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time-to-event end-point
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Abstract

Background: The availability of large epidemiological or clinical data storing biological samples allow to study the
prognostic value of novel biomarkers, but efficient designs are needed to select a subsample on which to measure
them, for parsimony and economical reasons. Two-phase stratified sampling is a flexible approach to perform such
sub-sampling, but literature on stratification variables to be used in the sampling and power evaluation is lacking
especially for survival data.

Methods: We compared the performance of different sampling designs to assess the prognostic value of a new
biomarker on a time-to-event endpoint, applying a Cox model weighted by the inverse of the empirical inclusion
probability.

Results: Our simulation results suggest that case-control stratified (or post stratified) by a surrogate variable of the
marker can yield higher performances than simple random, probability proportional to size, and case-control
sampling. In the presence of high censoring rate, results showed an advantage of nested case-control and counter-
matching designs in term of design effect, although the use of a fixed ratio between cases and controls might be
disadvantageous. On real data on childhood acute lymphoblastic leukemia, we found that optimal sampling using
pilot data is greatly efficient.

Conclusions: Our study suggests that, in our sample, case-control stratified by surrogate and nested case-control
yield estimates and power comparable to estimates obtained in the full cohort while strongly decreasing the
number of patients required. We recommend to plan the sample size and using sampling designs for exploration
of novel biomarker in clinical cohort data.
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Background
In the past decades, there has been a growing number of
epidemiological [1–3] and longitudinal studies storing
biological samples [4] to allow retrospective evaluation
of new research questions, such as evaluating the prog-
nostic value of new biomarkers. This approach is

convenient, as it significantly reduces the time needed
for the study. However, the analysis of novel biomarkers
can be expensive. Sub-sampling strategies result in con-
siderable cost savings and parsimonious use of biological
specimens, by restricting data extraction to an inform-
ative subgroup of the original sample. Unbiased and
more precise results can be obtained if the subgroup is
carefully sampled rather than chosen at random [5, 6].
Two-phase sampling is a general approach to perform

such sub-sampling, including case-control and case-
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cohort designs [7, 8]. This approach considers the entire
cohort as the phase I sample from the population of
interest. In the phase II, subsamples are drawn from the
cohort to measure additional information, such as new
biomarkers of interest [9]. An optimal sampling strategy
was proposed for stratified two-stage studies with binary
outcome, however it needs the availability of pilot data
on the biomarker of interest that are not always avail-
able. Moreover, there is no literature on criteria for the
choice of the stratification variables and on the case of
time-to-event outcome.
The sample size of retrospective studies is often

planned considering budget constrains rather than a
proper evaluation of the statistical power [10], also due
to the lack of methodologies for power calculation in
this setting. Cai and Zeng [11] focused on power in
case–cohort design without any stratification; Haneuse
et al. [12, 13] focused on binary outcomes, but a general
strategy for power evaluation is missing for survival data.
In this study we compared different sampling designs

in the two-phase setting, where the aim is to assess the
prognostic value of a new biomarker on a time-to-event
end-point, and provided a simulation tool to estimate
power. In particular, we focused on the sampling design
of the sub-cohort on which to measure the new bio-
marker. The principal goal was to investigate the per-
formance of different sampling designs and the
contribution of stratification variables available in the
full cohort (e.g. surrogate, risk factor and confounder).
We chose the two-phase setting as a general framework
in which it is possible to include and compare different
types of common designs. We performed a power evalu-
ation varying the sub-cohort sample size. We used real
data from a randomized trial in childhood acute lympho-
blastic leukemia (ALL). Briefly, this study was performed
to evaluate the role of different genetic polymorphisms
on treatment failure due to relapse [14, 15]. Clinical data
and other information were available for the whole trial
cohort and biological samples were stored at diagnosis.
The genetic polymorphisms were retrospectively evalu-
ated on these specimens using a two-phase design.

