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Abstract

Background: Tacrolimus is given post-kidney transplant to suppress the immune system, and the amount of drug in
the body is measured frequently. Higher variability over time may be indicative of poor drug adherence, leading to
more adverse events. It is important to account for the variation in Tacrolimus, not just the average change over time.

Methods: Using data from the University of Colorado, we compare methods of assessing how the variability in
Tacrolimus influences the hazard of de novo Donor Specific Antibodies (dnDSA), an early warning sign of graft failure.
We compare multiple joint models in terms of fit and predictive ability. We explain that the models that account for
the individual-specific variability over time have the best predictive performance. These models allowed each patient
to have an individual-specific random error term in the longitudinal Tacrolimus model, and linked this to the hazard of

dnDSA model.

to improve outcomes post-transplant.

Results: The hazard for the variance and coefficient of variation (CV) loading parameter were greater than 1,
indicating that higher variability of Tacrolimus had a higher hazard of dnDSA. Introducing the individual-specific
variability improved the fit, leading to more accurate predictions about the individual-specific time-to-dnDSA.

Conclusions: We showed that the individual’s variability in Tacrolimus is an important metric in predicting long-term
adverse events in kidney transplantation. This is an important step in personalizing the dosage of TAC post-transplant

Keywords: Dynamic prediction, Kidney transplant, Survival

Background

In many medical settings, the variability in patient drug
levels is hypothesized to predict adverse events, as higher
variability is often indicative of drug-drug interactions,
altered drug metabolism, or poor drug adherence. This
is the case in the kidney transplant setting: Tacrolimus
(TAC) is prescribed post-transplant to suppress the
immune system, and the amount of drug in the body is
measured frequently via blood draw. In scenarios such
as this, it is important to account for the variation in
the longitudinal outcome, not just the average change
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over time. In this paper, we test whether the variabil-
ity in longitudinal TAC predicts time-to-de novo Donor
Specific Antibodies (dnDSA), an early warning sign of
kidney transplant graft failure.

Clinicians need accurate predictions of adverse allograft
events in order to know when and how to modify the
treatment course for high risk patients, such as altering
immunosuppression therapy or increasing follow-up visit
frequencies. This is critically important today, as there
exists a national shortage of available kidney donors [1].
If adverse events can be avoided, the available donated
organs can be used more effectively, and in turn the kidney
transplant waiting list, currently at nearly 100,000 patients
[1], will be shorter. Avoiding antibody-mediated rejection,
or organ rejection due to de novo donor-specific anti-
bodies (dnDSA), is one of the most important steps in
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achieving long-term graft survival [2]. It has been shown
that maintaining proper immunosuppression therapy lev-
els post-transplant is a major determinant in preventing
dnDSA. Tacrolimus (TAC) is the primary immunosup-
pressant used by U.S transplant centers (93%) [3, 4], but it’s
therapeutic dose window is narrow and differs by patient.

TAC trough levels, or the lowest amount of drug in
the blood prior to the next dose, are measured frequently
post-transplant. In previous studies, one-dimensional
functions of observed TAC values were found to be associ-
ated with dnDSA; these functions included the percentage
of TAC levels below 5 ng/ml [5], average TAC troughs
of less than 8 ng/ml, and the percentage of time TAC
was in therapeutic range [6]. Importantly, the variabil-
ity of TAC was also found to be associated with dnDSA,
as high variability likely indicates inadequate drug expo-
sure and possible non-adherence. In previous studies, the
coefficient of variation (CV) of TAC, summarized over
a specific range of time pre-dnDSA, was predictive of
dnDSA. [7-9]. The CV is calculated as the ratio of the
standard deviation to the mean, and is a way to standard-
ize the variability of a measurement so it is not dependent
on the average value [10].

