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Abstract

Background: Cardinality matching (CM), a novel matching technique, finds the largest matched sample meeting
prespecified balance criteria thereby overcoming limitations of propensity score matching (PSM) associated with
limited covariate overlap, which are especially pronounced in studies with small sample sizes. The current study
proposes a framework for large-scale CM (LS-CM); and compares large-scale PSM (LS-PSM) and LS-CM in terms of
post-match sample size, covariate balance and residual confounding at progressively smaller sample sizes.

Methods: Evaluation of LS-PSM and LS-CM within a comparative cohort study of new users of angiotensin-
converting enzyme inhibitor (ACEI) and thiazide or thiazide-like diuretic monotherapy identified from a U.S.
insurance claims database. Candidate covariates included patient demographics, and all observed prior conditions,
drug exposures and procedures. Propensity scores were calculated using LASSO regression, and candidate
covariates with non-zero beta coefficients in the propensity model were defined as matching covariates for use in
LS-CM. One-to-one matching was performed using progressively tighter parameter settings. Covariate balance was
assessed using standardized mean differences. Hazard ratios for negative control outcomes perceived as
unassociated with treatment (i.e., true hazard ratio of 1) were estimated using unconditional Cox models. Residual
confounding was assessed using the expected systematic error of the empirical null distribution of negative control
effect estimates compared to the ground truth. To simulate diverse research conditions, analyses were repeated
within 10 %, 1 and 0.5 % subsample groups with increasingly limited covariate overlap.

Results: A total of 172,117 patients (ACEI: 129,078; thiazide: 43,039) met the study criteria. As compared to LS-PSM,
LS-CM was associated with increased sample retention. Although LS-PSM achieved balance across all matching
covariates within the full study population, substantial matching covariate imbalance was observed within the 1
and 0.5 % subsample groups. Meanwhile, LS-CM achieved matching covariate balance across all analyses. LS-PSM
was associated with better candidate covariate balance within the full study population. Otherwise, both matching
techniques achieved comparable candidate covariate balance and expected systematic error.
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Conclusions: LS-CM found the largest matched sample meeting prespecified balance criteria while achieving
comparable candidate covariate balance and residual confounding. We recommend LS-CM as an alternative to LS-
PSM in studies with small sample sizes or limited covariate overlap.

Keywords: Cardinality matching, Propensity score matching, Causal inference, Residual bias, Systematic error,
Sample size, Balance, Hypertension, ACEI, Diuretic

Background
Randomization tends to produce comparable study
groups in terms of both observed and unobserved covar-
iates in controlled experimentation. Unfortunately, ran-
dom assignment of treatment is conspicuously absent
from observational studies [1]. In the absence of
randomization, differences in covariate distributions be-
tween study groups may prevent valid statistical infer-
ence from data [2]. As such, a key component in the
design of observational studies includes addressing the
presence of confounding covariates to reduce study bias
using statistical methods such as matching [3–5].
While propensity score matching (PSM) is the most

ubiquitous matching technique for causal inference in
observational research, the technique is subject to limita-
tions. First, PSM is susceptible to substantial bias, large
variance in estimates and poor sample retention in stud-
ies with limited overlap of covariate distributions be-
tween study groups [4, 6, 7]. Second, due to limited
degrees of freedom, restrictions on the number of
matching covariates used may be necessary to avoid
model over-parameterization and overfitting although
this may be overcome through large-scale propensity
score matching using machine learning to calculate pro-
pensity scores [8, 9]. These limitations are especially
pronounced in studies with small sample sizes.
A novel matching method, cardinality matching (CM),

uses recent advancements in integer programming to
find the largest matched sample meeting a set of prespe-
cified balance criteria [4]. For instance, CM solves for
the optimal (i.e., largest) matched sample subject to
investigator-defined constraints on the maximum stan-
dardized mean difference of covariates between study
groups. By matching directly on the original covariates
rather than propensity scores, CM handles issues of lim-
ited overlap of covariate distributions and maximizes
sample size retention while meeting covariate balance
criteria [4].
Prior literature comparing PSM and CM is primarily