Methods
Notation settings
A survival analysis notation is used as the focus is on a
time-to-event end-point. Let Ti be the failure time and
Ci the censoring time of subject i (i = 1…N) in a cohort
(phase I) of size N followed-up to time τ. Ti and Ci are
assumed to be independent, T ⊥C, indicating a non-
informative right censoring. Administrative censoring is
set at the end of follow-up time τ. Let hi(t) be the hazard
rate for the i th individual . The hazard function, mod-
elled using the Cox proportional hazards model, is equal
to hi(t) = h0(t) exp(βXi) where h0(t) is the baseline hazard,

Xi the vector of the explanatory variables for individual i
and β ’s the corresponding regression coefficients. The
classical approach for estimating β is to maximize the
partial likelihood [16]. Suppose that the biomarker of
interest, i.e. XBM, is measured only for a subset n < N of
subjects drawn from the phase I data and let ξi indicate
whether subject i is selected into this subset. We will

refer to the n ¼ PN
i¼1ξi subjects as the phase II sample.

this probability is equal for every subject (π = n/N). In a
stratified sampling, the inclusion probability is common
for all subjects in the same stratum and differs between
strata. In particular, it is usually higher for the more in-
formative strata (e.g. strata including subjects with the
event of interest, as in case-control studies).

Simulation context
Phase I sample
To mimic a realistic context, we explore the variables
that well represent the majority of data usually available
in practice, even though in a simplified setting for
simulation.
We hypothesized a cohort of subjects of size N (i.e.

clinical trial cohort, register, clinical cohort) followed up
to time τ, in which we aim to evaluate the prognostic
value of a new biomarker (XBM) on a time-to-event end-
point (T) in the presence of a possible confounder
(XConf), a risk factor (XRisk Fact) and a possible auxiliary/
surrogate variable (XSurr) of the marker of interest. To
describe and illustrate relationships between these, a Di-
rected Acyclic Graph (DAG) was displayed in Fig. 1. In
particular, we assumed the confounder to have an im-
pact on both the biomarker and the event of interest,
the risk factor to be associated only with the event of
interest, and, finally, the surrogate to be associated only
with the biomarker.

Phase II sample
We assumed that the risk factor, the confounder and the
surrogate variables are known for all subjects in the
phase I (N), while the biomarker (XBM) is measured only
on the subset of n individuals (phase II sample).
To sample the subset of subjects from phase I (N), a

stratified two-phase sampling approach was used. Strata
were defined using the following variables: event or
event and risk factor or event and confounder or event
and surrogate.
By note, in this work, we consider only sampling done

at the end of the follow-up (τ) where subjects who devel-
oped the event during the follow-up are defined as cases
and subjects event-free at time τ as controls.

Graziano et al. BMC Medical Research Methodology           (2021) 21:93 Page 2 of 11

Let πi = P(ξi = 1 ∣ Xi, Δi), with = I(T    C ) being the in-,
clusion probability of subject i for the phase II sample, con-
ditional on being selected at phase I. In a simple random sample

Δi i i<



The sample size of the phase II is fixed (n), but the
sampling probabilities depend on different designs, as
described below:

(i) Simple Random Sample (SRS) in which all possible
subsamples have an equal probability to be chosen.

(ii) Probability Proportional to Size (PPS) is referred to
a stratified sample with proportional allocation. The
units are selected with probabilities proportional to
stratum’s size. Thus, the size for each stratum in
the phase II is given by the total size of the stratum
in the original cohort multiplied by n/N [17].

(iii)Case-Control (CC) is performed by separately
sampling cases and controls [18]. As we aimed to
compare different sampling strategies with a fixed
sample size, we did not necessarily select all cases
from the full cohort as often done. We fixed a total
sample size (n) and selected an equal number of
cases (n/2) and controls (n/2). We also considered
stratified CC by using the variables available in
phase I (see Fig. 1): separated simple random
sampling was performed in each stratum. A balance
design was considered [19].

(iv)Nested case-control (NCC) can be considered as a
particular case of case-control designs in which
controls are randomly selected from the set of sub-
jects event-free at the time of event occurrence on
the cases [20–22]. Sampling probabilities for con-
trols were derived by Samuelsen [23], while for
cases they were equal to 1 if the phase II sample
size n was at least twice the total number of events

(v) Counter matching (CM) is an alternative stratified
version of the NCC. In this design, the selection of
controls is conducted by sampling from the set at
risk in the opposite stratum at the time of event on

the case. Inclusion probabilities for controls within
strata were derived by Samuelsen [24] while for
cases, πi was derived as in NCC design. As the aim
is to maximize the “discordance” of exposure within
case-controls sets [25–27], the variables used to de-
fine strata must be a proxy for the variables of
interest, thus we used the surrogate variable XSurr

for this design.