To complicate the problem further, dnDSA is only
screened for periodically, and much less frequently than
TAC trough levels are drawn. This makes dnDSA an inter-
val censored outcome, as the exact timing of development
is unknown. The majority of studies analyzing the rela-
tionship between TAC and dnDSA treat dnDSA as right
censored due to the analytic complexities associated with
interval-censored outcomes. A previous study used a joint
model for interval censored data that incorporated all lon-
gitudinal values of TAC and found that both average TAC
and the slope of TAC over time were associated with time-
to-dnDSA [4]. This approach used a linear mixed model
for TAC linked by a random intercept and random slope
to an interval censored parametric survival model for
dnDSA. Joint models such as this have become increas-
ingly popular as a way to simultaneously model longitu-
dinal and time-to-event data. These approaches typically
use a standard linear mixed model in combination with
a survival model to assess the effect of the longitudinal
outcome on the time-to-event outcome. These two model
processes can be linked in a number of ways, including
shared random effects, the true value, or the slope of the
longitudinal trajectory. More recently, research has been
done into allowing for a more flexible linking function
[11, 12].

In this paper, we build upon the previously mentioned
joint model for TAC and dnDSA [4] to test the hypothesis
that an individual’s variability of TAC over time is associ-
ated with time-to-dnDSA. We allow for each individual’s
TAC trajectory to be normally distributed with hetero-
geneous variances, which avoids the unlikely assumption
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that all individuals share a common variance. We test
whether this individual-specific variability is associated
with time-to-dnDSA and whether it improves the predic-
tive ability of the model. We also assess the model’s ability
to dynamically predict a patient’s probability of devel-
oping dnDSA after surviving dnDSA-free for a specified
period. This is motivated by the clinical scenario where
patients are seen in clinic at 6 months or 1 year-post trans-
plant dnDSA-free, and the clinician wants to assess the
probability that the patient remains dnDSA-free until a
future appointment. We demonstrate how these proba-
bilities can be calculated using the joint model, and how
accurate these predictions are given the dataset at hand.

In the first section, we introduce the kidney transplant
study data. Next, the joint models are formulated and
applied to the motivating kidney transplantation dataset.
Model estimation and prediction assessments follow, and
we end with a discussion of study limitations and next
steps.

Kidney transplant study
As a motivating example, we introduce a retrospective
study of patients who received a kidney transplant at the
University of Colorado between 2007 and 2013. Exclusion
criteria included being under 18 at the time of trans-
plant, having a simultaneous liver and kidney transplant
or islet cell transplant, having DSA pre-transplant or
dnDSA within the first week post-transplant, not having
any dnDSA screening post-transplant, and not receiving
TAC post-transplant. This study was conducted in accor-
dance with the Declaration of Helsinki and was approved
by the ethics committee at the Colorado Multiple Institu-
tional Review Board (COMIRB 13-3137).

Post-transplant, TAC trough levels and dnDSA screen-
ing results for each of the 538 included patients were
collected for up to 7 years. Because of the unrelia-
bility of TAC and dnDSA data within the first week
post-transplant, follow-up data was collected starting at
day 8 post-transplant. Individuals had a median of 22
(IQR: 15-32) qualifying TAC levels, taking on values
from 0 to 30 and roughly following a normal distribu-
tion. Screening for dnDSA was conducted at 1, 6, 12
months, annually, and when clinically indicated. Approx-
imately one-third (n=181) had at least one dnDSA during
follow-up, and for the purpose of this study, we focused
on time-to-first dnDSA. Additional variables collected
included age at transplant, race/ethnicity, and the number
of Human Leucocyte Antigen (HLA) mismatches between
donor and recipient. A more detailed description of the
dataset and measures collected can be found elsewhere
(4, 6].

We randomly split the dataset into a training (2/3,
N=358) and a testing (1/3, N=180) cohort. The training
cohort was used to fit all models outlined in the results,
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Table 1 Model selection criteria: DIC, and WAIC as defined in the Model selection and predictive ability section

Model DIC WAIC
M1: Shared random intercept and slope only 46022 46137
M2: Individual variance term (not shared) 44580 44765
M3: Shared individual variance term 44587 44791
M4: Shared individual CV term 44571 44776

Training cohort, N=358

while the testing cohort was used to assess predictive
performance.

