the imputation model that results in biased
parameter estimates. An advantage is that this ap-
proach preserves and uses the observed assessments
already collected for a participant. It also ensures that
imputed values adhere to consistent relationships be-
tween variables and are therefore plausible, and it
maintains the consistency among different transforma-
tions of the same data [6].
On the contrary, active imputation, also known as ‘just

another variable’ approach, is where imputation is per-
formed at the summary level [7]. Here, the summary is
imputed using model-based imputation B times, the stat-
istical model is fit on the B imputed datasets and esti-
mates of effect are pooled. The drawback to this
approach is that it ignores the non-missing assessments
that already exist for a participant and do not take those
into account during imputation of the summary. Active
imputation also ignores the relationship that exists be-
tween the components and the summary statistic. More
about passive and active imputation strategies for trans-
formed variables such as interaction terms and quadratic
terms can be read here [7–9].
Other strategies that have been used for missing data

are complete-case and ad hoc methods that have little to
no theoretical justification. Although it has been shown
that they lead to biased and inefficient estimates when
missingness is not at random, the ease of implementa-
tion and non-black-box nature of the ad hoc imputation
process remains the primary reason for their frequent
use in clinical research [10]. When individual assess-
ments are missing, complete case analysis leads to sum-
mary exposures that remain undefined for some
participants even though they may only have one time
point missing. In such cases, a complete-case analysis
would lead to the exclusion of participant-level data,
thus reducing the sample size for analysis and translating
to a biased estimate of the association between the ex-
posure and the outcome.
Ad hoc approaches are generally varied in nature,

such as carrying the last observation forward, substi-
tuting the group mean for missing data, and the ap-
proach adopted is often dependent on the discipline.
Critical care studies’ common ad hoc strategy is to
impute missing assessments with the worst or the
best value and this has the advantage of preserving
cases with missing data and thus maintaining the
sample size. This approach is appealing due to its
simplicity and accessibility, but it overestimates or un-
derestimates the exposure and can potentially bias re-
sults. Another drawback is that potentially valuable
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information from auxiliary variables is not considered
when imputing the missing assessment.

Simulation study
Data generation process
The approaches discussed above were evaluated by ran-
domly sampling from BRAIN-ICU using single-stage
cluster sampling with the participant as the primary
sampling unit. First, a simple random sample of partici-
pants is selected, and all the measurements (ICU days)
from each of the selected participants are obtained. This
ensures that the intra-cluster correlation typically ob-
served in such data is maintained and closely mimics the
data structure from BRAIN-ICU. Since missingness in
the delirium status variable was minimal in this dataset
(~ 3%), using a subset of 200 participants with complete
data from this study as a foundation to simulate data en-
ables us to closely mirror real-life critical care data and
be relevant to real-world clinical practice. The data gen-
eration process is as follows:

1. Use single-stage cluster sampling to randomly sam-
ple 200 BRAIN-ICU participants with complete ex-
posure data (daily delirium status) and an auxiliary
(severity of illness represented using the Sequential
Organ Failure Assessment (SOFA) scores) variable
to create a participant-day dataset as shown in
Table 1. Repeat to generate 1000 simulated datasets.

2. Generate the outcome, RBANS, for each participant
as a function of delirium duration:
RBANSi = α + βdel ∗ delirium duration + ϵi, where
ϵi~N(0, 12) and βdel = − 1.0.

Missing data process
Missing data was introduced in the 1000 simulated data-
sets by varying the proportion of missingness in the daily
assessments, different missing mechanisms and the

strength of association between the auxiliary variable
and missingness as specified in Table 2. A total of 140
scenarios were studied.