focused upon measures of post-match sample retention
and matching covariate balance [4, 10]. Nevertheless, re-
sidual bias may arise due to confounding from unob-
served variables or unadjusted covariate candidates [11,
12]. Large-scale matching on high-dimensional datasets
may indirectly adjust covariate candidate balance and

reduce residual confounding, which may be measured
through candidate covariate balance and negative con-
trol outcome experiments, respectively, due to the com-
plex interactions between covariates in real-world
healthcare data. Specifically, negative control outcome
experiments estimate the systematic error and, therefore,
residual bias unattributable to random chance based on
negative control outcomes perceived as unassociated
with treatment [11].
The current study proposes a framework for the em-

pirical selection of matching covariates in large-scale
CM (LS-CM); and compares the performance of large-
scale PSM (LS-PSM) and LS-CM in an observational
study of new users of angiotensin converting enzyme in-
hibitor (ACEI) vs. thiazide or thiazide-like diuretic
monotherapy. To simulate a diverse variety of potential
research conditions, both matching techniques are eval-
uated in terms of post-match sample size, matching and
candidate covariate balance and residual bias at progres-
sively smaller sample sizes possessing increasingly lim-
ited covariate overlap.

Methods
Study design and data source
We conducted a retrospective comparative new-user co-
hort study in the IBM® MarketScan® Commercial Claims
and Encounters Database (CCAE), which primarily con-
sists of de-identified, patient-level health data from over
142 million individuals enrolled in employer-sponsored
health insurance plans in the United States. The CCAE
database includes adjudicated health insurance claims
(inpatient, outpatient, and prescription) and enrollment
data from large employers and health plans who provide
private insurance coverage. Data were standardized to
the Observational Health and Data Sciences and Inform-
atics (OHDSI) Observational Medical Outcomes Part-
nership (OMOP) Common Data Model (CDM) version
5.3, which maps international coding systems into stand-
ard vocabulary concepts [13]. In the United States, retro-
spective analyses of the CCAE data are considered
exempt from informed consent and institutional review
board (IRB) approval as dictated by Title 45 Code of
Federal Regulations, Part 46 of the United States, specif-
ically 45 CFR 46.104 (d)(4).
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Study population
We identified new users of ACEI and thiazide or
thiazide-like diuretic monotherapy between October 1,
2014 and January 1, 2017. For each patient, we defined
the index as the date of first drug exposure.
The study was limited to patients with a minimum of

365 days of continuous observation in the database prior
to index. We required patients to have a recorded diag-
nosis for hypertension at or within 365 days prior to
index (see Supplemental Appendix A for a list of codes
used to query the database). As described in Suchard
et al., new users were defined as patients whose first ob-
served treatment for hypertension was ACEI or thiazide
or thiazide-like diuretic monotherapy [14]. Patients with
exposure to any other active ingredient listed within the
five primary drug classes for the treatment of hyperten-
sion in the 2017 American College of Cardiology/Ameri-
can Heart Association (ACC/AHA) guidelines (i.e.,
ACEI, thiazide or thiazide-like diuretics, angiotensin re-
ceptor blockers, dihydropyridine calcium channel
blockers, non- dihydropyridine calcium channel
blockers) any time prior to or within 7 days post-index
were excluded [14, 15]. Patient inclusion criteria and at-
trition are summarized in Supplemental Appendix B.

Sample groups
We developed a total of four progressively smaller sam-
ple groups, including a full study population group and a
10 %, 1 and 0.5 % subsample group. Analyses were per-
formed across each aforementioned sample group to
simulate a diverse set of research conditions, specifically
permitting comparison of LS-PSM and LS-CM in the
setting of increasingly limited covariate overlap. The
scarcity of negative control outcomes observed at
smaller sample sizes necessitated pooled analyses of
negative control outcome experiments across multiple
subsample draws within each subsample group. As such,
the 10 %, 1 and 0.5 % subsample groups included 5, 50
and 100 subsample draws, respectively. Each subsample
draw was performed by random sampling without re-
placement from the study population stratified by study
comparison group.

