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Abstract

Background: Short-term associations between extreme heat events and adverse health outcomes are well-
established in epidemiologic studies. However, the use of different exposure definitions across studies has limited
our understanding of extreme heat characteristics that are most important for specific health outcomes or
subpopulations.

Methods: Logic regression is a statistical learning method for constructing decision trees based on Boolean
combinations of binary predictors. We describe how logic regression can be utilized as a data-driven approach to
identify extreme heat exposure definitions using health outcome data. We evaluated the performance of the
proposed algorithm in a simulation study, as well as in a 20-year time-series analysis of extreme heat and
emergency department visits for 12 outcomes in the Atlanta metropolitan area.

Results: For the Atlanta case study, our novel application of logic regression identified extreme heat exposure definitions
that were associated with several heat-sensitive disease outcomes (e.g., fluid and electrolyte imbalance, renal diseases,
ischemic stroke, and hypertension). Exposures were often characterized by extreme apparent minimum temperature or
maximum temperature over multiple days. The simulation study also demonstrated that logic regression can successfully
identify exposures of different lags and duration structures when statistical power is sufficient.

Conclusion: Logic regression is a useful tool for identifying important characteristics of extreme heat exposures for
adverse health outcomes, which may help improve future heat warning systems and response plans.
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Introduction
Extreme heat events have significant public health
impacts as demonstrated, for example, by historical
heat waves in Chicago [1, 2] and Europe [3, 4]. Recent
epidemiology studies have also found consistent short-
term associations between extreme heat events and
various cause-specific mortality [5–9] and morbidity
outcomes [10–12]. However, synthesizing existing
evidence has been challenging because of the use of
various exposure definitions in previous studies [13, 14].
How extreme temperatures become hazardous can vary
across locations due to differences in societal and bio-
logical adaptations [15], as well as across outcomes due to
differences in physiological mechanisms [16]. Identifying
extreme heat characteristics that are most important for
specific health outcomes or vulnerable subpopulations
may help improve heat warning systems and response
plans.
Extreme heat events are typically characterized by

their exceedance over an intensity threshold and their
sustained duration. For example, previous studies have
defined heat waves as a period where temperature ex-
ceeds the 98th percentile over two or more consecutive
days [17–19]. Many other relative (or absolute) thresh-
olds and durations have been used to define extreme
heat in health studies [20]. Furthermore, the choice of
heat metric represents another source of variation across
studies. Daily maximum and average temperatures have
been the most commonly used heat metrics. But there is
increasing interest in investigating apparent temperature
or wet-bulb temperature [21] that may better reflect hu-
man discomfort, and minimum temperature that reflects
night-time exposure [22–24].
The current approach of assessing effect heterogeneity

due to exposure definitions within a study involves
examining different heat metrics, different extreme
thresholds, and different durations one-at-a-time. Studies
often also need to take into account statistical power in
exposure definition due to the low frequency of extreme
heat days [25]. There has been limited work in leveraging
health data directly to develop exposure definitions for
extreme heat. Recently, machine learning methods have
been applied to predict adverse health outcomes using
meteorological variables [26]. However, the resulting algo-
rithms can be difficult to interpret in terms of the two key
characteristics of duration and intensity threshold. These
approaches may also suffer from the lack of rigorous con-
trol for confounders, making results more difficult to
translate into causal effects for subsequent intervention
and impact analysis.
In this paper, we examine the use of logic regression

[27–29], a machine learning method, to help identify
characteristics of extreme heat events that are associated
with adverse health outcomes. Logic regression estimates

a decision tree constructed using Boolean combinations of
binary predictors. Logic regression has been utilized
extensively in genetic association studies for identifying
high-dimensional interactions [30, 31], and has recently
been extended to other exposures [32–34]. We show how
logic regression provides a data-driven approach to
construct a daily extreme heat exposure indicator that is
binary (i.e., presence versus absence of the exposure) and
can capture impacts of sustained extreme exposure over
several days (i.e., heat waves). We evaluated the perform-
ance of the approach in simulation studies and applied the
method to a 20-year time-series analysis of daily emer-
gency department (ED) visits in Atlanta, Georgia.