Figure 2 illustrates an example of each sampling de-
sign method described above. Specifically, in the upper
part of the figure we displayed PPS and CC considering
a stratification for a binary variable; in the lower part
NCC and CM designs are displayed. By note, in NCC
and CM designs we considered one control selected for
each case.

Evaluation of biomarker impact on the event
The following Cox model was applied to assess the influ-
ence of the biomarker on hazard of the event adjusting
for the confounder variable XConf (following the minimal
set of adjustment suggested in Fig. 1):

hi tð Þ ¼ h0 tð Þ exp βBMXBMi þ βConf XConf i

� �
ð1Þ

where βBM and βConf represent the regression coefficients
of the biomarker and confounder, respectively. Given
the availability of the biomarker only for the sub-cohort
(phase II), we applied a weighted Cox model, in which
regression coefficients are estimated by maximizing the
partial likelihood weighted by the inverse of the

empirical inclusion probability ( wi ¼ 1
.
πi

) that ac-

counts for the specific sampling design [6, 28, 29]. In
SRS, CC and PPS designs [17, 30] empirical inclusion
probabilities (πi) were calculated using a standard ap-
proach implemented in the “twophase function” in the

Fig. 1 Causal diagram where the variables in the boxes are connected each other through the black arrows, denoting association. The dashed
line box indicates a variable measured only in the sub-cohort
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in the entire cohort (
PN

i¼1ΔiÞ and equal to πi ¼
=ðPN

i¼1ΔiÞ otherwise.

PN
i¼1

Δi ξi



survey package. Instead, πi ’s were calculated follow-
ing Samuelsen [23] for NCC and following Rivera for
CM [25].
As surrogate variables are rarely available for new bio-

markers at the design stage, we considered also a setting
with post-stratification for surrogate variables, mimick-
ing a possible situation in which the surrogate variable is
identified only after sampling, as this might still be ad-
vantageous [31]. In order to estimate this advantage, we
performed a classical CC sampling design and then we
ran a weighted Cox model post-stratifying for the surro-
gate variable [8].

Simulations parameters
The performance of the different designs was investigated
through simulations. The number of simulations needed
to guarantee robust results was calculated following Bur-
ton et al. [32]. It was set at B = 2000 assuming a level of
accuracy equal to 0.0046 and a variance of XBM regression
coefficient estimate equal to 0.011 with a 5% significance
level. To generate the hypothetical cohort described
above, for each scenario we drew B = 2000 random phase
I samples of N = 2000 subjects.

We started by simulating the confounder variable as a
dichotomous variable with P(XConf = 1) = 0.5; the bio-
marker was simulated by a binomial distribution with
P(XBM = 1|XConf) = exp(a + b ∗Xconf)/(1 + exp(a + b ∗Xconf))
resulting in a prevalence in the entire cohort of nearly
25% (a = − 2 an b = 1.7) and ̴ 5% (a = − 4 and b = 1.5) for
common and rare biomarker, respectively. The surrogate/
auxiliary variable, with XBM as gold-standard, was simu-
lated as P(XSurr = 1|XBM) = exp(c + d ∗XBM)/(1 + exp(c + d
∗XBM)). In order to cover different levels of accuracy of
the surrogate in “predicting” the value of the biomarker,
we set different values of parameters c and d (see the Add-
itional file Table S1 for details) resulting in specificity
(P(XSurr = 0|XBM = 0)) and sensitivity (P(XSurr = 1|XBM =
1)) values ranging between 70 to 90%. Finally, an add-
itional binary risk factor XRisk factor was generated with a
probability of P(XRisk factor = 1) = 0.4.
The time-to-event endpoint was generated [32, 33] from

a Weibull hazard model as T ¼ ð−logU=λ expðβ0
XÞÞ

1�
p ,

where p = 0.9, λ =0.1, with U following a uniform distribu-
tion on the interval from 0 to 1 and with the matrix of co-
variates X including the biomarker value (XBM), the risk