Patient demographic and clinical characteristics
We measured patient demographics at index including
age, grouped into categories in 5-year increments; sex;
and index year and month. Patient clinical characteris-
tics included all observed condition, drug exposure,
measurement and observation codes occurring within a
long-term or short-term window (i.e., at or within 365
or 30 days prior to index, respectively) with the excep-
tion of ingredient-level drug exposures to ACEIs and
thiazide or thiazide-like diuretics. All drug exposures
were grouped at both the ingredient-level and according

to the Anatomical Therapeutic Chemical (ATC) classifi-
cation system. Patient comorbidities were measured
using the Charlson Comorbidity Index (CCI) [16]. Fi-
nally, we measured the following disease severity and
risk scores: Diabetes Complications Severity Index
(DCSI), CHADS2 score, and CHA2DS2-VASc score [17–
19]. The CCI, DCSI, CHADS2 score and CHA2DS2-
VASc score were measured based on all observed condi-
tions occurring at or prior to index.

Angioedema outcome
We examined the safety outcome of angioedema, which
was identified from diagnoses recorded on inpatient and
emergency room healthcare claim records. Patients with
a recorded diagnosis for angioedema at or within any
time prior to index were excluded from the study.

Time‐at‐risk
The time-at-risk window was defined based on the
intention-to-treat principle, and patients were followed
from day 1 post-index to the earliest of July 31, 2019,
end of continuous exposure to treatment based on a
conservative persistence window allowing for a max-
imum of 30 days between drug exposures, or end of
continuous observation (i.e., the end of contiguous
coverage or death) in the database [20]. Analyses were
limited to patients with a minimum time-at-risk of
1 day.

Large‐scale propensity score matching
Candidate covariates were defined as all aforementioned
patient demographic and clinical characteristics, and
heuristic feature selection was used to identify candidate
covariates with a frequency greater than 0.1 %. We de-
veloped propensity models using LASSO regression with
10-fold cross-validation for hyperparameter tuning in-
cluding all candidate covariates identified through heur-
istic feature selection, and propensity scores were
calculated using the propensity model [8]. New users of
ACEI and thiazide or thiazide-like diuretic monotherapy
were matched at a 1:1 ratio using greedy matching en-
forcing a caliper of 0.10 and 0.20 of the pooled standard
deviation of the logit of propensity scores in two separ-
ate analyses. To facilitate comparisons between LS-CM
and LS-PSM, we defined matching covariates as candi-
date covariates with non-zero beta coefficients in the
propensity model. LS-PSM was conducted in R version
3.6.3 using the Health Analytics Data-to-Evidence Suite
(HADES) [21].

Large‐scale cardinality matching
Matching covariates – covariates used in LS-CM - were
empirically selected; matching covariates included candi-
date covariates with non-zero beta coefficients in the
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propensity model developed during LS-PSM. As such,
matching covariates were identical between LS-PSM and
LS-CM with one notable exception: due to memory con-
straints associated with LS-CM, in analyses of the full
study population, heuristic feature selection was used to
identify candidate covariates with a frequency threshold
of 2 % instead of 0.1 %. Specifically, while LS-CM failed
to converge to a matched sample due to insufficient
memory while attempting to match on approximately
220 million data points (172,117 patients and 1,237
matching covariates), a matched sample was identified
by LS-CM from a dataset containing over 120 million
data points (172,117 patients and 717 matching
covariates).
CM utilizes advancements in optimization algorithms

to solve for the largest sample size meeting prespecified
balance criteria (e.g., maximum standardized mean dif-
ference [SMD] of matching covariates) [4]. We per-
formed LS-CM using the following prespecified balance
criteria in four separate analyses: exact marginal distri-
butional balance (i.e., fine balance; SMD = 0) and max-
imum SMD of 0.01, 0.05 and 0.10 of matching
covariates between study groups.
All analyses were performed using an Amazon Web

Services (AWS) Virtual Private Cloud (VPCx)
m4.4xlarge Elastic Compute Cloud (EC2) instance.
This instance included 16 2.3 GHz Intel® Xeon®
vCPUs, 64 GiB of memory and a dedicated Elastic
Block Storage (EBS) bandwidth of 2000 Mbps. Fur-
thermore, all analyses were performed in R version
3.6.3 using Gurobi™ solver and the designmatch
library.

Evaluation of post‐match sample size
We evaluated patient retention in the matched samples
subsequent to LS-PSM and LS-CM based on the average
post-match sample size across all subsample draws
within each sample group.