Materials and methods
Atlanta emergency department visit and meteorology
data, 1993–2012
Patient-level ED visits data were obtained directly from
hospitals within the 20-county Atlanta metropolitan area
from 1993 to 2004 and then from the Georgia Hospital
Association from 2005 to 2012. For some outcomes,
secondary diagnoses were also included because they
showed stronger associations with temperature in a
previous Atlanta analysis [35]. The selected health
outcomes are internal causes (INTERN), heat illness
(HEAT), ischemic stroke (STK), fluid and electrolyte
imbalances (FLEL), all renal disease (RENAL), acute
renal failure (ARF), all circulatory system disease
(CIRC), hypertension (HT), myocardial infarction (MI),
congestive heart failure (CHF), ischemic heart disease
(IHD), and diabetes (DIA). Table 1 provides summary sta-
tistics of daily ED visits and ICD-9 codes for each outcome.
Only admissions during the warm seasons (May 1st to
September 30th) were used in this analysis because of our
interest in comparing extreme heat events versus non-
event warm days.
Hourly ambient air (dry-bulb) temperature, dew-point

temperature, and apparent temperature were obtained at
the Atlanta Hartsfield International Airport weather
station from the National Climatic Data Center from 1993
to 2012. We used airport monitor due to its high-quality,
complete temporal observations and central location in
the study area, which has little variation in elevation.
Apparent temperature in °C was defined as − 1.3 + 0.92
T + 2.2e, where T is ambient air temperature (°C) and e is
water vapor pressure (kPa) [36]. We considered six heat
metrics: daily maximum (MX), minimum (MN), and aver-
age (Avg) of either dry-bulb temperature or apparent
temperature (AT). For each daily temperature variable, we
created binary extreme indicators at the 95th, the 98th or
the 99th percentile thresholds based on observations over
the 20-year study period. Specifically, the extreme indica-
tor takes the value 1 when the temperature value exceeds
the percentile threshold.
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Time-series model for ED visits and temperature
We first describe the quasi-Poisson log-linear model
used to estimate short-term associations between daily
ED visit counts and extreme temperature [36]. Following
our previous analysis of heat waves and ED visits in
Atlanta, [37], denote μat the mean ED visit count for
adverse health outcome a on day t. The time-series
model is given by

ln μat
� � ¼ β0 þ βH X tð Þ þ ns Ttð Þ þ ns Tt

� �þ ns DPTtð Þ þ α0;yeart

þ f DATEtð Þ � α1;yeart þ
X6
i¼1

λiDOWti

þ
X2
j¼1

δ jHOLIDAY tj þ
X32
k¼1

γkHOSPITALtk :

Our parameter of interest β is the log relative risk (RR)
associated with a binary extreme heat exposure H(Xt). The
use of logic regression to define H(Xt) is described in
detail later in Section 2.3. The above time-series model
adjusts for non-extreme continuous same-day temperature
(Tt), average temperature over the last 3 days (lag 1, lag 2
and lag 3) ( Tt ), and same-day maximum dew-point
temperature (DPTt) to reflect the discomfort level due to
the humidity. Specifically, in primary analyses, we defined
the continuous temperature Tt and Tt by truncating the
value at the extreme heat threshold (the 95th, 98th, or
99th percentile), i.e., setting any daily temperature value
above the threshold to be the threshold value. In a sensi-
tivity analysis, we also examined the use of the entire
range of observed (i.e., non-truncated) temperature; in this
case, H(Xt) can be interpreted as the “added” impact of
extreme heat beyond the continuous temperature effect.
The use of truncated continuous exposure is to provide
better interpretation of β because H(Xt) only reflects the
temperature effect beyond the threshold. Moreover, the

tail of exposure-response function is often difficult to esti-
mate due to sparse data and can be more sensitivity to in-
fluential observations. Hence, adjusting for non-truncated
temperature may result in βH(Xt) accommodating for
mis-specification of the exposure-response functions
ns(Tt) and nsðTtÞ at the extreme tail. When apparent
temperature is the exposure of interest, we did not include
dew-point temperature in the model. To model the
possible non-linear effect of meteorology, natural cubic
splines, denoted by ns (.), were used for Tt ;Tt ; and DPTt

with 2 equidistant internal knots.
We adjusted for long-term temporal trend in the time-

series model as follows. Within a year, seasonal variation
(from May to September), denoted by f(DATEt), was
modeled smoothly with natural cubic splines and
monthly knots. We included year-specific indicators
α1;yeart and their interactions with the seasonal pattern in
our model to allow for between-year variation. We also
adjusted for day of week effect using indicators DOWti

and for federal or state holiday using indicators HOLI-
DAYtk. Finally, HOSPITALtk represents indicator vari-
ables for whether hospital k contributes to the ED visits
counts on day t; these indicators were used to account
for potential temporal drops in ED counts due to miss-
ing data from individual hospitals.

