Cortés Martinez et al. BMC Medical Research Methodology (2021) 21:99 :
https://doi.org/10.1186/512874-021-01286-x B MC M edl{ﬁzltﬁg(sjeo?(;g;

RESEARCH Open Access

Using the geometric average hazard @
ratio in sample size calculation for
time-to-event data with composite

endpoints

Jordi Cortés Martinez'”, Ronald B. Geskus??, KyungMann Kim* and Guadalupe Gémez Melis'

updates

Abstract

Background: Sample size calculation is a key point in the design of a randomized controlled trial. With
time-to-event outcomes, it's often based on the logrank test. We provide a sample size calculation method for a
composite endpoint (CE) based on the geometric average hazard ratio (gAHR) in case the proportional hazards
assumption can be assumed to hold for the components, but not for the CE.

Methods: The required number of events, sample size and power formulae are based on the non-centrality
parameter of the logrank test under the alternative hypothesis which is a function of the gAHR. We use the web
platform, CompARE, for the sample size computations. A simulation study evaluates the empirical power of the
logrank test for the CE based on the sample size in terms of the gAHR. We consider different values of the component
hazard ratios, the probabilities of observing the events in the control group and the degrees of association between
the components. We illustrate the sample size computations using two published randomized controlled trials. Their
primary CEs are, respectively, progression-free survival (time to progression of disease or death) and the composite of
bacteriologically confirmed treatment failure or Staphylococcus aureus related death by 12 weeks.

Results: For a target power of 0.80, the simulation study provided mean (4 SE) empirical powers equal to 0.799
(£0.004) and 0.798 (+0.004) in the exponential and non-exponential settings, respectively. The power was attained in
more than 95% of the simulated scenarios and was always above 0.78, regardless of compliance with the
proportional-hazard assumption.

Conclusions: The geometric average hazard ratio as an effect measure for a composite endpoint has a meaningful
interpretation in the case of non-proportional hazards. Furthermore it is the natural effect measure when using the
logrank test to compare the hazard rates of two groups and should be used instead of the standard hazard ratio.

Keywords: Treatment Effect, Composite endpoint, Randomized Controlled Trial, Progression-Free Survival,
Simulation, Copula, Non-Proportional Hazards

*Correspondence: jordi.cortes-martinez@upc.edu

' Department of Statistics and Operations Research, Universitat Politécnica de
Catalunya, Jordi Girona, 31, 08034 Barcelona, Spain

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01286-x&domain=pdf
mailto: jordi.cortes-martinez@upc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cortés Martinez et al. BMIC Medical Research Methodology

Background

Composite endpoints (CEs), defined as the union of sev-
eral outcomes, are extensively used as a primary endpoint
when designing a clinical trial. In time-to-event studies,
CE refers to the elapsed time from randomization to the
earliest observation among its components. It is common
in oncology trials to use progression-free survival (PES)
as a primary endpoint: this outcome is defined as the
time elapsed from randomization to tumor progression or
death from any cause, whichever occurs first [1]. In car-
diovascular trials, major adverse cardiac event (MACE) is
generally defined as a composite endpoint of time to car-
diovascular death, myocardial infarction, stroke and target
vessel revascularization [2]. Composite endpoints are as
well often used for infectious diseases. In the ARREST
trial [3], the primary endpoint was the time to bacterio-
logically confirmed treatment failure, disease recurrence
or death.

In randomized controlled trials (RCTs), to assess the
efficacy of an intervention on a time-to-event endpoint,
the hazard ratio (HR) is routinely used. Design and anal-
ysis in most RCTs are based on the proportional hazards
model, even when this proportionality is not met. Royston
et al. [4] explored 55 comparisons in 50 published RCT
and found evidence of non-PH at the 0.10 level almost
in 1 out of 3 comparisons (31%) that had assumed pro-
portional hazards for the sample size calculations. This is
often the case in RCT with a CE even if the proportionality
assumption holds for each component endpoint.

The conventional formulae for the required number of
events with regard to the defined primary endpoint in
time-to-event studies depends, given the specified sig-
nificance level and power, on a single treatment effect
summarized by the hazard ratio anticipated under the
alternative hypothesis. The number of patients that have
to be recruited to observe the calculated number of events
depends on, among others, the probability of observing
the event during the follow-up. In the context of a trial
with a CE, if these formulae are to be used, it is necessary
to decide on a summary for the hazard ratio of the CE,
HR, ().

Different summaries for HR, (¢) have been put forward
such as the average hazard ratio (AHR) proposed by
Kalbfleisch and Prentice [5], and the geometric average
hazard ratio (gAHR). Schemper et al. [6] compares these
average hazard ratios, and explores weighted versions of
AHR and gAHR. While under proportional hazards all def-
initions lead to the same values, under non-proportional
hazards both the unweighted and the weighted versions of
AHR and gAHR are close to each other except when the
hazards cross. We emphasize here the use of the gAHR
as it nicely connects with the logrank test, as opposed
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to the AHR. Our paper has some analogy with Rauch et
al’s work [7], who provide guidance on the practical use
of the average hazard ratio introduced by Kalbfleisch and
Prentice [5].

This paper focuses on the sample size calculation for
a clinical trial with a primary composite endpoint. We
start by introducing the notation, some of the assumptions
and definitions. Next, the logrank test and the noncen-
trality parameter is set forth and based on the connec-
tion between the two, the number of events and sample
size formulae for a two-sample problem based on a two-
component composite endpoint (CE) are provided. Fol-
lowing this, software CompARE (https://cinna.upc.edu/
CompARETimeToEvent/) is introduced and we show how
to use it to design trials with composite endpoints in the
setting in which each composite endpoint approximately
satisfies the proportionality hazard assumption. Its appli-
cation is illustrated by means of two real RCTs, ZODIAC
and ARREST. Then, the results of a simulation study of
the empirical power based on the sample size formula pre-
viously derived are shown. These simulations are run for
several scenarios including different values of the compo-
nent cause-specific hazard ratios, a wide range of proba-
bilities of observing the events in the control group and
different degrees of association between the components.
We conclude the paper with a discussion.

Methods

Geometric average hazard ratio

In such an RCT, individuals are followed until the event
of interest (£; or &), the end of the study or censor-
ing due to random loss to follow-up. For each group g
(g = 0,1) we denote by Tl(g) and Tég) the times to &;

and &, respectively, and by T,ig) the time to the occur-
rence of &,, i.e., the earlier occurrence of £ or &. We
are in this case dealing with a competing risk situa-
tion for which several approaches are possible, one well
known alternative being the Fine and Gray model. How-
ever, we have chosen to model the cause-specific hazards
because it can be accomplished with standard meth-
ods for single types of events by treating all competing
events as right censored at the time the competing event
occurs [8]. In addition, most often the cause-specific haz-
ard is reported from previous studies that provide the
basis for the assumed effect size If we view the events
&1 and & as the two causes of the composite event

&« then for g = 0,1, the cause-specific hazard rates,

k(gi (¢) and )\g(t), the all-cause hazard rate correspond-

ing to the hazard of the composite endpoint T,Eg), )ngg)(t),

and the survival function of Tig) , Sf;g)(t), are expressed,
respectively, as
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Denote by HRi(¢) (k = 1,2) the cause-specific hazard
ratios, that is, the hazard ratios of the individual com-
ponents, and by HR,(¢) the all-cause hazard ratio of the
composite endpoint T,Eg).