Evaluation of post‐match covariate balance
The performance of LS-PSM and LS-CM were com-
pared in terms of post-match covariate balance. The
level of balance achieved indirectly and directly through
matching was assessed based on candidate and matching
covariate balance, respectively. SMDs, as defined by
Rosenbaum & Rubin, were used to assess the post-
match balance of candidate and matching covariates;
specifically,

SMD ¼ ðxtreatment � xcomparatorÞ=sp

where x̄treatment and x̄comparator represent the post-
match covariate mean of treatment and comparator

group, respectively, and sp represents the pre-match
covariate pooled standard deviation [22]. An absolute
SMD less than 0.10 was considered balanced. For
each subsample group, the SMD of all candidate and
matching covariates across all subsample draws were
pooled such that covariate balance was assessed
across all subsample draws considered jointly.

Evaluation of post‐match residual confounding
Residual study bias due to unmeasured potential con-
founders and systematic error may still exist subse-
quent to LS-PSM or LS-CM [11, 12]. To quantify the
magnitude of residual study bias, we included a total
of 105 negative control outcomes in our experiment
believed to be associated with neither ACEIs nor thia-
zide or thiazide-like diuretics, which, therefore, have a
true hazard ratio equal to 1 [11]. These negative con-
trol outcomes were identified through a data-rich al-
gorithm and manual clinical review (see Supplemental
Appendix C for a list of negative control outcomes
used in the current study) [23]. Hazard ratios were
estimated for negative control outcomes using uncon-
ditional Cox proportional hazards models. Due to the
increasingly limited number of negative control out-
comes observed at smaller sample sizes, hazard ratios
were estimated from all post-match observations
pooled across all subsample draws within each sub-
sample group.
Comparing the estimated hazard ratios of the negative

control outcome experiments to the ground truth (of no
effect) provides insight into residual study bias. We as-

sume the observed log hazard ratio (θ̂i ) depends on the
log of the true effect size (θi), which is assumed to be 0,
plus a systematic error component (βi), and let τi denote
the standard error corresponding to θi. Furthermore, we
assume βi to be distributed following a normal distribu-
tion with parameters μ and σ [2], which we estimate

using the observed estimates (i.e., θ̂i ) of negative control
outcomes [24]. In summary, we develop a systematic
error model based on the difference in the observed and
expected effect estimates of negative control outcomes
not attributable to random error based on the following
assumptions:

θ̂i � Nðθi þ βi; �
2
i Þ

and

βi � Nðμ; σ2Þ
To summarize the systematic error component of

negative control outcomes into a single measure we
computed the expected systematic error (ESE), defined
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as the expected absolute systematic error based on the
estimated null distribution parameters:

ESE ¼ EðjβijÞ

It follows that a higher ESE may be attributable to in-
creased systematic bias and, therefore, post-match re-
sidual bias. Conversely, a lower post-match ESE may be
attributable to decreased systematic error and residual
bias. Given a finite number of negative control outcomes
and uncertainty in estimated hazard ratios due to limited
sample size, the distribution parameters and, therefore,
the ESE come with uncertainty, which we quantified
using Markov-Chain Monte Carlo and expressed as 95 %
credible intervals.

Analyses of angioedema outcome
Unconditional Cox proportional hazards models were
used to compare the safety outcome of angioedema be-
tween study groups within the full study population; in-
sufficient occurrences of the outcome were observed to
perform analyses within subsample groups. All hazard
ratio (HR) estimates, 95 % confidence intervals (CI) and
p-values were calibrated to incorporate the uncertainty
expressed in the empirical null distribution of negative
control outcomes as described by Schuemie et al. [11,
24]. Briefly, the aforementioned statistics were calibrated
based on the systematic error model developed from

negative control outcome experiments as previously dis-
cussed. We considered a two-sided calibrated p-value <
0.05 to be statistically significant. For reference, we fur-
ther examined uncalibrated effect estimates.