Fig. 2 Probability Proportional to size (PPS) and Case-Control (CC) sampling from phase I cohort are shown in the upper part (a), left and right,
respectively. Dots represents individuals in the strata (case or control and strata = 1 or strata = 2). Arrows correspond to the sampling from phase I
to phase II. The number of sampled individuals in each stratum (phase II) depends on the sampling design. Nested Case-Control (NCC) and
Counter-matching (CM) sampling are shown below in the figure (b). The lines represent the follow-up over which individuals are observed and
the solid lines represented the sampled subjects. Black dot symbol represents the occurrence of an event and the arrow indicated the
corresponding sampled control. For NCC, sampling is conducted in the same stratum and for CM, cases are matched with controls from the
opposite stratum
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factor (XRisk Factor) and the confounder (XConf). A random
right censoring time was generated from an exponential
distribution and three different censoring rates were
considered (ρ equal to 0, 0.1, 0.4) to yield 0, 15 and
50% subjects censored at the end of follow-up time τ.
Minimum between time-to-event Ti and censoring Ci

(Zi =min(Ti, Ci)) was calculated, with Δi = I(Ti < Ci).
Administrative censoring was set at τ =2. This setting
resulted in an average of 500 events for each phase I
dataset at the end of follow-up. The values for the re-
gression coefficients (β) and baseline hazard were
chosen to mimic the observed values in ALL data
[15, 34]. Details of all specific parameters were re-
ported in the Additional file Table S1.
The sampling design scheme for the phase II (size n)

was illustrated in the paragraph Phase II Sample in sec-
tion Simulation context. In particular, we performed
SRS, PPS and CC (the last two stratified by event or
event and risk factor or event and confounder or event
and surrogate) and, finally, NCC and CM.
Information on XBM was disregarded for subjects not

included in the phase II sample and a weighted Cox
model was applied to estimate βBM as described in
Evaluation of Biomarker impact on the event section.
The performance of the estimate of βBM over the B

simulations has been assessed by the following mea-
sures [32]:

(i) Bias, given by = β̂BM - βBM , where β̂BM =
PB

i¼1
β̂iBM

B ,
(ii) SEðβ̂BMÞ; the empirical Standard Error (SE) of βBM

over all simulations,
(iii)Design effect, defined as the ratio between the

estimated variance of βBM in each sampling design
by the one in SRS [35],

(iv)Mean Square Error, MSE, given by ðβ̂BM - βBMÞ
2

þðSEðβ̂BMÞÞ2,
(v) Coverage of the 95% confidence interval (CI) of βBM

and 95%CI length,
(vi) Power, number of times in which the null

hypothesis (βBM = 0) was rejected by the Wald test
at 5% significance level in the weighted Cox
regression model.

All analyses were performed using R software (version
3.5.2) [36].

Results
Design comparison
General results considering both a common (~ 25% preva-
lence) and rare biomarker (~ 5% prevalence) are shown in
Table 1a-b, respectively, under three censoring levels (ab-
sent, low and high). Overall, the simulations showed that
the βBM was estimated without any noticeable bias for all

designs. The standardized bias was always lower than 5%

and the distribution of β̂BM was symmetric for all sam-
pling designs (Additional file Figure S1).
As shown in Table 1a, PPS did not show much advan-

tage compared to SRS design. The empirical Standard
Error of SRS and PPS were about the same, indicating
no gain in efficiency. We found a small but not relevant
increase of power in PPS stratified by the surrogate (2c
in Table 1a) compared with traditional PPS.
On the other hand, CC design improved power as

compared with SRS reducing MSE and empirical Stand-
ard Error (for each scenario), with a further advantage
when the surrogate variable was used for stratification
(3c in Table 1a). The stratification for risk factor and
confounder (3a and 3b in Table 1a) showed a slight loss
of efficiency with respect to the classical CC (3 in
Table 1a).
When matching on time, CM presented higher de-