Define the geometric average hazard ratio, gAHR, as the
exponentiated mean of the logarithm of the hazard ratio,
that is,

gAHR = exp {E(log HR.(T))} (1)

where the expectation is taken with respect to a given
event-time distribution, which in this case is the average
distribution of Tio) and T,El) (see Eq. 2 below). Although
HR,(t) is expected to change over time, gAHR is inde-
pendent of time, keeps its interpretability under non pro-
portional hazards and, as we will see in “Logrank test for
the composite endpoint 7,” section, is the natural effect
measure when using the logrank test.

Because within a clinical trial there is a maximum
follow-up time, say 7, only a restricted version of the geo-
metric average hazard ratio can be consistently estimated.
Define the truncated geometric average hazard ratio at
time 7, gAHR(7) as

AW | @
R — o [T log MOQS D ()dt
JE D @ar
T log 4 R ® (@
o log o (t)dt
= exp 7 )
Px ()

(0) ) —i—f(l)(t))/Z is the average of the
density functions of Tio) and Til), (g)(t) = 3 (g) (2)
is the density function of T(g) (¢ = 0,1) and p(“)(r) =
fo @ (tdt = (O)(t) + p(l)(t))/Z is the average prob-
ablhty of experiencing the event &, over both groups by
time 7.

The geometric average hazard ratio and the all-cause
hazard ratios take identical values under proportional-
ity of the all-cause hazard rates, that is, if HR.(t) =
k(l)(t)/)»(o)(t) = hfor0 < t < t, then gAHR(7) =
HR,(t) = h,for0 < t < .

where f; @ ) =
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Logrank test for the composite endpoint T,
The hypothesis of no treatment difference when we are
using the composite endpoint T is stated in terms of the
all-cause hazard rates for T, that is, Hj: )»io)(~) = )»il)(~).
The standard approach to assess the above comparison
is the logrank test. Assume that we have # patients, with
n©® = (1—m)-nallocated to treatment group 0 and nH =
7 - n to group 1, where 7 is the proportion of individu-
als allocated to group 1. Denoting by d, the total number
of patients from both groups who have experienced event
Ex (either & or &), say at times ¢; (i = 1,--- ,dy) and by
R@(t;) the number of individuals at risk at time ¢ from
group g (g = 0,1), the logrank test statistic Z, can be
expressed as

R (t))

dy . o
B hayast (l{event at time ¢; is in group 1} — OIS ITS)

T \/Z “ROORD ()
=1 (RO () +RD ()
(3)

and one rejects Hj when |Z,| is large.

The large sample behaviour of Z, is studied by Schoen-
feld [9] who shows that Z,, under the null hypothesis of
equality of the survival distributions in the two groups,
is asymptotically normal with mean 0 and unit variance.
Since for any fixed alternative to Hj, the power of Z, will
typically go to 1 as n — 00, the large sample behaviour
of Z, when Hj does not hold is studied for a sequence
of contiguous alternatives to H; which approach H; as
n — oo. That is, we view )Lfko)(~) as fixed, let )Lf,})(~) vary
with # and define the sequence of contiguous alternatives
to Hj as H, : )»S,),(t) = 2 O()ee®/v/n, stating that for
any finite #, the two groups have a log hazard ratio at
time ¢ equal to g(¢)/+/7. Under these conditions Z, is also
approximately unit-variance normal, but with a non-zero
mean that depends on the survival and censoring distri-
butions in the two groups, and the proportion of subjects
that are in each group. The asymptotic theory behind
these results is analogous to what is done when studying
the large-sample properties of likelihood-based tests in
more standard settings (where there is no censoring). The
reader is referred to Section 3.3 in Lehmann [10] for addi-
tional technical details about the contiguous alternative
hypotheses.

Under any form of g(¢), even constant, Gémez and
Lagakos [11] applied this result for a composite endpoint
under the assumption of non-informative censoring. They
showed that for a sufficiently large time, 7, the noncentral-
ity parameter u. is, approximately, as follows

V(T =) [y log { i’(*o’)‘(t)} O )t

VP ()

(4)

mx(T) =
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where *(0) (¢) is the marginal density function for Tio).

This allows evaluation of the behaviour of the logrank
test under alternatives where the hazard functions for the
two groups are non-proportional, as is the case in the
composite endpoints situation that we are dealing with.
Furthermore, if we replace f*(o) (t) by the average of the
density functions of Tio) and Til), *(“) (), which triv-
ially equals to f*(o) (t) under H, the expression (4) for the
noncentrality parameter, becomes

V(1 —7) [ log { Ail)(”} 9 (t)dt

0
W)

VPP @)

or equivalently, using the expression for gAHR(7) in (2),

(1) = \/nr(1 — m)pl? (v) log(gAHR (7)), (6)

showing that it depends on the geometric average haz-
ard ratio without relying either on the proportionality of
the cause-specific hazard rates or on the all-cause hazard
rates.

(5)

mx(T) =

Sample size estimation

Assume that you are planning a RCT based on a compos-
ite endpoint as the primary endpoint, that you are basing
the comparison between the two groups on the logrank
test statistic Z, given in (3) and that the geometric average
hazard ratio is used as a measure of the treatment effect.
From now on, the focus is to claim superiority of the new
therapy (g = 1), hence, the logrank test statistic Z, given
in (3) will be used and the null hypothesis will be rejected
for a one-sided « significance level whenever Z, < —z4
where z, is the ¢-quantile of the standard normal distri-
bution, noting that negative values of Z, favor the new
therapy.