Results
Post‐match sample size
The study inclusion criteria were met by 172,117 pa-
tients in the CCAE database, of which 129,078 (75.0 %)
and 43,039 (25.0 %) were new users of ACEI and thiazide
or thiazide-like monotherapy, respectively. Each sub-
sample draw for the 10 %, 1 and 0.5 % subsample groups
included 17,210 (ACEI: 12,907; thiazide or thiazide-like
diuretic: 4,303), 1,720 (ACEI: 1290; thiazide or thiazide-
like diuretic: 430) and 860 (ACEI: 645; thiazide or
thiazide-like diuretic: 215) patients, respectively.
The average post-match sample size across all analyses

is shown in Fig. 1. In the full study population, LS-CM
failed to converge to an optimal solution while requiring
fine balance of matching covariates but was able to
match every patient in the thiazide or thiazide-like diur-
etic group to a patient in the ACEI group (matched sam-
ple size = 86,078) at all other prespecified balance
criteria. The use of more stringent balance criteria and a
tighter caliper was associated with a slight reduction in
post-match patient retention in LS-CM and LS-PSM, re-
spectively, within subsample group analyses. With the
exception of LS-CM requiring fine balance of matching

Fig. 1 Average sample size after large-scale propensity score matching (PSM) and cardinality matching (CM). Fine balance: exact marginal
distributional balance. * Failed to converge to a matched sample
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covariates, LS-CM was associated with greater sample
size retention as compared to LS-PSM.

Post‐match matching covariate balance
In the full study population, 1,237 matching covariates
were identified by LASSO regression for analyses using

LS-PSM. Due to memory constraints associated with LS-
CM at larger sample sizes, the frequency threshold of
heuristic feature selection used to limit candidate covari-
ates considered during LASSO regression was increased
from 0.1 to 2 % for analyses within the full study popula-
tion using LS-CM, which led to the identification of 717
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matching covariates. An average of 210.6 (standard devi-
ation [sd] = 43.7), 42.0 (sd = 19.6) and 23.2 (sd = 9.3)
matching covariates were identified by LASSO regres-
sion across all subsample draws within the 10 %, 1 and
0.5 % subsample groups, respectively.

Figure 2 depicts the SMD of matching covariates across
all analyses, and summary statistics on the average abso-
lute SMD of matching covariates are available in Supple-
mental Appendix D. As evidenced by absolute SMDs
greater than 0.10, significant matching covariate
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Fig. 4 Expected systematic error of negative controls after large-scale propensity score matching (PSM) and cardinality matching (CM). ESE:
expected systematic error; fine balance: exact marginal distributional balance

Fig. 5 Hazard ratio for angioedema between new users of ACEI vs. thiazide or thiazide-like diuretic monotherapya. ACEI: angiotensin-converting
enzyme inhibitor; HR: hazard ratio; CI: confidence interval; SE: standard error of the natural log of the hazard ratio; PSM: lage-scale propensity
score matching; CM: large-scale cardinality matching.a Uncalibrated effect estimates (left panel) and calibrated effect estimates (right panel) for
analyses performed within the full study population (N=172,117). Calibrated hazard ratio, estimates, confidence intervals, standard errors and p-
values based on the empirical null distribution of negative control outcomes
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imbalance existed prior to matching. After LS-CM, no im-
balanced matching covariates were observed within either
the full study population or any subsample group. At
small sample sizes, the distribution of matching covariate
SMDs were skewed towards the prespecified balance cri-
teria. Furthermore, more stringent prespecified balance
criteria were associated with a reduction in the average
SMD of matching covariates; and LS-CM requiring exact
marginal distributional balance achieved perfect balance
(e.g., SMD= 0, sd = 0) of matching covariates. While LS-
PSM achieved balance across all matching covariates
within the full study population and 10% subsample
group, the average frequency and proportion of post-
match matching covariate imbalance within the 1 and
0.5 % subsample groups were: caliper = 0.10, 8.2 (19.6 %)
and 7.6 (32.7 %), respectively; and caliper = 0.20, 8.4
(19.9 %) and 7.5 (32.5 %), respectively.