Analysis model
The association between the cognitive outcome (a nor-
malized score) and delirium duration in each simulated
dataset is analyzed using a linear regression model,
RBANSi = α + βdel ∗ delirium duration + ϵi. This model
does not adjust for any confounders and was identical
across all strategies to focus solely on the performance
of each of the approaches. For passive imputation, the

Table 1 Illustrative data structure of simulated data

Participant ID Study day Delirium (Y/N) Delirium duration Daily SOFA score

1 1 Y Undefined 12

1 2 Y 11

1 3 Missing 10

1 4 Y 10

1 5 N 10

2 1 Y 2 13

2 2 Y 13

3 1 N 0 14

4 1 Y 2 11

4 2 Y 11

4 3 N 11

Table 2 Missing data generation process for the simulation
study by varying the proportion of missingness in the daily
assessments, using different missing data mechanisms and
varying the strength of association between the auxiliary
variable and missingness

1. Proportion of missingness, p: 1%, 5%, 20%, 35% of participant-days
missing exposure value
2. Types of missingness:
a. Missing Completely at Random (MCAR): p% of the participant-days/
assessments in each of the 1000 simulated datasets were removed com-
pletely at random.
b. Missing at Random (MAR): MAR mechanism was simulated under a
logistic regression model as a function of an auxiliary variable, the SOFA
score, with varying correlations with missingness:
logit ðmissingijÞ ¼ αþ βSOFAij�SOFAij ,
where βSOFAij = 0.01, 0.1 and 0.2 representing weak, moderate and
strong relationships with missingness. Here α was manipulated for
different combinations of βSOFAij to generate the required proportion of
missingness p.
c. Missing Not at Random (MNAR): MNAR mechanism was generated
under a logistic regression model with the probability of missingness
having a weak, moderate, and strong association with the daily delirium
status.
logit(missingij) = α + βdel _miss ∗ deliriumij, where βdel _miss took on values
0.1, 0.5 and 1.0 representing weak, moderate and strong relationships
with missingness. Here α was manipulated for different combinations of
βdel _miss to generate the required proportion of missingness p.
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auxiliary variable, daily SOFA score was used, while the
mean SOFA score was used for active imputation. Mul-
tiple imputation was performed using the mice package
in R and estimates are pooled using Rubin’s rules [3].
The metrics used to evaluate these approaches are:

1) Bias =Mean of the estimated coefficients from the

1000 replications - true coefficient = Eðβ̂delÞ−βdel ,
where β̂del represents the association between
delirium duration and the outcome.

2) Mean of the standard error of the regression
estimate = Eðσ̂Þ. It is optimal to have small
standard errors, which translate to more precise
estimates.

3) Coverage = Percent of 1000 simulations where the
confidence interval of the estimate includes the true
coefficient, βdel. A coverage probability of 0.95 is
considered optimal and indicates the percentage of
confidence intervals that contain the true value of
the estimate and the nominal confidence level.

Simulation results
The performance of the approaches based on each metric
by proportion of missing assessments are presented below.
The results are stratified by the type of missingness and

strength (weak, moderate, and strong) of the relationship
of auxiliary variables with missingness.

Bias
Figure 1 illustrates the bias in the association between
delirium duration and the cognitive outcome for each
imputation strategy. Bias increased with increase in the
proportion of missingness for all imputation strategies.
For low proportion of missingness (1, 5%), bias was max-
imum under MNAR for complete case and active imput-
ation respectively. Passive imputation had the lowest
bias compared to other strategies except when the
strength of the relationship of the auxiliary variable with
missingness under MNAR was strong. Unlike under
MAR, bias increased for all strategies under MNAR as
the relationship of the auxiliary variable with missing-
ness went from weak to strong.

Standard error estimate
Figure 2 shows that when missingness was minimal at
1%, regardless of the missingness mechanism, standard
error estimates were similar and small for the passive
and ad hoc strategies but slightly larger for active imput-
ation and complete case. As the proportion of missing-
ness increased, complete case and active imputation had

Fig. 1 Bias in the association between delirium duration and the cognitive outcome for each imputation strategy stratified by the proportion of
missingness, missingness mechanism, and association of missingness with the auxiliary variable. Results are derived from the analysis of 1000
simulated datasets
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the largest standard errors with the lowest standard
error observed for passive imputation and the ad hoc
strategy where the worst-case scenario was imputed.
The standard errors for all methods increased with the
strength of the relationship of the auxiliary variable
under MNAR.

Coverage
Figure 3 shows that for low proportion of missingness at
1%, coverage was 95% for passive and ad hoc strategies
but lower for active and complete case. Coverage was
consistently above 90% for passive imputation except
when the strength of the relationship of the auxiliary
variable with missingness under MNAR was moderate
or strong. As the proportion of missingness increased,
coverage was always acceptable, above 93%, for the
complete case regardless of the missingness mechanism,
but consistently inadequate for the ad hoc strategies, po-
tentially leading to excessive type I errors. For example,
at 35% of assessments missing, and MNAR, the best-
case ad hoc strategy provided only 40% coverage.