The asymptotic results in previous subsection may be
applied to a fixed sample size # and a fixed alternative,
hence the expression (6) of 1.(7) can be used to plan the
size, power and the duration of a study. Using that Z,,, fol-
lows a normal distribution with mean i, (7) and variance
1, the power 1 — 8 is such that

1— B = Prob{Z, < —z,}, (7)

it follows from (7) that —z4 — u«(7) = —z1_8 = 25 =
(1) = — (2o + 2), and equating with (6) we have

114(t) =/ nr (1 — m)pi® (1) log(gAHR(7)) = — (2o + 2p)-
(8)

The total sample size for both groups is therefore as
follows:

2
"y (zo +2) ©)

71— m)pi (v) (log(@AHR(1))”
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and the expected number of CE events e, = n -p,(f)(t) is
given by

2
o — (zo + 2) (10)

(1 — ) (log(gAHR(7))

In the special case of equal sample sizes (7 = 0.5), (9) and
(10) become, respectively,

2
n = (ﬂ) 4'(Za + Zﬂ) 5 (11)
P (1) (log(@AHR(7))
2
4(zy +28) (12)

"7 (log(eAHR(r))

To obtain expression (12) from expression (11) (or vice
versa), the same follow-up period (7) had to be assumed
for all study participants, regardless of how recruitment
was carried out. Although we consider this to be a com-
mon approach in clinical trials, it is not the only one.
Another option would be for recruitment to take place
over a certain duration and for subsequent follow-up to be
done up to a fixed point in time. These and other strategies
are well explained in Chapter 8 of the book of Friedman
et al. [12]. Nevertheless, the key point is in the estimation
of the number required of events because that is where
a difference may be compared to other methods. Once
the number of events required is estimated, the effect of
the recruitment rate or the presence of different follow-
up periods on sample size calculation — i.e. the number
of patients required — would be the same across differ-
ent methods. There are several references that deal with
this issue. The article of Lachin et al. [13] shows how to
go from the number of events to the number of patients
under situations where patients enter the trial in a nonuni-
form manner over time or patients may exit from the
trial due to loss to follow-up. Besides, Bernstein et al. [14]
provide a routine in Fortran to estimate the probabilities
of observing the event from the parameters referring to
recruitment and follow-up times.

Observe that, formula (12) corresponds to George and
Desu’s formula [15] (known these days as Schoenfeld’s for-
mula [9]) for the required number of events if the hazard
ratio is substituted by the geometric average hazard ratio.
The main difference lies, however, in that while in Schoen-
feld’s formula you are assuming that the hazard rates are
proportional when dealing with a composite endpoint the
all-cause hazard rates do not have to be proportional.
However, to be able to compute the gAHR(7) you need
extra distributional assumptions that are described in the
next section.

CompARE: a software application to design trials with
composite endpoints

We introduce here the web-based application CompARE
(https://cinna.upc.edu/CompARETimeToEvent/) that will
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be used for the sample size computations. CompARE is
a website specifically created to design clinical trials with
composite endpoints. From input parameters such as the
cause-specific hazard ratios, the probabilities of observ-
ing each event, the shape parameters of the distributions
of the time to each component (assumed Weibull) and the
correlation between marginal distributions, CompARE
computes and plots, among others, the hazard ratio along
time, HR,(t), summaries such as the geometric average
hazard ratio, gAHR(7), and the restricted mean survival
time, RMST (7), and calculates the sample size for a given
significance level and power.

CompARE has been built for balanced designs (equal
sample size in both groups) and depends on anticipated
values provided by the users. In particular, in order to
compute the required sample size by means of (11) we
need to compute gAHR(t) and pf,f’)(r) and to do so we
have to make distributional assumptions and provide the
values of several parameters. Specifically we need, for each
group (g = 0,1), the distribution of the composite end-
point Tf:g) = min{Tl(g), T2(g)}, which is derived from the
joint distribution between Tl(g) and Tz(g). In what follows
we itemize the elements implemented in CompARE for a
full characterization of the joint distribution.

1 The joint distribution between T{g) and Tz(g) is
modeled through a copula. The copula binds the
marginal distributions of Tl(g) and Tz(g) through an
association parameter. CompARE can use several
copulas, but in this work we use Archimedean
copulas by Frank, Clayton, and Gumbel (see [16]) as
the more appropriate for modeling event-time data,
providing different dependence characteristics.The
measure of association between Tl(g) and Tég) is
given by Spearman’s rank correlation coefficient p or
Kendall’s t. We assume that these measures of
association are the same in both groups. If C(u, v; 0)
denotes the chosen copula and 6 is the association
parameter, T and p are defined as follows:

1 pl
0 12/ / [C(u,v;0) — uv] dudv (13)
o Jo

1 pl
T = 4/ / C(u,v;0)dC(u,v;0) — 1
o Jo

2 The marginal laws for T,Eg) (g=0,1k=1,2)are
from the Weibull family of distributions. The Weibull
law depends on a scale and a shape parameter. It has
been chosen because it is flexible enough to represent
different life-time data scenarios, allowing increasing,
constant (exponential model) and decreasing hazard
functions, although would not be valid for non-
monotonous hazard functions. Furthermore Weibull
distributions for both groups result in proportional
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hazards if they share the same shape parameter. The
exponential law, which is often the preferred choice
for sample size calculations, is a special case when
the shape parameter equals to 1. While the shape
parameters (81, B2) of the Weibull distributions are
given as inputs by the researcher, the scale

parameters (bio), b;o), bil), bgl)) are determined via:

(a) The probabilities p§0) = pgo)(r) and

p§0) = p(zo)(t) of observing endpoints TI(O)
and Téo). They are defined, taking into

account the competing risk setting, as
p§0) = Prob {T{O) <7, TI(O) < TZ(O)} and

p§0) = Prob {TZ(O) <7, TZ(O) < TI(O)} based on

the joint distribution of ng) and Tz(g), which
has been modeled through the copula

C(u,v; 0) explained in item 1. In those cases
when &, (analogously for £1) does not
represent a fatal event, then we can observe
all the occurrences of £1 and define

pio) = Prob{Tl(O) < t}. The scale parameters
in the reference group (g = 0) are function of
the joint density f((lo)z) (+,-;0) and are computed
as the solution of the following equations:

T T
p§0) :/0 (/ f((f)Z)(u, v;@)dv) du (14)
u

T T
o0 = /0 ( / £ v;@)du) dv
v

(b) The cause-specific hazard rates )L(g () and
)\g(t) (g =0,1) for & and &, respectively.
We assume that treatment groups have
proportional cause-specific hazard rates for
each component and denote by HR; and HR;
the respective cause-specific hazard ratios,

that is,
HR; = A8 0/aQ @) forall ¢ <t (15)
)

HRy = A8 0/A9@) forall ¢ <z

Without loss of generality assume that both
events &1 and &, are undesirable and that the
new therapy is expected to reduce the risk of
both events, that is, HRy < 1, k = 1,2. The
proportionality of the cause-specific hazard
ratios HR; and HR; allows us to compute the
scale parameters in the new therapy group
(g=1). For more details, the reader is refered
to the supplementary material in Gémez and
Lagakos [11] for the relationship between the

scale parameters with (p{”, 5 ) and
(HR17 HRZ).
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In many phase III RCTs the results from earlier tri-
als provide the rationale for the further assessment of
the intervention, and could be used for the sample size
calculation. In other situations, similar clinical trials or
observational studies could be used. However, as in most
sample size settings, obtaining the required parameters
is not straightforward and the resulting sample size may
depend heavily on the appropriate choice of those. In the
composite endpoint setting the choice of the copula and
the association between the marginals adds complexity.
Since CompARE allows the users to compute the sample
size under different scenarios, the influence on the sam-
ple size of the different choices can be studied, providing
a basis for a more informed decision.