Post‐match candidate covariate balance
A total of 50,391 candidate covariates were observed in
the full study population. Due to a decrease in sample
size, fewer candidate covariates were observed among
subsample groups. The average number of candidate co-
variates observed within the 10 %, 1 and 0.5 % subsample
groups was 26,696.8 (sd = 467.4), 11,644.2 (sd = 441.9)
and 8,581.1 (sd = 436.1), respectively.
The SMD of candidate covariates before matching and

across all analyses is shown in Fig. 3. Overall, post-
match candidate covariate imbalance was negatively cor-
related with sample size, and, likewise, covariate overlap
was increasingly limited at smaller sample sizes in the
pre-match sample. In the full study population, no im-
balanced covariates were observed following LS-PSM
(see Supplemental Appendix E). Similarly, LS-PSM was
associated with a small, albeit non-significant, improve-
ment in the average SMD of candidate covariates in the
full study population as compared to LS-CM (see Sup-
plemental Appendix F). Nevertheless, comparable im-
provements in candidate covariate balance were
achieved by both matching techniques within each sub-
sample group.

Post‐match residual confounding
The expected systematic error (ESE) prior to matching
and subsequent to LS-PSM and LS-CM within the full
study population and each subsample group is shown in
Fig. 4. Overall, ESE was negatively correlated with
sample size albeit non-significantly. As compared to the
pre-match sample, both matching techniques were asso-
ciated with similar reductions in ESE (e.g., 0.5 % sub-
sample group: pre-match, ESE = 0.28 [95 % CI: (0.16,
0.43)]; LS-PSM with caliper = 0.10, ESE = 0.13 [95 % CI:
(0.04, 0.34)]; and LS-CM with maximum SMD = 0.01,
ESE = 0.08 [95 % CI: (0.02, 0.25)]).

Analyses of angioedema outcome
Results from analyses of the safety outcome of angio-
edema between new users of ACEI vs. thiazide and
thiazide-like monotherapy within the full study popula-
tion are presented in Fig. 5. As compared to thiazide or
thiazide-like monotherapy, ACEI monotherapy was
found to be associated with a significant increase in the
risk of angioedema across all analyses (calibrated p <
0.05), and calibrated HR estimates did not significantly
differ between LS-PSM and LS-CM. Furthermore, LS-
CM was associated with a slight decrease in the standard
error of calibrated HR estimates relative to LS-PSM.
Similar trends were observed among uncalibrated effect
estimates.

Discussion
In this applied comparison of LS-PSM and LS-CM
among new users of ACEI vs. thiazide and thiazide-like
diuretic monotherapy, LS-CM found the largest matched
sample meeting prespecified balance criteria. The
current study proposed a framework for the empirical
selection of matching covariates for LS-CM and assessed
the performance of both matching techniques at pro-
gressively smaller sample sizes with increasingly limited
covariate overlap. While both matching techniques
achieved similar candidate covariate balance, LS-CM
was associated with improved matching covariate bal-
ance in analyses with smaller sample sizes. Furthermore,
LS-CM was associated with improved patient retention
as compared to LS-PSM translating to slight improve-
ments in the precision of effect estimates. Finally, LS-
CM and LS-PSM were associated with similar improve-
ments in residual confounding, which was assessed
based on the ESE of negative control outcome
experiments.
Prior literature comparing CM and PSM is limited. In

a study examining the impact of earthquakes on elect-
oral outcomes in Chile, Visconti et al. describe the per-
formance of both matching techniques. Before matching,
the study included a total of 172 observations. As com-
pared to PSM, CM was associated with a decrease in
both post-match sample size (108 vs. 154) and, as evi-
denced by a SMD greater than 0.10, matching covariate
imbalance (0 vs. 13 out of 18 imbalanced matching co-
variates) [4]. Similarly, in a Monte Carlo simulation
study, de los Angeles Resa and Zubizarreta found CM to
systematically select the largest sample size meeting a
set of prespecified balance criteria [10].
Consistent with prior literature, as evidenced by a