Methods

General model formulation

Suppose there are N individuals each measured at #; time
points, i = 1,..,N. Let y;; be the measurement for indi-
vidual i at time ¢, j = 1, ..., n;. We assume that given the
vector of individual-specific random intercept and slope
(a0i»a1;)’, individual outcome measures y;; are indepen-
dent and normally distributed with mean w;; and residual
variance 012, where

i = f (&) + Bix1i + ao; + avity. 1)

Some examples of f, the function that models the time
component, include a linear trajectory, ie. f(t;) =
by + bity; or b-spline basis functions, ie. f(t;) =
Zle Box Vi (i), where i (t) is the k™ of K basis func-
tions with coefficient By; and the number of basis func-
tions K depends on the degree of the splines (e.g. p = 3)
and number of inner knots (# = 3; K = p+ h + 1).
Baseline covariates are represented by x1;, with regression
coefficients ;. The random effects ao;, a1; are distributed
normally with mean zero and variance/covariance matrix

ao; 0 ol PO001
al-v(e L s ]) e

Importantly, the model allows a flexible residual variance
component, 012. In this paper, we either set [ to 1, which
assumes all individuals have a common residual variance,
or we set [ to i, which allows all individuals to have
different residual variances. This flexible variance compo-
nent avoids the typical assumption that all subjects share
one common residual error term, in favor of allowing
the model to estimate higher or lower variance depend-
ing on the amount of variability in each subject specific
trajectory.

The same N individuals are measured for a time to event
outcome at varying time points. The outcome is interval
censored, as it is only known to happen between two dis-
crete time points and the exact timing is unknown. Let
tr; be the time at which the outcome was detected and
tr; the time of the visit immediately preceding fg;. The

actual unknown time to event, ¢;, occurs in between f;;
and tg;. The hazard for individual i at any time ¢ can be
represented by

hi(t) = ho(2) exp (Bo + Byxai + hodo; + Aiar; + ragi))
(3)

where /y(¢) is the baseline hazard, which can be vari-
ous flexible distributions, including parametric (typically
exponential, Weibull, or gamma), piecewise constant or
spline. By represents the fixed intercept, xo; is the vector
of fixed covariates, which can be different from the fixed
covariates in Eq. 1, and B, is its coefficient. Of note, we
restrict the longitudinal measurements (y;;) such that only
those occurring prior to t7; are used in the joint model.

The two sub-models (1) and (3) are connected by the
shared random effects (ag;, a1;)’, and some function of
the history of the longitudinal biomarker, g;. This func-
tion g; can be chosen based on a priori hypotheses, and
should include an estimated parameter from the longitu-
dinal model (1). In our case, g; will be a function of the
heterogeneous random error of the biomarker, o;. The
association parameters Ao, A1, and A represent the esti-
mated risk of event dependent on the average biomarker,
slope of the biomarker, and the function, g;.

Conditional on random effects, ag;, a1;, the log likeli-
hood can be written for each individual in the model with
individual-specific random error (012 = criz):

n
i 1 1
j=1 ‘

2
—B1x1i — aoi — ayity) }

— Ipilog {1—F;(tr))} + (1 —Ig;)log {Fi(tr:) —Fi(t1)},
(4)

where Ip; is an indicator that the event for individual i
is right censored (1=right censored, O=interval censored),
and F;(¢) is the cumulative density function at time t.
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Fig. 1 Comparison of Area under the Curve (AUC) and Brier Score (BS) for each of the four models, under two scnearios: (1) being dnDSA-free at 12
months, given the patient was dnDSA-free at 6 months, and (2) being dnDSA-free at 24 months, given the patient was dnDSA-free at 12 months.
M1=base model, shared random intercept and slope only, M2=allow for individual specific random error term, M3=share the individual specific
standard deviation with hazard, M4=share the individual specific CV with hazard

Model specifications

Four models were fit to test the clinical hypothesis that
the variability of the biomarker over time would be asso-
ciated with the time to event outcome. These are all spe-
cial cases of the joint model outlined in “General model
formulation” section.

e Model 1 (M1): Base model. [ = 1, so all patients have
a common residual error, and g; = 0, so there are
only two shared parameters: the random intercept
and slope.

e Model 2 (M2): Individual-specific variance model.

[ = i, so each patient is allowed a different residual
error term, and g; = 0, so again, there are only two
shared parameters: the random intercept and slope.

e Model 3 (M3): Individual-specific variance shared
model. [ = i, so each patient is allowed a different
residual error, and g; = 0, so Ao represents the hazard
of event associated with the residual standard error.