Results

Case studies

The ZODIAC trial

We illustrate the technique for sample size determination
using the ZODIAC trial [17]. The trial compared the effi-
cacy of vandetanib plus docetaxel versus placebo plus doc-
etaxel as second-line treatment in patients with advanced
non-small-cell lung cancer. The co-primary endpoints of
this trial were overall survival (OS) and progression free
survival (PFS), defined as the absence of death and disease
progression (DP).

A total of 1,176 events (both groups) were determined
to be necessary to detect at least a 20% reduction (HR <
0.8) on PFS treatment effect using a two-tailed logrank
test with 0.90 power and 0.0242 level of significance (they
adjusted for multiplicity to simultaneously assess both co-
primary endpoints). They enrolled 1,391 patients which
were followed between 3 to 24 months. The trial was con-
ducted between May 2006 and April 2008 and, at the end
of the study, the reported cause-specific HRs for each
component were 0.91 (OS) and 0.77 (time to progression,
TTP) and the estimated HR of the composite endpoint,
PES, was 0.79. The probabilities of observing DP or deaths
(accounting for those subsequent to the DP) were, respec-
tively, 0.74 and 0.59. They concluded that vandetanib in
combination with docetaxel significantly improves PFS
compared with placebo plus docetaxel.
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Assume that a future trial for advanced non-small-cell
lung cancer is to be conducted using PES as the compos-
ite primary endpoint and aiming to prove the effect of
an intervention on the PFS through the geometric haz-
ard ratio gAHR. We can use the abovementioned reported
values in the ZODIAC trial as our anticipated parame-
ters, allow for different magnitudes for the association
between death and TTP and for different patterns (con-
stant, decreasing or increasing) for the cause-specific haz-
ard rates. A total of 5 scenarios have been considered. In
all but the first, a moderate correlation has been assumed
(Spearman’s p = 0.5). The first two scenarios follow the
classic assumption in sample size calculations of exponen-
tiality (Weibull shape parameters 81 = By = 1), the first
assuming weak correlation between OS and TTP (Spear-
man’s p = 0.1). Scenarios 3 and 4 assume exponentiality
(B1 = 1) for OS but increasing (82 = 2) and decreasing
(B2 = 0.5) hazard rates over time for TTD, respectively.
Scenario 5 assumes increasing hazard rate (8; = 2) for OS
and decreasing (82 = 0.5) for TTP. Scale parameters were
worked out from the reported cause specific hazard ratios
and the probabilities of observing DP (pgo) = 0.74) and

death (p§0) = 0.59, including those after DP) (see item 2a
in previous section). Based on ZODIACs trial follow-up,
we set a fixed T = 24 months.

Table 1 summarizes the results for the 5 scenarios.
CompARE provided the geometric average hazard ratio
evaluated at 24 months, gAHR(24), the required number
of events to achieve 90% power using Eq. 12, the prob-
ability of observing the composite event in either group,
pfk“) and the corresponding sample size using Eq. 11. The
empirical power with this sample size was obtained via
simulation with 10,000 runs.

The geometric average hazard ratio evaluated at 24
months, gAHR(24), slightly changes among scenarios,
ranging from 0.803 to 0.825, and is close both to the
reported point estimate of PFS hazard ratio (0.79) and to
the PFS hazard ratio used in the sample size calculation
(0.80). These small differences in the effect measure cause
a reduction of 305 events when going from Scenario 5
to Scenario 3. This reduction together with a very large
probability of observing the composite event in Scenario 3

Table 1 Summary characteristics of the five scenarios considered to emulate the ZODIAC trial

(a)

B B2 p gAHR(24) Events P N Emp. Power
Scenario 1 1 1 0.1 0.808 1,106 0.952 1,162 0.894
Scenario 2 1 1 0.5 0.816 1,208 0.900 1,344 0.898
Scenario 3 1 2 0.5 0.803 1,044 0.981 1,066 0.896
Scenario 4 1 0.5 0.5 0.823 1,313 0.842 1,560 0.895
Scenario 5 2 0.5 0.5 0.825 1,349 0814 1,658 0.902

(@),

gAHR(24): geometric Average Hazard Ratio at 24 months; py™: Probability of observing composite event in either group; N: Sample size (both groups combined) rounded to

an even number
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implies almost 600 fewer patients in the total sample size
for this scenario.

We can also observe that the monotonicity pattern of
the cause-specific hazard rates, determined by the shape
parameters 8, has an important influence on the proba-
bility of observing the composite event and, consequently,
on the sample size. Finally, the degree of association has
as well some impact on the required number of events.
For instance, when comparing Scenarios 1 and 2, we need
102 extra events in the later due to a higher association
between OS and TTP.

After running simulations with these scenarios, the
obtained empirical powers were very close to the target
power (0.9) and they do not seem to be influenced nei-
ther by different hazard behaviors nor by the association
magnitude. We conducted simulations under other set-
tings (not shown) with other possible combinations of 8;
and B> (B; € {0.5,1,2}) and for a wide spectrum of correla-
tions (p € {0.1,0.3,0.5,0.8}) and the minimum empirical
power achieved was 0.893.

Finally, we explored the influence that different marginal
hazard rate patterns could have on the behaviour of the
PES hazard ratio, HR,(¢), and Fig. 1, reproduced with
CompARE, depicts them. While in the first two scenarios,
where both components are exponentially distributed,
HR,(t) does not vary much over time and a summary
measure such as the hazard ratio could capture well
enough the effect of the intervention, in the remainder
three scenarios HR,(¢) could vary between 0.77 and 0.90.
The first 3 scenarios would correspond to interventions
with a decrease in hazard ratio over time, while in the
last two, the efficacy would be greater at the beginning
of the follow-up. These graphs show the relevance of the
behavior of the hazard rates in the evolution of treatment
efficacy over time.

The ARREST trial
The ARREST trial [3] was the first large randomized
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clinical trial of antibiotic therapy in patients with Staphy-
lococcus aureus (SA) bloodstream infection. It tested the
hypothesis that adjunctive rifampicin improves disease
outcome. The study was designed with a composite pri-
mary outcome: bacteriologically confirmed treatment fail-
ure or disease recurrence or death by week 12.