Logic regression
Logic regression is an adaptive regression method that at-
tempts to construct predictors as Boolean combinations of
binary covariates. It constructs a simple decision tree or a set
of decision trees (multiple trees) with binary predictors con-
nected by and (∧), or (⋁), and not (c) operators. For example,
consider the following four binary extreme heat indicators
based on minimum apparent temperature (ATMN),

Table 1 Descriptive statistics for daily emergency department visits during May to September in the 20-county Atlanta Metropolitan
area, 1993–2012. Outcomes are ordered by decreasing total counts

Disease ICD-9 Code(s) Mean Daily ED Visits Standard Deviation Min Max

All Internal Causes 001–799 2553 1328 192 5557

Diabetes 249, 250 215 171 0 630

Fluid and Electrolyte Imbalancea 276 162 116 0 413

All Circulatory System Diseases 390–459 623 467 3 1652

Hypertension 401–405 491 408 0 1407

Ischemic Heart Disease 410–414 120 87 0 327

Myocardial Infarctiona 410 14 8 0 40

Congestive Heart Failure 428 74 58 0 245

Ischemic Stroke 433–437 23 15 0 67

All Renal Diseases 580–593 139 118 0 447

Acute Renal Failurea 584 36 42 0 155

Heat-related Illnessesa 992.5 4 6 0 64
aDiagnosis based on primary ICD code only
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X1 ¼ lag0ðtoday0
sÞ ATMN > 98thpercentile;

X2 ¼ lag1ðyesterday0
sÞ ATMN > 98thpercentile;

X3 ¼ lag2 ATMN > 98thpercentile;

and

X4 ¼ lag3 ATMN > 98thpercentile;

where we suppress the subscript t for presentation
purposes. A simple extreme heat definition may be
H(Xt) = X1 ∧ X2 ∧ X3, which describes a period of 3-
consecutive days with high temperature. Hence, using
these set of indicators, we can potentially capture both
lagged and sustained effects of extreme heat. In our ap-
plication, we focus on the use of the single tree model to
estimate H(Xt). In another example, HðX tÞ ¼ Xc

1∧X2∧X3

describes a period of 2-consecutive days with high
temperature, excluding the lag-0 day. This is different
from X2 ∧ X3, which does not place a restriction on
whether X1 being 0 or 1. We also note that H(Xt) is a
binary exposure variable and offers better interpretation
for risk associations compared to a more naïve approach
of including X1, X2, X3, and X4, as well as their interac-
tions, jointly in a model.
Different logic trees may result in the same classifica-

tion of days. For example, the two trees identified by
logic regressions:

H1ðX tÞ ¼ ðXc
1∧X2∧X3Þ∨ðX2∧X3∧X4ÞandH2ðX tÞ

¼ ðXc
1∨X4Þ∧ðX2∧X3Þ:

give the same classification according to the distribu-
tive law (i.e., A ∧ (B ⋁C) = (A ∧ B) ⋁ (A ∧C)). To aid in
interpretation of logic regression results, we used the
following scheme to describe H(Xt). The Boolean combi-
nations of heat indicators generated by logic regression
can always be expressed by a series of logic statements
joined by the ⋁ (or) operators. Hence in the above
example, H1(Xt) =(X1

c ∧ X2 ∧ X3) ⋁ (X2 ∧ X3∧ X4) is the
preferred form with logic statements Xc

1∧X2∧X3 and
X2 ∧ X3 ∧ X4.
The ‘Logicreg’ package in R was used to fit logic regres-

sion models. Estimation was based on simulated annealing
as the optimization algorithm to stochastically explore all

22
k
Boolean combinations for k predictors. Ten-fold cross

validation was used to select the size of the tree (i.e., num-
ber of leaves) and reduce issues related to overfitting.