® Model 4 (M4): Individual-specific coefficient of
variation (CV) shared model. [ = i, so each patient is
allowed a different residual error, and g; = 12"7;[},,

n; 2uj=1Yij

s0 Ap represents the hazard of event associated (/vith

the coefficient of variation. Of note, the CV is
calculated here as the estimated standard deviation

over the sample mean.

Model selection and predictive ability

The Deviance Information Criterion (DIC) [13] and
the Watanabe-Akaike information criterion (WAIC) [14]
were used for model selection. The DIC is calculated

based on the deviance, D(#) = —2logL(y|f#) and penal-
izes for the number of effective degrees of freedom
in the model. WAIC approximates leave-one-out cross-
validation [14] and works well for hierarchical models
where the number of degrees of freedom is not obvious
[15]. The best model should have the lowest values of DIC
and WAIC; differences of at least 5 points were considered
important.

The predictive ability of the four models was assessed
using Area Under the Curve (AUC) and Brier Score (BS).
The interval censored nature of dnDSA complicates the
calculation of AUC and BS. In right-censored survival
settings, the AUC is the proportion of concordant pairs
among all subject pairs, where the pair achieves concor-
dance if the risk of event is higher for the subject with the
earlier event time [16]. Under interval censoring, it may
not be clear which subject in the pair has the earlier event
time. When a parametric baseline hazard is employed,
such as the Weibull, various methods for calculating the
probability that the event time of the first subject is
less than the event time of the second have been pro-
posed [17, 18]. We used both the nonparametric estimator
approach proposed by Wu and Cook and the probability
based methods outlined by Tsouprou to calculate AUC,
and only reported the Tsouprou results as the two both
showed the same conclusions. BS is defined as the mean
squared difference between the predicted probability and
the observed outcome for each subject at a pre-specified
follow-up time. Due to the interval censored nature of the
data, is not always known if the outcome occurred before
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Table 2 Results from all models

Parameter Model 1 Model 2 Model 3 Model 4

Linear Sub-Model Estimate (95% Crl) Estimate (95% Crl) Estimate (95% Crl) Estimate (95% Crl)

by -0.059 (-0.071,-0.047) -0.056 (-0.068, -0.044) -0.056 (-0.068, -0.044) -0.056 (-0.069, -0.045)
bo 7.254(7.094,7411) 7.177 (7.007,7.324) 7.182 (7.014,7.338) 7.178(7.027,7.32)

P -0419 (-0.562,-0.264) -0427 (-0.564,-0.275) -0.422 (-0.555,-0.268) -0424 (-0.563,-0.268)
002 1.769 (1.455,2.124) 1.716 (1.42,2.074) 1.711(1.394, 2.069) 713(1.397,2.072)
012 0.005 (0.003, 0.007) 0.005 (0.003, 0.006) 0.005 (0.003, 0.007) 0.005 (0.003, 0.007)
aez 7.146 (6.931,7.359) NA (NA, NA) NA (NA, NA) NA (NA, NA)

Survival Sub-Model

o 0.555 (0439, 0.698) (
Bo 0.035 (0.012,0.075) (
B1 (HLA Mismatch Number) 1.262 (1.115,1.437) (
B> (African American) 2.015(1.003, 3.644) (
B3 (Hispanic) 1466 (0.842, 2.324)
B4 (Other Race) 1.092 (0.21, 2.909)
Bs (Middle Age) 0.721(0.35,1.37)
B (Older Age) 0.307 (0.137,0616)
o 0.659 (0.515,0.813)

(

A1 (per 0.05 change)
A2

Hazard Ratio (95% Crl)

0478 (0.315, 0.646)
NA (NA, NA)

Hazard Ratio (95% Crl)
0.514(0413,0.623)
0.043 (0.018,0.085)
1.239(1.098, 1.393)
1612 (0.857,2.717)
1.54 (0.919, 2.365)
0.949 (0.192, 2.465)
0.803 (041, 1.482)
0.34 (0.168,0.627)
0.66 (0.539,0.802)
0.578 (0441,0.731)
NA (NA, NA)

Hazard Ratio (95% Crl)
0.535 (0.426, 0.666)
0.024 (0.006, 0.057)
1.236 (1.086, 1.394)
1.673 (0.872,2.805)
1.398 (0.836, 2.232)
0.944 (0.168, 2.459)
0.784 (0.398, 1.463)
0.338 (0.163, 0.655)
0.644 (0.517,0.78)
0.559(0.41,0.714)
(1