Assuming 0.80 power and a two-sided test with size
a = 0.05, 770 participants were needed to detect a 30%
relative reduction (from 35% to 25%) in the composite pri-
mary endpoint. In addition, a decrement in the percentage
of deaths from 16 to 9% was anticipated. A 10% and 4%
losses to follow-up were assumed in each component,
respectively. No differences were found in the primary
composite endpoint, HR, = 0.96 (95% CI, from 0.68 to
1.35). The HR for overall survival was HRps = 1.10 (95%
CI, from 0.76 to 1.60), leading to a point estimate of the
overall survival treatment effect in the opposite direction
than the one expected.

This new case study has interest on its own because
of the following differences with the ZODIAC trial. First,
the ARREST trial includes three outcomes and shows that
having more than two outcomes of interest does not limit
our methodology. In this case we can combine several
outcomes into a single component, as long as we can
anticipate the parameters required in the calculation of
the sample size for such components and the new HR
is reasonably constant. Second, there is a huge differ-
ence in the proportion of events; while in the ZODIAC
trial, more than 50% of the patients suffered any event,
in the ARREST trial, none of the involved events was
present in more than 15% of the patients. Third, since we
have had access to the ARREST raw data, this illustration
shows how a previous study might help to set the input
parameters for the sample size calculation.

Suppose we want to carry out a new RCT to show
the efficacy of adjunctive rifampicin in reducing bacte-
riologically confirmed treatment failure, disease recur-
rence or death by week 12. These three outcomes will be

Scenario 1 Scenario 2
0.90-

0.85-

0.80-

gAHR

0.75-

0.70'I |

0 6 12 18 240 6 12

Scenario 3

18 240 6
Time (months)

Scenario 4 Scenario 5

12 18 240 6 12 18 240 6 12 18 24

Fig. 1 ZODIAC trial. HR,(t) over time in 5 plausible scenarios for the ZODIAC trial: 1) weak correlation (p = 0.1) and constant hazards for OS and TTP;
The remaining scenarios have moderate correlation (p = 0.5) but with different hazard behavior for OS and TTP: 2) both constant (OS and TTP); 3)
constant (OS) and increasing (TTP); 4) constant (OS) and decreasing (TTP); and 5) increasing (OS) and decreasing (TTP)
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considered and their composite will be chosen as the pri-
mary endpoint. Overall survival is our first component,
while non-fatal events (bacteriologically confirmed treat-
ment failure or disease recurrence) will conform the sec-
ond component, which in fact is the most relevant because
it more closely reflects the treatment effect. Only for the
purpose of this illustration, we are assuming a weak ben-
eficial treatment effect on the all-cause mortality (HR; =
0.95) and a large effect on the bacteriologically confirmed
treatment failure or disease recurrence (HR, = 0.35).
The probabilities of observing each component event in
the control group were 0.14 and 0.05 for fatal and non-
fatal events, respectively. In the competing-risks setting,
like this one, marginal time-to-event distributions are not
directly estimable from the raw data [18]. However, at the
design stage, we have to anticipate the shape parameters.
On one hand, the OS shape parameter can be estimated
because we have the information on all deaths (before
and after the non-fatal events), obtaining ﬂfo) = 0.7. We
are aware that when considering deaths after PD, we are
not dealing with the marginal distribution in a context of
competing risks, but we consider this a good approxima-
tion. For the non-fatal events, and since we have partial
information from the trial, we have computed the shape
parameter /550) for different potential scenarios, obtaining
values that range from 0.9 to 2.7. These different values
lead to sample sizes ranging from 3,136 to 3,350. Only
for the purpose of this illustration, we have assumed that
the non-fatal events are precisely those that have been
observed and in this case, éo) = 0.91 was obtained.

We will assume that the correlation between the
marginal distributions of fatal and non-fatal time to events
is weak (p = 0.1). Table 2 shows the assumed parame-
ters, together with the number of events and sample size
required, the probability of observing the composite event
and the empirical power.

Some meaningful conclusions emerge from Table 2.
First of all, the number of patients required taking into
account an expected 10% follow-up losses would be 3,598
(= 3,238/0.90) patients. This is a clearly higher num-
ber of patients than planned in the ARREST trial (n =
770). This is mainly due to the fact that the ARREST trial
protocol anticipated a much greater treatment effect on
OS (going from a proportion of 16% to 9% is equivalent
to a relative risk of 0.56) when in fact it resulted in a
HRps = 1.10, and this why we are considering HR; =

Table 2 Summary of the scenario considered for the ARREST trial
based on estimations from the raw data

B1 B2 p gAHR(12)
070 091 0.1 0.788 555

(a) N

Events p, Emp. Power

0171 3,238 0.805

gAHR(12): geometric Average Hazard Rat\'o;pi“): Probability of observing

composite event; N: Sample size rounded to an even number
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0.95 for OS. This almost negligible effect on OS together
with the highest probability of observing OS causes the
treatment effect on the other component to be blurred
in the composite endpoint and results in a huge sample
size. In this sense, a trial that deals with the most rel-
evant component (bacteriologically confirmed treatment
failure or disease recurrence) as primary endpoint would
only require observing 29 events for a HR = 0.35 and,
assuming that mortality is independent of treatment fail-
ure or disease recurrence and that the event was observed
in a proportion of patients equal to 0.05, it would involve
570 patients. Regarding the main objective of our work,
the empirical power considerably trap the target power of
0.80.

CompARE can be used to plot the HR,(¢) for the con-
sidered scenario. Figure 2 represents the all-cause HR over
time based on estimated parameters from the raw data. It
is reasonably constant with a value slightly around to 0.80
for almost all the follow-up except for the earlier times.
So, a summary measure such as gAHR could serve to
describe the hazard ratio and its estimated value gAHR =
0.788 would be used in the design stage of a new study to
calculate the needed sample size.

Simulation studies
Simulation settings
The aim of the simulation study is to evaluate if the pro-
posed method for calculating the sample size reaches the
desired empirical power under different scenarios. Fur-
thermore, we compare the proposed method to the naive
method resulting from averaging the HRs of the compo-
nents. This measure would be very likely the choice of a
trialist in the absence of further information. From now
on, we will call this new measure the naive HR (nHR) and
the method associated the naive method.

We have chosen scenarios that represent realistic situa-

tions when designing an RCT [11]. The probabilities p§0)

and péo) of observing each event in the control group have
been taken between 0.1 and 0.5; the cause-specific hazard
ratios HR; and HRy of each component from 0.6 to 0.9;
the times until the events for each component (&, k =
1,2) have been modeled according to Weibull distribu-
tions with constant (8x = 1), decreasing (8¢ = 0.5) or
increasing hazards (B¢ = 2); and the correlations between
these times have been selected from low to moderately-
high (from p = 0.1 to p = 0.5). In addition, three different
copulas (Frank, Clayton and Gumbel) were implemented
to model the joint distribution. For simplicity, and with-
out loss of generality, we have scaled the problem to a unit
time of follow-up (r = 1).