A multi-stage estimation approach
We applied logic regression to time-series analysis of ED
visit data in a three-stage approach. In the first stage, for
each temperature variable (i.e., ambient air temperature
and apparent temperature) and metric (i.e., maximum,

minimum, or average), a quasi-Poisson log-linear model
without H(Xt) was fit.
In the second stage, the Pearson residuals from the

first-stage model were used to identify the Boolean com-
bination of different extreme heat indicators at various
lags. The Pearson residuals were calculated as

rat ¼
Ya

t −μ̂
a
tffiffiffiffiffiffiffiffiffiffiffiffiffi

V μ̂at
� �q

where Ya
t and μ̂at are, respectively, the observed number

of daily ED visits and the predicted mean number of
daily ED visits for outcome of interest a on day t, and V
ðμ̂at Þ is the product of μ̂at and the dispersion parameter.
In the first stage we removed effects of continuous
same-day and lagged temperatures, as well as other
temporal trends. Because Pearson residual represents a
scaled difference between the observed and expected
counts, the logic regression tree H(Xt) estimated using
Pearson residuals aims to captures additional lagged and
sustained associations due to extreme temperature not
explained by the base model. Finally, in the third stage,
we refit the full time-series model with H(Xt) and all
other covariates.

Simulation study
Simulation setup
We performed a simulation study to assess the perform-
ance of logic regression a our multi-stage procedure in
detecting the structure of extreme heat exposures and in
estimating associations with health outcomes. Let X1,
X2, and X3 be binary indicators for the minimum appar-
ent temperature exceeding the 98th percentile threshold
on lag 0, lag 1, and lag 2 day, respectively. We consid-
ered three different true H(Xt) exposures:

E1 Same-day effect: H(Xt) = X1,
E2 Sustained 2-day effect: H(Xt) = X1∧ X2, and
E3 Sustained 2-day lagged-only effect: HðX tÞ ¼ Xc

1∧X2∧
X3.

We considered three different health outcomes with
different sample sizes, temporal patterns, and overdis-
persion (CIRC, RENAL, and HEAT). For each disease,
we first fit the time-series model with all confounders as
described in Section 2.1 with the Atlanta ED and me-
teorology data during 1993–2012 to obtain the baseline
mean daily ED visits. We assumed a true relative risk
(RR) of 1.01 or 1.05 for H(Xt) and simulated daily ED
visit counts from a negative-binomial distribution and
observed meteorology data using the time-series model
given in Section 2.2. Regression coefficients and overdis-
persion were based on estimated values from models
fitted with real data. We then applied the three-stage
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algorithm described in Section 2.4 to the simulated data
and estimated the log RR of interest.
We ran the simulation 100 times for each scenario.

The relative bias and relative root mean squared error
(RRMSE) were used to examine the performance of the
proposed approach. Relative bias and RRMSE were cal-
culated as

Relative bias ¼
1

100

X100

i¼1
dRRi−RRtrue

� �
RRtrue

;

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
100

X100

i¼1
dRRi−RRtrue

� �2
r

RRtrue
:

Here, cRRi is the estimated RR of ĤðX tÞ based on logic
regression from the ith simulation and RRtrue is the true
RR for each scenario. We also estimated the sensitivity
and specificity by comparing days indicated by ĤðX tÞ to
be exposed/unexposed to the true exposure status given
by E1, E2, or E3.

Simulation study results
Results from the simulation study are summarized in
Table 2. We found that performance of the proposed

method was better with larger RRs and for outcomes
with larger daily event counts (e.g., comparing all renal
diseases versus heat-related illnesses). We also ran the
same simulation using the non-truncated continuous
temperature and found similar results. Among the three
different exposure scenarios, logic regression performed
best for scenario E1 (single-lag, same-day) and worst in
E3 (sustained two-day lagged consecutive exposure). The
frequency of the extreme heat event may explain the dif-
ferent performances; the frequency of occurrence in our
Atlanta study for E1, E2, and E3 were 146, 73, and 29
days, respectively. Importantly, we also found that in our
Atlanta ED visits application, the average bias was nega-
tive, indicating that the effect estimate was attenuated
towards the null. This is likely due the presence of
exposure misclassification: when sensitivity/specificity is
not 100%, some days are classified incorrectly as
exposed/unexposed.