sign effect and smaller confidence intervals with re-
spect to CC stratified by the surrogate for any
censoring rate. The best advantage of NCC and CM
(4 and 5 in Table 1) as compared with CC, PPS, and
SRS, in terms of Mean Square Error, empirical Stand-
ard Error and design effect, was obtained when cen-
soring rate was higher (ρ = 0.4). Among all scenarios,
the CC stratified by the surrogate showed the highest
power. By note, in NCC and CM design, the actual
sample size of the phase II was sligthly lower than
the planned one (expected phase II n = 600, observed
n = 550 and 546 for NCC and CM, respectvely, see
Table 1) due to the possible resampling of controls.
Similar performance results were obtained when a rare

exposure (~ 5%) was considered (Table 1b). In general,
with a rare exposure, performance of NCC and CM, in
term of bias, design effect and width of 95%CI, had an
improvement with increasing censoring rates. The esti-

mate of regression coefficient (β̂BMÞ, width and coverage
of its 95% confidence interval considering common and
rare biomarker are given as Additional file Table S2.
Due to the presence of a slight bias (lower than 5%), the
design effect was also calculated using the Mean Square
Error, MSE [37, 38]. Results (showed in Additional file
Table S4) were consistent.
As sensitivity analysis, we evaluated the performance

of the different designs including in the weighted Cox
model [1] not only the confounder but also the risk fac-
tor and surrogate variable. Results are presented in the
Additional file (Table S3) and are consistent with previ-
ous results. Interestingly, when the weighted Cox model
was adjusted also for the risk factor variable (Table S3a),
XRisk Factor, there was an increase in power for all designs
as compared with results of Table 1a. On the contrary,
when the Cox model was adjusted for all variables
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available in our setting (i.e. confounder, XConf, risk fac-
tor XRisk Factor and surrogate, XSurr, see Table S3b),
power decreased.

Impact of surrogate
In this section, we explore the impact of the accuracy
level of the surrogate variable in the model performance.
As expected, higher sensitivity increased power and de-
sign effect in the CC design stratified by the surrogate
and in the CM design (Fig. 3). The post-stratification for
the surrogate variable only in the analysis stage (surro-
gate not used as strata in the design) showed an advan-
tage both in power and design effect as compared with

CC design and a disadvantage as compared with CC de-
sign stratified by the surrogate. Its performance in-
creased with increasing accuracy.

Power evaluation
In Fig. 4 we have explored the power by the size of the
phase II sample. Up to a phase II sample size of nearly
500 individuals (1/4 of the entire cohort), CM and NCC
were the most powerful designs. For larger sample sizes,
CC stratified for the surrogate was the most powerful
design. By note, both NCC and CM were sampled con-
sidering one control selected for each case and controls
could be resampled, thus the sample size of phase II was

Table 1 Bias, empirical standard error, mean square error, power and design effect of the biomarker regression coefficient estimate (

β̂BM) for the full cohort and different sampling designs. Accuracy of surrogate: sensitivity (i.e. probability of having a positive
surrogate if the biomarker is positive) = 0.7 and specificity (i.e. probability of having a negative surrogate if the biomarker is
negative) = 0.7, biomarker common (a) and rare (b)

Sampling
design

Stratification
variable

n* Bias SE empirical MSE Power (%) Design effect

Censoring rate Censoring rate Censoring rate Censoring rate Censoring rate

0 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4

a)

Full cohort – 2000 0.008 −0.015 0.009 0.093 0.095 0.112 0.009 0.009 0.013 99 97 95 – – –

1. SRS – 600 0.004 −0.013 0.006 0.182 0.187 0.206 0.033 0.035 0.042 64 58 53 – – –

2. PPS Event 599 0.007 −0.015 0.007 0.173 0.180 0.199 0.029 0.033 0.039 65 58 54 1.003 1.003 1.005

2a. PPS Event; Risk factor 598 0.008 −0.016 0.004 0.172 0.175 0.205 0.029 0.031 0.042 65 58 52 1.002 1.003 1.002

2b. PPS Event; Confounder 598 0.003 −0.015 0.002 0.174 0.179 0.203 0.030 0.032 0.041 65 57 51 0.999 1.002 1.000

2c. PPS Event; Surrogate 598 0.007 −0.013 0.013 0.161 0.171 0.190 0.026 0.029 0.036 69 64 57 1.106 1.129 1.104