1.254 (1.004, 1.543)

Hazard Ratio (95% Crl)
0.524 (0.421,0.647)
0.045 (0.014,0.107)
1.238(1.100, 1.403)
1.634 (0.857, 2.794)
1.540 (0.899, 2.420)
0.951(0.189, 2.484)
0.802 (0.405,1.472)
0.335(0.165, 0.623)
0.661 (0.491, 0.845)
0.569 (0410, 0.749)

.1 )

1.400(0.119,5.026

The posterior mean and 95% credible intervals are presented for the linear portion of the model, the survival portion of the model, and the association parameters. The

longitudinal portion is comprised of a fixed intercept (by), a fixed slope (b1), and a random error term

(~ N(O, cfez)). In Models 2-4, the random error term is individual specific

(~ N(O, a,g,)) There is also a random intercept (ag; ~ N(O, 002)) and a random slope for each individual (a;; ~ N(O, 012)), which have a correlation parameter p. The survival
model is comprised of fixed covariates (B), the Weibull association parameter «, and a random intercept for each individual that is related to the random intercept, slope, and
some function of the estimated longitudinal trajecotry, through association parameters. The first association parameter (1) links the two sub-models through their shared
random intercepts. The second association parameter (A1) links the two sub-models through the longitudinal random slope and the survival random intercept. In Models 2-4,

A links the two sub-models through the longitudinal individual-specific SD (Model 3) or CV (Model 4) term. Middle age=30-49 years, Older age=50+ years. Model 1
(M1)=base model, shared random intercept and slope only, Model 2 (M2)=allow for individual specific random error term, Model 3 (M3)=share the individual specific
standard deviation with hazard, Model 4 (M4)=share the individual specific CV with hazard. Training cohort, N=358

a certain time, so again we calculate the probability that
the patient had the event prior to a pre-specified time [17].

Due to the time-varying nature of the models, the AUC
and BS can change over time. To assess the predictive abil-
ity of the models at differing time points for differing pre-
diction windows, we chose two clinically relevant scenar-
ios: (1) being dnDSA-free at 12 months, given the patient
was dnDSA-free at 6 months, and (2) being dnDSA-free
at 24 months, given the patient was dnDSA-free at 12
months.

Dynamic prediction of survival probabilities

In order to compare predictive abilities of the proposed
models (M1-M4), we calculate the dynamic predictions of
surviving dnDSA-free at a pre-specified time point. Sev-
eral works show the derivation of the conditional predic-
tive probability of survival for a new individual at time ¢/,
given that the individual has survived up to time ¢, where
t > £ [19, 20]. Let ¥! denote the longitudinal trajectory
up to time £, and T* > ¢ denote that the new individual

pan| T">1,51,0")

has survived up to time ¢. An important step of this cal-
culation is obtaining samples of the conditional posterior
distribution of the random effects for this new individ-
ual an (aN = (aNo,uNl)’),p (aN | T* > t,yf,@), where 6
denotes the set of all parameter values of the model. Con-
ditional on the m-th MCMC sample 6", we draw the m-th
sample of the random effects vector from its posterior
distribution

=p (y]t | em;ﬂN)P(T* >t emrﬂN)
plan16™),
(5)

where p (y]t | 6™, aN) andp (T* > t | 6™, ay) are the con-
ditional probabilities of the longitudinal and survival out-
comes, and p(an | 6") is the probability of the random
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Fig. 2 Model 4 (M4) allowed each individual to have it's own random
error term, to account for varying amounts of variability in TAC
between patients. The distribution of the individual's standard
deviations (SD) is shown here as a histogram. The red vertical line
represents the common standard deviation taken from M1, which
forced each individual to have a common residual error

effects vector. We follow ideas in [20] and employ adap-
tive rejection Metropolis Hastings sampling to draw sam-
ples of the random effect (5) and calculate the predicted
survival probabilities from the MCMC samples.