Application to the Atlanta ED visit data
Primary analyses
We applied the multi-stage algorithm described in Sec-
tion 2.4 separately for each heat metric: MX, MN, and
Avg of temperature (T) or apparent temperature (AT),
and separately for each threshold (95th, 98th, 99th per-
centile). Extreme binary indicators were also defined for

Table 2 Summarized simulation study results of the performance of logic regression

Disease True Relative
Risk

Exposure
Scenario

Sensitivitya Specificitya Relative bias Relative root mean
square error (RRMSE)

Logic regression Known H(Xt) Logic regression Known H(Xt)

All Circulatory System
Diseases

1.01 E1 50% 99% −0.56% −0.01% 1.09% 0.55%

E2 35% 98% −0.84% − 0.04% 1.59% 0.69%

E3 23% 98% −1.13% −0.28% 2.02% 0.85%

1.05 E1 100% 100% −0.11% − 0.11% 0.69% 0.69%

E2 99% 100% −0.03% 0.03% 0.99% 0.71%

E3 98% 100% −0.09% −0.02% 1.23% 1.00%

All Renal Diseases 1.01 E1 34% 99% −0.40% 0.36% 1.39% 1.10%

E2 36% 98% −0.27% 0.10% 2.03% 1.26%

E3 26% 98% −0.92% −0.22% 3.03% 1.61%

1.05 E1 93% 100% −0.14% 0.12% 1.75% 1.21%

E2 82% 100% −1.00% 0.18% 3.29% 1.16%

E3 73% 99% −1.37% −0.16% 3.31% 1.57%

Heat-Related Illnesses 1.01 E1 19% 99% −0.57% 0.35% 6.58% 5.61%

E2 29% 98% 0.30% 1.05% 12.02% 6.93%

E3 17% 98% 0.09% 0.91% 16.21% 9.03%

1.05 E1 33% 98% −2.53% −0.23% 8.43% 6.44%

E2 30% 98% −0.83% 0.45% 11.66% 6.40%

E3 23% 98% −3.07% −0.92% 16.42% 9.10%
aSensitivity is defined as the proportions of days assigned as exposed using the exposure metric estimated from logic regression among days assigned as
exposed using the true exposure metric (E1, E2, or E3) for simulating health data. Specificity is defined similarly for days assigned as unexposed. For each
simulation scenario, the sensitivities and specificities reported are averaged across 100 simulations
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up to three lagged days. The model with the smallest
quasi-AIC was selected.
Table 3 summarizes the structure of the extreme heat

exposures H(Xt) and their associations with ED visits.
Supplementary Figure 1 shows the structure of the logic
regression tree H(Xt) for selected outcomes. Logic trees
can be read “bottom-up” to construct a corresponding
logic statements where the tree split is given by the
Boolean statement and/or. Given a logic regression tree,
individual days in our 20-year study period data were
divided into two groups and we defined the reference (i.e.,
H(Xt) = 0) as the type of days more frequently observed.
Overall, we found several positive associations with ex-

posures. For example, for heat-related diseases (HEAT),
extreme heat exposure was defined as days where (1) lag
0 and lag 1 ATMIN are above the 95% percentile or (2)
lag 1 and lag 3 ATMIN is above the 95% percentile. This
exposure was associated with an increase in mean HEAT
ED visits by 40% (95% CI: 27–54%). For acute renal fail-
ure (ARF) ED visits, the exposure identified (i.e., recent
two days’ ATMIN is above the 95% percentile) was asso-
ciated with an increase of 5% (95% CI: 2–9%). For all
renal diseases, the exposures identified were more com-
plicated and was associated with an increase of ED visits
by 2% (95% CI: 1–4%). Associations with circulatory dis-
ease were generally null, except for ischemic stroke and
hypertension, for which we found a negative association
with extreme heat exposure

Sensitivity analyses
We also conducted three additional sensitivity analyses.
First, we examined the more conventional heat wave
definition where duration is defined as at least two con-
secutive days exceeding the threshold. Result for HEAT,
STK, and RENAL outcomes are given in Supplementary
Table S1. We found that the conventional heat wave
definitions also indicated positive associations, but the
magnitude can be attenuated. Second, because logic
regression is a machine learning algorithm that opti-
mizes predictability, the lag structure may contain holes
(e.g., exceeding the temperature threshold on lag-1 and
lag-3, but not lag-2). Based on the exposure lags identi-
fied by logic regression as a guide, we defined alternative
exposure metrics by filling in gaps and removing the
“not” statement. These alternative metrics are defined
over consecutive days and may be more interpretable.
Results are given in Table S2. For HEAT and RENAL,
we found that using alternate exposures that are more
extreme (less frequent) continues to estimate positive
associations. However, in the case of STK, where the
alternate exposures are less extreme, the associations
with ED visits were positive, but confidence intervals
included the null.
In a second analysis, we replaced the truncated same-

day and 3-day moving-average of temperature heat
metric with the original variable without truncation.
Here the application of logic regression attempts to