3. CC Event 600 0.011 −0.008 0.019 0.159 0.158 0.179 0.025 0.025 0.032 74 68 67 1.179 1.219 1.352

3a. CC Event; Risk factor 600 0.010 −0.009 0.008 0.162 0.166 0.182 0.026 0.028 0.033 72 65 62 1.139 1.176 1.307

3b. CC Event; Confounder 600 0.012 −0.015 0.010 0.162 0.161 0.175 0.026 0.026 0.031 73 65 66 1.182 1.187 1.354

3c. CC Event; Surrogate 600 0.008 −0.016 0.012 0.148 0.153 0.170 0.022 0.024 0.029 76 71 69 1.334 1.363 1.495

4. NCC Event 550 0.008 −0.018 0.014 0.169 0.165 0.175 0.029 0.028 0.031 68 63 67 1.066 1.144 1.378

5. CM Event; Surrogate 546 −0.044 −0.058 − 0.009 0.151 0.153 0.165 0.025 0.027 0.027 67 61 67 1.379 1.395 1.536

b)

Full cohort – 2000 −0.028 −0.004 −0.023 0.193 0.199 0.225 0.038 0.039 0.052 52 53 41 – – –

1. SRS – 600 −0.045 − 0.041 −0.093 0.376 0.392 0.802 0.144 0.156 0.652 23 23 19 – – –

2 PPS Event 599 −0.051 −0.023 −0.060 0.380 0.394 0.453 0.147 0.155 0.209 25 24 19 1.079 1.131 1.139

2a. PPS Event; Risk factor 598 −0.048 −0.039 − 0.081 0.372 0.393 0.721 0.141 0.156 0.526 22 24 21 1.085 1.109 1.145

2b. PPS Event; Confounder 598 −0.057 −0.033 −0.059 0.381 0.393 0.453 0.148 0.156 0.209 23 23 20 1.077 1.104 1.140

2c. PPS Event; Surrogate 598 −0.055 −0.022 − 0.073 0.388 0.391 0.597 0.153 0.153 0.362 24 25 19 1.090 1.147 1.158

3. CC Event 600 −0.003 0.021 0.003 0.332 0.339 0.368 0.110 0.116 0.135 24 26 22 1.257 1.317 1.509

3a. CC Event; Risk factor 600 −0.011 0.015 0.006 0.345 0.357 0.384 0.119 0.127 0.148 23 24 21 1.193 1.283 1.418

3b. CC Event; Confounder 600 −0.023 0.024 0.011 0.328 0.344 0.363 0.108 0.119 0.132 23 26 22 1.267 1.329 1.513

3c. CC Event; Surrogate 565 −0.018 0.011 −0.010 0.311 0.313 0.345 0.097 0.098 0.119 26 29 24 1.419 1.607 1.757

4. NCC Event 545 −0.020 0.024 −0.000 0.354 0.355 0.363 0.126 0.127 0.132 21 24 21 1.126 1.222 1.513

5. CM Event; Surrogate 529 −0.057 −0.041 −0.028 0.311 0.315 0.341 0.099 0.101 0.117 26 27 25 1.541 1.679 1.823

Legend: SRS Simple Random Sample, PPS Probability Proportional to size, CC Case-Control, NCC Nested Case-Control, CM Counter-matching; n* mean sample size
of the full cohort (first row) and of the phase II sample
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constrained not to exceed twice the number of events in
the entire cohort (thus it not always reached the planned
sample size n).

Application on the real data
The study that motivated our work was performed to
evaluate the role of different genetic polymorphisms on
treatment failure due to relapse [14, 15] and used data
from a large Italian clinical trial (ClinicalTrials.gov iden-
tifier NCT00613457) [39]. Clinical data and other infor-
mation were available for the whole trial cohort (phase
I) of 1999 consecutive patients newly diagnosed with
childhood acute lymphoblastic leukemia between 2000
and 2006. Biological samples were stored at diagnosis
and were used to measure the genetic polymorphism of
interest (phase II). In the study of Franca et al. [15] the
subsample on which to measure the genetic polymorph-
ism was chosen after classifying patients into six strata
according to the event of interest (relapse/no relapse)
and a three-level risk group stratification defined by
prognostic features in the treatment protocol. Patients
were sampled at random without replacement from each
stratum, according to an optimal sampling strategy [40].
In particular, the sampling fractions for each stratum
were chosen proportionally to the genetic variability