Survival probabilities may be obtained using any time
points (¢ and ¢, ' > t), but for simplicity and for clin-
ical applicability, we chose to assess two scenarios: (1)
being dnDSA-free at 12 months, given the patient was
dnDSA-free at 6 months (¢ = 6, ' = 12), and (2) being
dnDSA-free at 24 months, given the patient was dnDSA-
free at 12 months (¢ = 12, ' = 24). Oftentimes, the
patient comes to clinic for a milestone appointment (say
1 year-post transplant) appointment, and the clinician
wants to assess the probability of the patient continuing
to remain dnDSA-free until the next appointment (at 2
years post-transplant, for example). We used this frame-
work to assess and compare the Area Under the Curve
(AUC) and Brier Score (BS) for each model under each of
the time period scenarios. For particular patients, we also
calculated the dynamic predictions at more time points,
specifically where ¢ was 12 months and ¢’ ranged from
18 months to 60 months, to demonstrate how the sur-
vival probabilities can be calculated for longer follow-up
periods.

Application

Five hundred and thirty eight patients met the final inclu-
sion criteria for this analysis. The dataset was randomly
split into a training (2/3, N=358) and a testing (1/3,
N=180) cohort. The four models outlined in the methods
were fit to the training cohort (N=358). Each model had a
longitudinal sub-model (Eq. 1) with TAC as the outcome,
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a fixed intercept and slope for time (f(Z;) = bo + b1ty))
and a random intercept and slope for time for variations
across individuals. Spline terms for time were tested, but
DIC and WAIC indicated that a linear trend was sufficient.
For the survival sub-models (Eq. 3), various baseline haz-
ard functions were tested, including exponential, Weibull,
gamma, and piecewise constant, and the Weibull yielded
the best model fit (/1p(t) = t*~!, where « is the Weibull
shape parameter). All survival sub-models had time to
dnDSA as the interval censored outcome, random effects
associated with the longitudinal sub-model and a vector
of baseline covariates for age (younger age: <30, middle
age: 30—49, older age: 50+), race/ethnicity (Caucasian,
African American, Hispanic, and Other), and number of
HLA mismatches. More detail on each of these character-
istics and why they are hypothesized to be associated with
dnDSA can be found elsewhere [6]. All models built upon
the base model, M1, which had a shared random intercept
and slope. As described in “Model specifications” section,
M2 allowed each subject to have an individual-specific
residual error term, M3 shared this individual-specific
error term with the hazard sub-model, and M4 shared the
individual-specific coefficient of variation with the hazard
sub-model. Thus, the final implemented models followed
this general structure:

TAC; ~ N (,U,ij, (712) ,where ;; = bo+b1tj+aoi+aiity,
(6)

hi(t) =at® texp(Bo+ B1HLA+ B African American
+ BsHispanic + B4Other Race
+ BsMiddle Age + BcOlder Age
+ Aoao: + Aai; + Aagi).
(7)
Model estimation and inference was based on the

Bayesian framework. Hyper-parameters are assigned
weakly informative priors:

boy b, o, By By 20, A1, A2y 22 N(0,10000)
log(o7) ~ Uniform(—100, 100)
o ~ Gamma(100, 100)

—1
2
o 0.00001 0
0 p00201 ~ Wishart 2.
pogoy1 0y 0 0.000001

Denoting » as a generic random variable, we define the
following density functions: u ~ Normal(u,o?) with prob-
ability density 1/(ov/27) exp {—(u — 11)2/202}; u ~ Uniform(a, b)
with probability density 1/ —a) for a < u < b u ~
Gamma(r, 1) with probability density »"u"~texp(—ru)/ I'(r); and
© ~ Wishart(R, k) with probability density (| @ |%-—»-D72| g |¥/2
exp{—Tr(R2/2})/(2P%/°T,(k/2)) for k > p, where p = 2, Tr is the



Campbell et al. BMC Medical Research Methodology (2021) 21:104

trace function and T, is the multivariate gamma function.
Notably, we defined the prior for log(s;) as uniform(-A, A),
where A is sufficiently large (we used A=100).