We have considered two different settings. Setting 1
TI(O), T2(0)> are
exponentially distributed, while Setting 2 (3,240 scena-

(405 scenarios) assumes that the times (
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Fig. 2 ARREST trial. HR, (t) over time in the assumed scenario of the ARREST trial

rios) considers (Tfo), T2(0)) Weibull distributed. Scenar-

ios with observed proportions p§0) = pgo) = 0.5 are not

realistic since they represent scenarios without censoring
and have not been considered (See Table 3). Frank’s copula
has been chosen to bind (Tl(o), Tz(o) ) in all the scenarios of
both settings to compute the empirical powers. In order to
assess the relevance of the copula’s choice on the results,
the gAHR has been calculated in all the scenarios of both
settings and through 3 different copulas (Frank, Clayton
and Gumbel).

Simulation procedure
We ran 10,000 iterations for each scenario described in
Table 3.

The empirical power of one-sided logrank test for the
composite endpoint is computed using a statistical signifi-
cance of @ = 0.025. Given Frank’s copula and a set of input
parameters (81, B, p§0), pgl), HR1, HR», p), the simulation
was conducted following the next steps:

1. Parameter of the copula. The copula parameter, 6,
which defines the association between both
components is calculated from the Spearman’s
correlation coefficient, p. The relationship between
these parameters is one-to-one and given in (13).

2. Scale parameters. Based on Egs. 14 and (15), we can
numerically obtain the scale parameters of the

Weibull marginal distribution in groups 0 and 1,
respectively using the multiroot function of the
rootSolve R package.

Geometric average hazard ratio, gAHR(7).

gAHR(7) is calculated following Eq. 2, which depends

on HR,(t) = A (6)/2.\% (t). HR, () was numerically
estimated for 1,000 equidistant points over the
follow-up time (from O to 7).

Sample size. For a given power of 1 — 8 = 0.8 and
one-sided significance level &« = 0.025, together with
the gAHR(7), Eq. 11 is used to compute the sample
size.

Generate data. For each of the 10,000 iterations,
bivariate data with the sample size obtained in the
previous step was generated via Frank’s copula and
using the Mvdc function of the copula R package.
The simulated data was censored at the end of
follow-up and takes into account the competing risks.
Test. For each of the 10,000 iterations, the longrank
test is conducted on the data and the statistic Z, for
the composite endpoint T is stored. This test is
implemented in the survdiff function of the survival
R package.

Empirical power. The empirical power is estimated
as the proportion of Z, statistics falling into the
rejection region, i.e, Z, < —1.96 along all the
iterations.

Table 3 Input parameters considered in the simulation according to the setting

p?,pP HR1, HR; B, B2 Copula .
Scenarios
0.05 0.1 0.3 0.5 0.6 0.8 0.9 0.3 0.5 0.5 1 2 Frank
Setting 1 X X X X X X X X X X X 396
Setting 2 X X X X X X X X X X X X X 3,168

Lows the total number of simulated scenarios. Scenarios with observed proportions p

both components in Setting 2 are not considered

pg()) = 0.5 in both settings as well as scenarios with exponential distribution in
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All simulations were performed using the R version 3.6.1.
We have not run the simulation for those scenarios
with an associated sample size greater than 20,000 (both
groups) due to their computational cost and because they
do not represent realistic setups in the scope of RCTs.
The R code for simulations, not supported by CompARE,
is available at https://github.com/jordicortes40/sample_
size_composite.

Simulation results for exponential case

From the 405 scenarios of this setting, we have excluded
9 (2.2%) and 3 scenarios (0.74%) with a sample size larger
than 20,000 (both groups) when using the gAHR and nHR,
respectively. These cases correspond to scenarios where
both HRs are equal to 0.9 and the observed proportions
of the events are equal or less than 0.10. We summarize
in Fig. 3 and Table 4 the empirical powers for both mea-
sures (gAHR and nHR) corresponding to Setting 1 where
Tl(o) and TZ(O) are exponentially distributed and bound via
Frank’s copula.

In the 396 included scenarios using the gAHR, the
required number of events (equation 12) ranges from 122
to 3,338 with a median equal to 644 [IQR: 222-1,254] and
the total sample size ranges from 176 to 17,402 with a
median equal to 1,644 [IQR: 600-4,157].

Figure 3 shows a violin-boxplot comparing the empirical
powers achieved with gAHR and nHR methods, respec-
tively merging all scenarios. For the former, both mean
(solid point) and median are equal to 0.799, very close
to the target power 0.80 taking into account the simula-
tion mean standard error of 0.004. Moreover, this violin-
boxplot shows an almost perfect symmetry with respect
to the mean and the median, indicating a similar propen-
sity to move away from the central tendency towards
both higher and lower values. On the contrary, the naive
method provides empirical powers with a mean/median

Naive HR- o | b
gAHR-
02 04 06 0.8 10
Empirical power
Fig. 3 Exponential scenarios. Empirical power for the exponential case
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lower than desired (0.771/0.739) and involves powers in a
wide range from 0.22 to 0.99.

Table 4 presents summary statistics for the empirical
power from both methods according to different cate-
gories for the input parameters: 1) Stratifying by treat-
ment effect: i) one of the two components has a large
treatment effect (HR; = 0.6,k = 1 or 2); ii) both compo-
nents have a small treatment effect (HR; = 0.9,k = 1,2);
iii) the remainder cases; 2) Stratifying by the probability of
observing the event in the control group: i) at least one of
the two components has a very small probability (p,((o) =
0.05, kK = 1 or 2); i) both components have equal and large
probabilities of being observed (p§0) = p(10) > 0.3); iii) the
remainder cases; 3) Considering three different values for
the correlation between both endpoints.

Overall, using the gAHR, 95.5% of scenarios had an
empirical power between 0.79 and 0.81 in front of only
6.5% scenarios in the same interval using the nHR. The
results based on the gAHR method were quite consis-
tent among all strata. The first quartile of empirical power
was, at least, 0.795 for any considered stratum, indicat-
ing that a power of no more than half a percentage point
less than the target power will be achieved in 75% of the
situations. There were 16 scenarios (4.0%) with empirical
power below 0.790. This percentage was slightly higher
when a large treatment effects (HR; = 0.6) was present
in any of the components (6.2%) or if at least one of
the observed proportions was equal to 0.05 (7.2%). Both
scenarios had lower treatment effects (HR; > 0.8) and
observed proportions in the control group between 0.1
and 0.3 for both components. It is worth mentioning that
no relevant differences were observed in the empirical
power according to the correlation, but it should be borne
in mind that for high correlations, a larger sample size was
required to achieve the same power. The set of scenarios
where the application of the naive method would lead to
fairly good control of power would be those with very sim-
ilar treatment effect on both components. For example, as
can be seen in the table, when both HRs are equal to 0.9,
there may be a decrease in the desired power — due to the
competing events — but it would not go beyond around 7%
in the worst situation.