Table 3 Summary of extreme heat exposure estimated by logic regression and their short-term associations with warm-season
emergency department visits in Atlanta, 1993 to 2012. Relative risk estimates and 95% confidence intervals (CI) were from time-series
models adjusting for truncated continuous temperature. Within each outcome, each row of the extreme heat exposure corresponds
to an “or” statement derived from the logic regression tree. “Not” statement is indicated by a superscript c

ED Visit Outcome Heat Metric
and Quantile

Extreme Heat Exposure lag0 lag1 lag2 lag3 Frequency (days) Relative Risk (95% CI)

HEAT ATMN95 (lag0 and lag1) Y Y 237 1.400 (1.269, 1.544)

OR (lag1 and lag3) Y Y

FLEL ATMN95 lag1 Y 335 1.030 (1.016, 1.045)

RENAL ATMN95 (lag0 and lag3) Y Y 255 1.025 (1.011, 1.039)

OR (lag2C and lag3) N Y

ARF ATMN95 lag0 and lag1 Y Y 190 1.052 (1.021, 1.085)

STK TMX98 lag0 and lag1 and lag2C and lag3 Y Y N Y 5 1.257 (1.061, 1.477)

CIRC ATMX95 lag1 Y 363 0.996 (0.987, 1.004)

HT ATMX95 lag0 and lag1 and lag3C Y Y N 128 0.988 (0.977, 0.999)

OR (lag1 and lag2 and lag3C) Y Y N

IHD TMN99 lag0 Y 63 1.013 (0.986, 1.041)

MI TMN99 lag0 Y 63 1.044 (0.964, 1.131)

CHF ATMN98 lag0 Y 146 0.976 (0.947, 1.007)

DIA TMN95 lag2 Y 238 1.009 (0.996, 1.021)

INTERN ATMN95 lag3 Y 335 1.008 (1.002, 1.015)

HEAT heat illness, STK ischemic stroke, ARF Acute renal failure, RENAL all renal disease, FLEL Fluid and electrolyte imbalance, CIRC all circulatory system disease,
CHF Congestive heart failure, IHD Ischemic heart disease, MI Myocardial infarction, DIA Diabetes, HT Hypertension, ITERN all internal causes)
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identify additional risks beyond that conferred by the
continuous exposure-response function. Results are
given in Supplementary Table S2. In general, we found
that logic regression identified extreme heat exposure
based on similar heat metrics but RR with smaller
magnitude. However, the use of truncated continuous
temperature, as in our main analysis, was generally asso-
ciated with better model fit and stronger associations
with ED visits. This may be attributed to data sparsity in
the extreme tail of the temperature distribution such
that when using non-truncated temperature, the tail of
the continuous exposure-response function may be mis-
specified and has high uncertainty.

Discussion
In this paper, we propose the use of logic regression to
help identify characteristics of extreme heat exposure
that are associated with short-term adverse health risks.
Our 20-year time-series analysis shows that ED visits for
various disease outcomes were associated with exposure
identified by logic regression using a multi-stage algo-
rithm. Our motivating hypothesis is that most harmful
characteristics of heat exposures are likely to vary between
outcomes because of the different vulnerable subpopula-
tions and different pathophysiological mechanisms they
may impact. While the strength of association of different
exposure definitions varied by outcome, the most health-
relevant exposures were generally those characterized by
temperatures exceeding a threshold over multiple lags.
We also found evidence that apparent temperature and
daily minimum temperature gave better model fit, provid-
ing support that humidity and night-time exposure are
important considerations for quantifying adverse health
effects of extreme heat events. However, Armstrong et al.
[38] found that adding relative humidity or dewpoint
temperature to a model with temperature does not im-
prove model fit.
Though studies on heat waves and cause-specific ED