Application to motivating datasets
We illustrate these strategies using the BRAIN-ICU
and TBI datasets with 3 and 32% of the daily

assessments missing, respectively. At a participant-
level, this translated to 28 and 62% of participants
having partially missing assessments. We fit a linear
regression model with the duration of delirium on the
continuous outcome variables - cognitive impairment
as measured using the Repeatable Battery for the As-
sessment of Neuropsychological Status instrument
and disability and burden of care using the Functional
Independence Measure at discharge, respectively.
Though in reality we adjust for confounders in the
model, here we fit the regression model with only de-
lirium as the exposure for illustrative purposes and to
focus on the comparison of strategies. The imputation
models included a potential auxiliary variable, the
daily SOFA score, to include information on missing-
ness of the assessments.
Figure 4 presents a comparison of the estimated

association coefficient and 95% confidence intervals
for the BRAIN-ICU and the TBI study using differ-
ent strategies. For the BRAIN-ICU data, where only
3% of the daily assessments were missing, the esti-
mated exposure coefficient and corresponding 95%
CIs were similar between the passive imputation and
ad hoc approaches. The estimated regression coeffi-
cient and 95% CI’s for complete case and active im-
putation were also similar but closer to the null with

Fig. 2 Standard error of the estimate between delirium duration and the cognitive outcome for each imputation strategy stratified by the
proportion of missingness, missingness mechanism, and association of missingness with the auxiliary variable. Results are derived from the
analysis of 1000 simulated datasets
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larger standard errors than the other approaches. For
the TBI study, with 32% of the daily assessments
missing, the estimated exposure coefficient range
was wide (− 0.29 to − 0.08). As in the BRAIN-ICU
data, standard errors were highest for the complete

case and active imputation. The difference in these
strategies’ performance between the two datasets em-
phasizes how much the proportion of missingness
influence the estimates obtained using different
methods.

Fig. 4 Estimated coefficients and the corresponding 95% confidence intervals using different imputation strategies, illustrated on the BRAIN-ICU
and TBI studies

Fig. 3 Coverage probability of the 95% confidence interval of the estimate between delirium duration and the cognitive outcome for each
imputation strategy stratified by the proportion of missingness, missingness mechanism and association of missingness with the auxiliary variable.
Results are derived from the analysis of 1000 simulated datasets. The solid black line represents 0.95
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Discussion
In this study, we investigated five strategies for imputing
missing longitudinal components of a summary expos-
ure variable. Our simulation study showed that for a low
proportion of missingness, the bias in the coefficients
when using the passive and ad hoc strategies was min-
imal, irrespective of the missingness mechanism. Passive
imputation also produced efficient estimates and had
reasonable coverage as compared to other methods. As
expected, and shown in the literature, complete case
analysis was associated with severely biased estimates as
the proportion of missingness increased [11, 12]. The ad
hoc strategies provided estimates that were less biased
and more efficient than the active and complete case
analysis. Still, coverage was consistently low even under
MCAR, potentially leading to excessive Type I errors.
Several papers have compared passive and active im-

putation strategies when computing exposure variables
with missing components. Wagstaff [13] and Morris [14]
looked at strategies to use BMI as an exposure when
one of the components, weight, or height was missing.
They found that under MCAR, both active and passive
imputation performed similarly and that under MAR,
active imputation was favored slightly. Others found that
passive imputation performed better than active imput-
ation when imputing an incomplete composite categor-
ical variable [15, 16]. Similar examples have included
non-linear effects and interaction terms where it has
been shown that active imputation leads to less biased
estimates than passive imputation, especially when miss-
ingness is completely at random [5, 8]. Our simulations
showed that active imputation estimates were severely
biased, inefficient and had low coverage. The difference
between previous findings and our simulations lie in the
structure of our dataset. Previous work considered cases
where the summary exposure is a function of variables
collected at the same time point versus ours is more
complex and compute a summary exposure collected
over time. For longitudinal datasets, active imputation is
performed at the participant level and instead of the
daily auxiliary variable, mean of the auxiliary variable
over time is used in the imputation models. This prob-
ably is the reason for biased and less efficient estimates
under active imputation. On the contrary, under MCAR
and MAR, passive imputation was associated with the
lowest bias and lower standard errors regardless of the
missingness proportion. When using passive imputation
techniques, the inclusion of daily auxiliary variable in
the imputation model probably helps in increasing the
precision and reducing the bias of parameter estimates
as noted in previous studies [17–19].
Our simulation studies also revealed that as the pro-