Simulation results for non-exponential cases

From the 3,240 scenarios considered in the setting 2, we
excluded, as in the exponential setting 1, 72 scenarios
(2.2%) using the gAHR and 24 scenarios (0.74%) using the
nAHR with a sample size larger than 20,000. Again, HRs
equal to 0.9 and probabilities in the control arm equal
or less than 0.10 provided these situations that required
extreme sample sizes. We summarize in Fig. 4 and Table 5
the results of the remaining scenarios of setting 2 where
TI(O) and T2(0) are bound via Frank’s copula and Weibull
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Table 4 Empirical power according to the different input parameters in setting 1 (exponential case) using both measures (JAHR/nHR)

Power descriptive

3 Min Q1 Med Q3 Max

Treatment effect

Any HR; = 0.6 225/225 0.784/0215 0.795/0.601 0.798/0.765 0.801/0.882 0.809/0.995

HRy = HR, = 0.9 36/42 0.789/0.727 0.798/0.762 0.801/0.775 0.803/0.786 0.808/0.799

Other cases 135/135 0.790/0.466 0.797/0.696 0.800/0.771 0.802/0.836 0.811/0.952
Observed proportions

Any p/ = 005 180/186 0.784/0215 0.795/0.650 0.798/0.777 0.801/0.867 0.809/0.995

p? =p? >03 81/81 0.790/0.536 0.797/0.708 0.800/0.764 0.803/0.791 0.810/0.901

Other cases 135/135 0.788/0.274 0.796/0.612 0.799/0.764 0.802/0.877 0.811/0.986
Correlation

Weak (o = 0.1) 132/134 0.788/0.251 0.796/0.698 0.798/0.789 0.802/0.855 0.811/0.995

Mild (o = 0.3) 132/134 0.785/0.239 0.796/0.671 0.799/0.767 0.802/0.844 0.809/0.994

Moderate (p = 0.5) 132/134 0.784/0215 0.796/0.654 0.799/0.751 0.802/0.831 0.810/0.993
Global 396/402 0.784/0.215 0.796/0.678 0.799/0.771 0.802/0.845 0.811/0.995

First column (s) is the number of scenarios. Min: minimum; QT: first quartile; Med: Median; Q3: third quartile; Max: maximum

distributed with shape parameters §; and S equal to
0.5,1,2, excluding the case in which both are exponen-
tial (81 = B2 = 1). Thus, we included extreme scenarios
where the hazard trends over time of both components
pointed out in opposite directions with increasing (8 =
2) and decreasing (B = 0.5) hazard rates in one and the
other component, respectively.

In the included 3,168 scenarios with calculations
founded on the gAHR, the needed number of events
ranges from 122 to 3,356 with a median equal to 642
and the total sample size ranges from 176 to 17,402 with
a median equal to 1,616. Figure 4 shows the empiri-
cal power for the 10,000 simulations. Again, both the
mean and the median (0.798) are quite close to 0.80
and the violin-boxplot reveals a symmetry regarding to

Naive HR-

gAHR-

02 04 06 0.8 10
Empirical power

Fig. 4 Non-exponential scenarios. Empirical power for the

non-exponential cases

these statistics. Meanwhile, the naive method does not
get a suitable power control and provides powers that
on average (0.739) are lower than the target value, even
with extreme scenarios giving probabilities to detect the
treatment effect as low as 0.208 or as high as 0.997.

Table 5 presents summary descriptive statistics of the
empirical power according to the same categories we
defined for the exponential case. We have included a
fourth strata splitting the empirical power according to
equal and decreasing hazard rates (81 = f2 = 0.5);
equal and increasing hazard rates (81 = B2 = 2) and the
remaining scenarios including different hazard behaviour
over time (81 # B3).

Empirical power derived from the gAHR ranged from
0.782 to 0.813 and 95.7% of the scenarios were between
0.79 and 0.81, while only 6.9% scenarios remains within
this range for the naive method. Regarding the results
coming from the gAHR, the first quartile of empirical
power was, at least, 0.794 in any strata and 0.795 overall,
which guarantees a power that at most will be only half
a percentage point lower than the target in 75% of sce-
narios. Almost all situations (99.7%) reflecting lower treat-
ment effects (HR;y = 0.9) provided an empirical power
above 0.79. There were 135 (4.0%) scenarios with empiri-
cal power below 0.790. This percentage was higher when
a marked treatment effect (HR; = 0.6) was present in any
of the components (6.3%) or when at least one of the pro-
portion of observed events in the control group was equal
to 0.05 (5.8%). The 10 (0.3%) scenarios that presented an
empirical power slightly higher than 0.81 did not share any
common feature regarding to the input parameters and it

0.8x0.2 __
10,000 —

0.004) associated to the simulation procedure. Different

could be explained due to the standard error (
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Table 5 Empirical power according to scenarios in setting 2 (non-exponential case) using both measures (QAHR/nHR)

Power descriptive

s Min Q1 Med Q3 Max

Treatment effect

Any HR; = 0.6 1800/1800 0.782/0.208 0.794/0.596 0.797/0.770 0.801/0.884 0.813/0.997

HR1 = HR, =09 288/336 0.789/0.724 0.797/0.762 0.800/0.774 0.803/0.786 0.810/0.804

Other cases 1080/1080 0.787/0457 0.796/0.692 0.799/0.772 0.802/0.835 0.812/0.957
Observed proportions

Any p/.(o) =0.05 1440/1488 0.782/0.208 0.794/0.645 0.797/0.777 0.801/0.870 0.813/0.997

p? =p® =03 648/648 0.788/0.420 0.797/0.717 0.800/0.768 0.802/0.790 0.813/0.949

Other cases 1080/1080 0.783/0.250 0.796/0.609 0.798/0.766 0.801/0.878 0.811/0.991
Correlation

Weak (p = 0.1) 1056/1072 0.783/0.252 0.795/0.693 0.799/0.789 0.801/0.859 0.811/0.995

Mild (p = 0.3) 1056/1072 0.783/0.226 0.795/0.671 0.798/0.770 0.801/0.841 0.813/0.996

Moderate (p = 0.5) 1056/1072 0.782/0.208 0.795/0.645 0.798/0.753 0.801/0.828 0.812/0.997
Laws of the components

B =p=05 396/402 0.786/0.223 0.796/0.676 0.798/0.771 0.801/0.844 0.812/0.995

Br=p=2 396/402 0.783/0.219 0.796/0.680 0.799/0.770 0.801/0.842 0.811/0.995

B # B 2376/2412 0.782/0.208 0.795/0.677 0.798/0.772 0.801/0.840 0.813/0.997
Global 3168/3216 0.782/0.208 0.795/0.677 0.798/0.771 0.801/0.841 0.813/0.997

First column (s) is the number of scenarios. Min: minimum; QT: first quartile; Med: Median; Q3: third quartile; Max: maximum

levels of correlation between components did not pro-
vide relevant discrepancies. The conclusions for the naive
method are the same in this non-exponential setting as in
the exponential setting

Effect of copula on gAHR

The gAHR was calculated in all scenarios of settings 1 and
2 and for the 3 Archimedean copulas (Frank, Clayton and
Gumbell) in order to assess the relevance of the copula
binding T{O) and TZ(O). Table 6 provides the deciles of the
gAHR values for each copula.