reported within each of the strata to maximize the preci-
sion of the estimate of the genotype effect on the out-
come. Of note, this was possible only due to the
availability of pilot data on the genetic polymorphism of
interest, that actually are not often available.
Overall, out of the 766 children for whom genotyping

was required (approximately 1.5 controls for each case),
the biomarker of interest (GST-θ) was obtained on 601
patients, getting a hazard ratio (HR) of 1.34 (95%CI:
0.90–2.00). By breaking up the variance of the coefficient
of GST-θ into phase I and II contributions, we derived
the efficiency of the design with respect to the expected
one in the full cohort (estimate of the minimum irredu-
cible uncertainty for the cohort) that resulted 54% by
having genotyped 1/3 of the sample. Interestingly, the ef-
ficiency we got was higher than the expected one in any
of the CC designs considered (see Table 2), as computed
by simulations developed in this paper. Thus, the use of
pilot data for an optimal sampling strategy compensated
the lack of a surrogate variable.
Power evaluation was not done in this study at the de-

sign stage, but according to our simulations results (see
Table 2), a sample size of n = 601 subjects would have
reached a power of 55 and 68% to detect an HRBM of 1.3
and 1.5, respectively with a CC design. If CC stratified by

Fig. 3 Power and design effect for different sensitivity levels (i.e. probability of having a positive surrogate if the biomarker is positive) of the
surrogate variable. Scenario: specificity (i.e. probability of having a negative surrogate if the biomarker is negative) =0.7, censoring rate ρ = 0.1,
hazard ratio of biomarker =1.5 and sample size of phase II (n) =600. Legend: CC stra surr (Case-Control stratified by surrogate), CC post surr (Case-
Control post stratified by surrogate), CC event (Case-Control), CM (Counter-Matching) and SRS (simple random sampling)
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surrogate would have been considered, an increase of
power would have been obtained (60 and 71% respectively
for an HRBM of 1.3 and 1.5), but still not reaching a rea-
sonable value (i.e. 80%). This illustrates that being aware
of power in the planning phase is very important.

Discussion
This work underlines the importance of a careful study
design in retrospective studies evaluating a new research

question using available cohort data on which to meas-
ure additional characteristics, such as a new biomarker.
The possibility to sample only a few controls and cases
implies significant savings in cost and time and the
evaluation of time-matching is also an important issue
when the biomarker is affected by storage time or batch
effects. We showed the advantages we can get in terms
of efficiency and power by using available data and the
importance of power evaluation in order to avoid useless

Fig. 4 Power for different sample sizes of phase II (n). Scenario: censoring rate ρ = 0.4, common biomarker (25%), hazard ratio of biomarker = 1.5,
sensitivity (i.e. probability of having a positive surrogate if the biomarker is positive) =0.7 and specificity (i.e. probability of having a negative
surrogate if the biomarker is negative) = 0.7. Legend: CC stra surr (Case-Control stratified by surrogate), CC post surr (Case-Control post stratified
by surrogate), CC event (Case-Control), CM (Counter-Matching) and SRS (simple random sampling)

Table 2 Efficiency (refers to the full cohort), design effect (refers to Simple Random Sampling) and power for SRS and Case-Control
(CC) designs with hypothetical hazard ratio of the biomarker of interest (HRBM) of 1.3 and 1.5, biomarker common (25%), censoring
rate ρ = 0.1, type I error 0.05