portion of missing daily assessments increased (to 50%, a
scenario which is not presented in this paper for

brevity), a complete strategy was often impractical and
unviable. For example, imposing 20% missing
participant-days in a sample size of 200 participants ob-
served for 5 days each translates to 200 missing assess-
ments. These 200 missing observations could possibly all
be from different participants leading to missing expo-
sures for every single participant in the sample. Under
this scenario, active imputation would also involve im-
puting the summary for every participant, which might
explain the high standard errors and biased estimates.
Scenarios like this occurred in our simulated datasets,
indicating that active imputation strategy may be an un-
suitable method when missing assessments are ex-
tremely high. Although our simulations did not consider
the effect of increasing the study sample size, it can be
inferred from our results that in such studies, efficiency
of our estimates depend on not just the total number of
participants in the study, but the proportion of missing
patient-days with respect to the total number of patients.
Hence studies with larger sample sizes but lower propor-
tion of missing patient-days would possibly have better
properties as long as the missingness didn’t increase pro-
portionally with sample size.
Our simulations could be expanded to include other

methods to impute summary variables, like those de-
signed for multilevel imputation incorporating the intra-
cluster correlation. But since it is recommended that the
imputation model be consistent with the analytic model
[20, 21] and our analytic model was single-level versus a
mixed-effects model, we didn’t consider generalized lin-
ear mixed-effects imputation methods. Van Buuren dif-
ferentiates passive imputation from the impute-then-
transform method where for the former, the computa-
tion of the summary variable is done on-the-fly within
the imputation algorithm, which potentially removes the
bias due to not including the dependencies between the
variables [6]. When transforming variables using compo-
nents collected at the same time point, the relationship
between the computed variable and its components can
be incorporated in the mice package in R. But this is not
easily transferred and not straightforward to implement
when working with unbalanced longitudinal data. Hence
in this paper, passive imputation is the same as the
impute-then-transform method. Our simulation parame-
ters were generated based on a dataset in critical care re-
search. Hence our findings may not always be
generalizable or translate seamlessly to all longitudinal
data where summary exposures are missing.
In summary, all methods performed comparably when

the proportion of missingness was extremely small at 1%
indicating that when the proportion of missingness is so
low, the gain over using all imputation models are min-
imal. But as the proportion of missingness increased,
passive imputation strategy performed better with
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respect to bias, efficiency and coverage compared to the
other methods. Even under MCAR, as the proportion of
missingness increased, active imputation and complete
case yielded estimates that were severely biased and inef-
ficient. But the use of passive imputation over ad hoc
strategies did not provide any advantage with regards to
bias, efficiency or coverage. In our NIH-funded observa-
tional study, it is likely the case that the missing data are
MCAR, but MNAR in data extracted from the electronic
medical record. Our work re-emphasizes that although
the electronic health records present a wealth of data, it
is important to address missingness to make valid infer-
ences. This work and findings can also be extended to
composite endpoints in clinical trials when some com-
ponents may be missing [16]. Missing data is a threat to
the validity of results and the appropriate strategy de-
pends on several factors such as the proportion of miss-
ingness, structure of the data, availability of informative
covariates. It is hard to provide concrete guidelines, and
we encourage sensitivity analyses to evaluate the robust-
ness of findings.

Conclusion
In summary, our simulations show that all methods per-
formed comparably when the proportion of missingness
was small, indicating that in such instances, the gain
over using any imputation model is minimal. But as the
proportion of missingness increases, the passive imput-
ation approach provides efficient and less biased esti-
mates under the missingness at random and missingness
completely at random mechanism. For longitudinal data
where a summary exposure is of interest, we recommend
practitioners adopting the passive imputation strategy.
Since the appropriate strategy depends on several fac-
tors, we also encourage sensitivity analysis to evaluate
the robustness of findings.
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