Overall, the deciles of the gAHR values obtained from
either one of the 3 copulas are very similar. In particu-
lar, Frank’s and Gumbel’s Copula show identical values
in gAHR percentiles from the 40% percentile on while
Clayton’s copula slightly differs from both. The maxi-
mum absolute difference among any two copulas, found
around the gAHR median, is 0.04, and, although small, it
might have an important impact on the computation of
the required number of events. For instance, going from a
gAHR = 0.80 to gAHR = 0.76 implies a 34% decrease in
the number of required events, as it happens when using
Schoenfeld’s formula and the HR. Based on these simula-

Table 6 Percentiles of the gAHR according to copula

10% 20% 30% 40% 50% 60% 70% 80% 90%
Frank 062 066 071 076 080 081 084 087 090
Clayton 060 065 069 073 076 079 082 085 088
Gumbel 060 065 070 076 080 081 084 087 090

tion findings and others not shown here, we recommend
the use of Frank’s copula to bind the joint distribution of
the components unless more information can be gathered
on the real correlation and the joint behaviour between
both components. Nevertheless, CompARE allows the use
of these 3 copulas, among others, which can be useful
to calculate the HR,(¢) under different association pat-
terns (e.g., stronger correlations at earlier or later times)
between the component times.

Discussion

We have shown that the use of gAHR in conventional sam-
ple size formulas in time-to-event studies with composite
time-to-event endpoints provides the desired power when
two treatment groups are compared using the log-rank
test. This is true regardless of whether the proportional
hazards assumption holds or not. In studies involving a
composite endpoint, obtaining the theoretical value of
this summary measure could be hard; however, CompARE
has proven to be a useful tool for this purpose, remov-
ing tedious calculations. The gAHR method enhances the
performance over the rule of thumb approach based on
averaging the treatment effects on each component.

The use of the HR has been debated when hazards
are not proportional. Also, the hazard ratio as estimated
from the observed data doesn’t reflect the causal haz-
ard ratio if there is heterogeneity in patient risk [19, 20].
Other measures such as the restricted mean survival time
may be better to quantify treatment effects. But, actu-
ally, the HR is still widely used and most of the published
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RCTs report the HR as the main measure of the treat-
ment effect. Furthermore, the estimand exp(8) itself still
has an interpretation as the ratio of the logarithms of the
survival functions log [P(T(D > t)] /log [P(T(O) > t)]. In
this sense, several summary measures have been proposed
to capture the treatment effect when the HR,(¢) varies
considerably over time. Probably the most popular is the
AHR proposed by Kalbfleisch and Prentice [5], which is
mentioned in several studies as a good measure of the
effect of an intervention [6, 7]. The gAHR, in most of
our simulation settings, presents values very close to the
AHR as shown in the Bland-Altman plot of concordance
(Fig. 5). This point is interesting from the perspective that
gAHR could be interpreted as a measure of proportional
hazards just in the same way as AHR and, in addition, the
former has the advantage of a direct relationship with the
sample size calculation.

One question that may arise is how sensitive the sam-
ple size and power are to misspecification of some of
the input parameters. Of course, a misspecified HR will
always influence the needed number of events and con-
sequently, the power in any sample size calculation. Some
information regarding the proportion of events observed
is also essential to deduce the number of patients from
the number of events. Our methodology requires addi-
tional inputs, such as the shape parameters of the Weibull
distributions; the degree of association among the times
to event of both components; or the choice of the cop-
ula. They are mostly nuisance parameters, so ideally the
sample size would be quite insensitive to the assumptions
that is made. We have seen that they are not very sensitive
to the choice of copula. But the shape parameters of the
Weibull distribution or the correlation might influence the

0.0015-
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Fig. 5 gAHR versus AHR. Relationship between gAHR and AHR in the
scenarios of settings 1 and 2
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resulting sample size if we blunder in the choice. For the
former, the users should draw on their experience to deter-
mine the direction of risk over time by assessing whether
the event rate increases, decreases or remains constant
during the follow-up. For example, an outcome variable
about the infection after a surgery, the most critical stage
is just after the intervention and subsequently, the risk
decreases over time. Regarding the correlation, obviously,
it cannot be determined with certainty, but a rule of
thumb would be enough to approximate it. For instance,
events that rarely occur in the same patient should be
weakly associated or, conversely, if the events are usually
dependent on the patient’s characteristics, then it can lead
to a moderate/high correlations.

Our investigation has several limitations. First, we have
only addressed the case of a composite endpoint of two
components. In scenarios with more than two possible
outcomes, we recommend to combine them first into
two groups according to their relevance or their expected
effectiveness as long as it is feasible to anticipate the
parameters associated with these components based on
previous literature or previous RCT phases. Second, we
are aware that the latent failure time model that we are
imposing has been criticised because the dependence

structure between T{g) and Tég) is in general not identifi-
able since the latent times are not observable. Neverthe-
less, latent times are the predominant approach for sim-
ulating competing risks data as it is discussed by Allignol
et al. [21] as long as they yield the right data structure and
they are computationally correct. We remind as well here
that we are at the design phase of the RCT and that we are
not addressing the estimation of the treatment effect mea-
sures. Third, since we are in a competing risk situation,
the hazard of having one of the event types is influenced
by the other competing event, making for a complex inter-
ference. If, in addition, treatment effects are different on
both events, the proper definition of the “at risk”-sets is
involved and the intuition for what “proportional cause-
specific hazards” means is not straightforward. However,
this is the information that can be usually extracted from
previous published studies and, therefore, the one that
can be used to estimate the sample size for future trials.
Fourth, we have only dealt with the situation of equal-
sized treatment groups. Although it is well known that the
situation that maximizes the power is the one in which
the events are balanced among groups, RCTs usually are
designed to balance the number of patients among the
different treatment arms.

Conclusions

The waste associated with biomedical research is
paramount [22] and one of the main problems is poorly
designed studies. Underestimating the optimal sample
size may lead to failure to make effective interventions
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available to patients due to unsuccessful trials. On the
other hand, trials with too many patients might unnec-
essarily subject people to ineffective interventions. One
may use CompARE platform (https://cinna.upc.edu/
CompARETimeToEvent/) to design randomized con-
trolled trials with composite endpoints when the propor-
tional hazards assumption does not hold.
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