visits are limited compared to cause-specific mortality,
our results are consistent with much of the previous re-
search that utilized different definitions. Petitti et al. [39]
used three pre-specified temperature trigger points
(minimum risk temperature, increasing risk temperature,
and excess risk temperature) in Maricopa County
Arizona. This study found significant associations with
all three trigger points and ED visits for heat related
diagnosis but found no association with CVD related
outcomes and total ED visits. Another study that looked
at high ambient temperature and ED visits in California
found that same day ambient temperature was positively
associated with heat illness and ARF, but was negatively
associated with hypertension [40], as were our results.
For hypertension, we found that the exposures

estimated from logic regression tended to be negatively

associated with ED visits. Previous studies on heat waves
and morbidity outcomes have found similar results. Lim
et al. [9] and Sherbakov et al. [41] found that hospital
admissions due to hypertension and other cardiovascular
related outcomes decreased with increased temperatures.
Similarly, a study by Michelozzi et al. [42] found that
cardiovascular related morbidity was reduced with
higher temperatures, but cardiovascular mortality in-
creased. A possible mechanism for these findings is that
blood pressure can decrease from vasodilation and
sweating in the summer, thus potentially reducing
hypertension related hospital admissions [41, 43].
Our extreme heat exposures did not always identify

consecutive days of high temperature as being the most
harmful. For example, the not logic statement and miss-
ing lags were selected for several disease outcomes
(Table 3 and S2). This may be due to the lack of
statistical power as periods with consecutive days of high
temperature were less frequent. It is also possible that
the risk of consecutive days of high temperature is less
harmful compared to periods with more variable but
high temperature due to awareness of extreme heat
events.
We found that different specifications of the base

model (i.e., adjusting for truncated versus non-
untruncated continuous temperature) can have an impact
on the extreme heat exposure identified and its estimated
risk ratio. While both types of analyses are common in the
literature, associations of extreme heat events from these
two approaches should be interpreted differently (i.e., total
risks above a certain threshold versus risks in addition to
the continuous exposure-response function). This moti-
vated our multi-stage estimation approach such that the
base model is specified a priori and the data-driven logic
regression is only utilized to explore potential excess risks
not explained by the base model. We note that when
performing risk assessment of high temperature, both
extreme temperature events and the tail of the exposure-
response function should be considered.
The main advantage of logic regression is its super-

vised learning approach for deriving study-specific and
outcome-specific exposure definitions that are flexibly
constructed by indicators of different extreme heat char-
acteristics. Study population, geographical region, and
the set of exposures being considered may contribute to
the observed heterogeneity in extreme heat health effects
within and across studies. The algorithm also has a user-
friendly software package that can efficiently evaluate a
large suite of possible exposure definitions to identify
those that are most important for individual health
outcomes. Compared to regression tree methods, logic
regression has two important advantages: (1) the ability
to incorporate “and”, “or” and “not” statement between
predictors, and (2) the focus on binary classification of a
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continuous outcome. In contrast, Classification And
Regression Trees (CART) will give multiple terminal
nodes and the resulting heat metric will likely be very
complex because only “and” statement is allowed as the
decision tree is split.
Finally, logic regression has several limitations that

warrant further investigations. First, during estimation,
logic regression can become trapped in a local minimum
when many binary predictors are being considered.
Hence, model fitting requires a comprehensive evaluation
of tuning parameters (e.g., starting temperature, finishing
temperature, and cooling schemes) and initial values,
which increases computational burden. In our application,
the number of binary predictors is considerably smaller
than the typical genetic association studies and we were
able to evaluate different control parameters for simulated
annealing. Second, we only utilized logic regression to
select the exposure lag structure given a heat metric and
threshold. We found that the current sample size cannot
accommodate including all possible heat exposure indica-
tors that are highly correlated. One future direction is to
consider additional penalization within logic regression.
Third, our multi-stage estimation approach, while
allowing us to work with established time-series analysis
methodology, does not account for estimation uncertainty
associated with the extreme heat metric, which may be
important for quantifying associations for rare exposure
events. Statistical inference such as pseudolikelihood [44,
45] could be integrated to the current method to account
for the ignored uncertainty. Moreover, recent advances in
fitting logic regression under a Bayesian framework [46]
allows for direct quantification of uncertainties via poster-
ior samples. How to incorporate these uncertainties in a
multi-stage health analysis, similar to an exposure meas-
urement error framework, warrants further investigations.
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