SMD less than 0.10, LS-CM achieved balance for all
matching covariates across all analyses. While LS-PSM
achieved balance of all matching covariates in analyses
with larger sample sizes (e.g., full study population and
10 % subsample groups), the matching technique was
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associated with substantial matching covariate imbalance
in analyses with smaller sample sizes (e.g., the 1 and
0.5 % subsample groups). Furthermore, LS-CM was as-
sociated with improved sample retention across all
analyses with the exception of fine balance within the
study population, which failed to converge to an opti-
mal solution, indicating that the achievement of pre-
specified balance criteria was not mutually exclusive
to superior sample size retention. In the case that LS-
CM fails to converge to a solution, we recommend
the investigator consider loosening the prespecified
balance criteria or implementing post-match statistical
adjustments. Finally, in analyses of smaller sample
sizes, the distribution of matching covariate SMDs
were skewed towards the prespecified balance criteria,
which supports the use of tighter prespecified balance
criteria albeit the potential trade-off in patient reten-
tion should also be considered.
Both candidate covariate imbalance and ESE were

negatively correlated with sample size. As compared
to the pre-match sample, improvements in candidate
covariate balance were achieved with either matching
technique; however, LS-PSM achieved better candi-
date covariate balance in analyses with larger sample
sizes. That being said, it is important to note that
fewer matching covariates were used with LS-CM as
compared to LS-PSM (717 vs. 1,237) in analyses
within the full study population due to memory limi-
tations associated with LS-CM. Similarly, reductions
in residual confounding as indicated by the ESE of
negative control outcome experiments were compar-
able between LS-PSM and LS-CM. A gradual, albeit
non-significant, increase in ESE was observed with
LS-PSM at progressively smaller sample sizes poten-
tially due to limited effective degrees of freedom.
These findings may indicate both matching tech-
niques are comparable in reducing residual confound-
ing stemming from imbalances in unmeasured or
otherwise unadjusted covariates.
Calibrated hazard ratio estimates were similar in

direction and magnitude across all analyses within
the study population indicating ACEI monotherapy
was associated with a significant increase in the risk
of angioedema as compared to thiazide or thiazide-
like monotherapy. However, as compared to LS-
PSM, LS-CM was associated with a slight reduction
in the standard error of estimates. Similar trends
were observed among uncalibrated analyses. These
findings are consistent with those reported de los
Angeles Resa and Zubizarreta, which reported lower
root-mean square errors associated with CM [10].
The increased precision of effect estimates may be
due to the improved sample retention observed with
LS-CM.

Limitations
The current study was subject to limitations. First, due
to memory constraints, the identification of matching
covariates through LASSO regression within the full
study population was limited to covariates with a mini-
mum frequency of 2 % for LS-CM and 0.1 % for LS-
PSM. As such, the performance of LS-CM as compared
to LS-PSM in addressing potential confounding within
studies of large sample sizes may have been underesti-
mated. Nevertheless, this highlights practical limitations
of CM in large-scale studies associated with limitations
in computing power; LS-CM failed to converge due to
memory constraints using a dataset containing approxi-
mately 220 million data points (172,117 observations
and 1,237 matching covariates) but successfully con-
verged using a dataset containing approximately 120 mil-
lion data points (172,117 observations and 717 matching
covariates). These practical limitations may be overcome
with access to more powerful computing resources.
Second, the use of negative control experiments lim-

ited analyses to subsample groups with a pre-match
sample size sufficient to ensure the observation of nega-
tive control outcomes after matching. The current study
addressed this limitation by pooling negative control
outcome effect estimates across multiple sample draws,
enabling the performance of negative control outcome
experiments within subsample group containing as few
as 860 patients prior to matching. Nevertheless, simula-
tion studies may be necessary to explore residual con-
founding at even smaller sample sizes.
Finally, study findings may not be generalizable to

other healthcare datasets. While the current study
compared the performance of LS-PSM and LS-CM at
progressively smaller sample sizes with increasingly
limited covariate overlap, additional simulation studies
may be warranted to increase the generalizability of
results.

Conclusions
The current study compared the performance of LS-
PSM and LS-CM in terms of post-match sample size,
covariate balance and residual confounding. LS-CM
found the largest matched sample meeting prespecified
balance criteria thereby achieving superior sample reten-
tion and, in analyses at smaller sample sizes with in-
creasingly limited covariate overlap, improved matching
covariate balance as compared with LS-PSM. Candidate
covariate balance and residual bias were comparable be-
tween matching techniques. These findings support LS-
CM as an alternative to LS-PSM for causal inference in
observational research with small sample sizes where
limited covariate overlap may result in poor matching
covariate balance or limited patient retention. Further
research is necessary to compare the performance of
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PSM and CM in studies where empirical covariate selec-
tion may not be possible due to limited sample size or
availability of data.
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