SRS Case-control CC stratified by surrogate CC stratified by risk factor

Efficiency

HRBM = 1.3 30.40% 38.91% 43.06% 34.47%

HRBM = 1.5 25.98% 36.26% 38.51% 32.73%

Design effect

HRBM = 1.3 – 1.23 1.37 1.20

HRBM = 1.5 – 1.22 1.36 1.18

Power

HRBM= 1.3 30.91% 54.80% 60.15% 54.34%

HRBM= 1.5 58.35% 68.10% 70.65% 65.40%
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studies. We also provide a tool to compute power by
simulations (see the additional file for the R code).
From the simulation results, we found that the

weighted Cox model provided valid estimates of bio-
marker effect and good coverage probabilities in the
considered designs. The availability of auxiliary/surro-
gate variables of the biomarker of interest in phase I, the
amount of censoring and the prevalence of the
biomarker, together with power considerations could
help researchers to identify the most efficient design. As
expected, CC provided better efficiency with respect to
SRS design, while PPS did not show much advantage [5].
If some covariates are expected to be associated with the
new biomarker, it is advantageous to use them to define
strata in a two-phase design, especially if they have a
good accuracy in predicting its value and when the bio-
marker has low prevalence. Of note, simulation results
showed that using these surrogate variables of the bio-
marker just in the analysis stage (and not as strata in the
design) is also improving efficiency and power. Interest-
ingly, if a variable is associated both with the biomarker
and with the event of interest, such as the “confounder”,
or just with the event of interest, such as the “risk fac-
tor”, using it to define strata did not show any advantage
in power. Nevertheless, the inclusion of the “risk factor”
in the Cox model is beneficial.
In the presence of censoring, sampling designs match-

ing on time (NCC and CM) have shown higher perform-
ance in terms of design effect than CC and CC stratified
by the surrogate designs, respectively. Similar results
were found by Borgan and Olsen, that also suggested to
combine the simple and counter-matching designs (sam-
pling some controls by simple random sampling and
others by stratified random sampling) [41]. Higher de-
sign effect is not always followed by an improvement in
power as the last one depends also on the direction of
bias that actually is favouring the CC design (as shown
in Additional file Table S2). Moreover, matched designs
are constrained to have a fixed integer number for the
case/control ratio and this could result as a disadvantage
in some settings. In the absence of censoring, results
showed that CC is more powerful compared to the all
other designs. Stoer and colleagues found similar results
and called this particular condition as “CC extreme”
design [42], as in this setting controls have the longest
possible follow-up (subjects event-free at the end of
follow-up in the absence of censoring). We also found,
similarly to [22, 26], that CM has a marked efficiency ad-
vantage especially when the biomarker is rare, as surro-
gate information helps in sampling more subjects with
the biomarker.
One limitation of our work is that we have considered

only 1:1 matching ratio, but we did a fair evaluation by
comparing the perfomance of different designs at the

same sample size. Moreover, to emulate the ALL data,
we have considered only a moderate effect of biomarker
positivity on the event and we have assumed time-
constant coefficients. However the general indications
coming from our work are consistent with previous re-
sults across different settings, as well as for different
specifications of the outcome model, as explored with
sensitivity analyses. Moreover, the code developed, avail-
able at https://github.com/Fgraziano?tab=repositories, is
helpful to investigate the power of different sampling de-
signs in various setting.

Conclusions
Summarizing, for efficient selection of the subcohort, we
recommend the use of the information available on the
entire cohort, as suggested in the flowchart of Additional
file Figure S2 in supporting information. If a surrogate
variable of the biomarker of interest is available, we
suggest to use a case-control study stratified by the sur-
rogate variable or a counter-matching design. The latter
choice should be driven by the rate of censoring: if cen-
soring is low we might opt for CC stratified, otherwise
CM is more convenient. If the surrogate variable is not
available, we should consider using CC or NCC as a de-
sign, depending on the censoring rate. As NCC and CM
designs are constrained by a fixed ratio between cases
and controls (1:1, 1:2 …), the overall sampling fraction
with respect to the number of cases should be also con-
sidered together with power evaluation. In fact, if suffi-
cient power would be reached with a phase II sample
size n of nearly all cases plus a number of controls equal
to 1.5 the number of cases, a CC design would be more
convenient with respect to the matched designs. More-
over, we found that optimal sampling strategies using
potentially available pilot data are greatly efficient. Thus,
optimal sampling strategies for survival data would be
very useful together with an user-friendly instrument to
support researchers during the planning phase focusing
on the choice of the stratification variable collected in
phase I.
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length and coverage of CI 95% referred to sampling with n = 600
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Design effect calculated using Mean Square Error refers to the same
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