The posterior distribution of each variable was esti-
mated using Markov Chain Monte Carlo (MCMC) sim-
ulations. A Gibbs sampler was used to form two Markov
chains using JAGS software [21] and the runjags package
in R [22]. Convergence of the samples was assessed by
trace plot inspection, and Gelman and Geweke tests which
test for equality of the means of the first and last part
of a Markov chain [23]. After a burn-in period of 20,000
and thinning of 50 of 100,000 sampling iterations, 2,000
samples per chain were used for inference. On average,
each model took approximately 3.5 hours to run on a PC
with two Intel Xeon X5650 processors and 128 GB RAM.
For dynamic prediction, 500 MCMC samples were used,
and within each sample, 500 iterations of the Metropolis
Hastings algorithm were employed to estimate the ran-
dom effects. Calculating a prediction for one subject took
approximately 40 minutes on the same PC, using paral-
lel processing on 12 cores. A reproducible example of M4,
including code to fit the model and calculate dynamic
predictions, can be found in the Supplemental Materials.

Results

A comparison of WAIC and DIC for each model, M1-M4,
is reported in Table 1. As shown by lower DIC and WAIC,
all three models that allowed for individual-specific varia-
tion (M2, M3, M4), performed better than the base model
that forced a common residual error term. The model that
fit the data best according to DIC allowed for individual-
specific residual error and shared the CV term with the
hazard of event. M2 had the lowest WAIC. M2-M4 also
had superior predictive ability of dnDSA-free survival
compared to M1, demonstrated by higher AUC and lower
BS (Fig. 1 and Table S1).

The model estimates are found in Table 2. The result-
ing estimates for the TAC sub-model (fixed intercept,
slope, covariance matrix of random intercept and slope)
are similar across the M1-M4. M1 has a common random
error term for all patients, which was estimated as 7.15
(95% Credible Interval (Crl): 6.93, 7.36). All other models
allowed for residual error to vary by patient, and the esti-
mated standard deviations from M4 ranged from 0.46 to
11.16 (Fig. 2). The hazard ratios for all baseline covariates
(Bo — Bs) are similar in magnitude across the models. The
loading parameters for the shared random effects (xo, 11)
are similar across the models, although the 2, is slightly
lower for M1 compared to the other three. 1, represents
the effect the individual-specific residual standard devia-
tion (M3) and coefficient of variation (M4) on the hazard
of dnDSA. For every one unit increase in an individual’s
estimated residual standard deviation, the risk of dnDSA
increases 1.25-fold (95% Crl: 1.00, 1.54), and for every
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one unit increase in an individual’s estimated CV, risk of
dnDSA increases 1.40-fold (95% CrI: 0.12, 5.03).
Dynamic predictions for experiencing dnDSA-free sur-
vival were calculated for two individuals in Fig. 3. Both
individuals were dnDSA-free at 12 months, and one went
on to experience a dnDSA event, while the other did not.
The probability of surviving dnDSA-free from 12 months
to 60 months, by an increment of 6 months, was calcu-
lated for each individual, separately using the output from
M1 and M4. In the left-hand panel is an individual who
had alow CV of TAC during the first year post-transplant.
This patient did not go on to experience a dnDSA event
within 5 years post-transplant, and the estimated proba-
bility of dnDSA-free survival is higher using M4 compared
to M1. In the right-hand panel, an individual who had a
high CV of TAC during the first year post-transplant is
presented. This patient went on to develop TAC some-
time between 48 and 54 months post-transplant, and the
patient’s probability of dnDSA-free survival is lower using
M4, compared to M1. For both of these individuals, M4
yielded a better prediction of dnDSA compared to M1.

Simulation study

We conducted a simulation study to evaluate the per-
formance of a model that allowed for individual-specific
variances on a finite sample. We used M4 to simulate data,
as this was the model with the most complexity. The true
values of each parameter, listed in Table 3, were set to be
close to the resulting estimates from the training dataset.
Simulation results were obtained from 200 datasets, each
with 200 individuals. Models were run for 1,000 iterations,
after a 1,000 iteration burn-in time. As shown in Table 3,
all empirical means (means of the 200 estimates) are close
to the true values, except there was a small bias in «, the
shape of the Weibull baseline hazard function, and in 15,
the association parameter for g, the individual-specific
CV.

Discussion

Tacrolimus is the most important immunosuppressant
drug in solid organ transplantation despite having a very
narrow therapeutic window. Ensuring appropriate drug
exposure within this window is critical in order to main-
tain health of the graft while avoiding drug toxicities.
However, understanding intrapatient drug exposure has
been challenging, as only using average drug levels, or
one-dimensional summary statistics of drug levels, has
several disadvantages that don’t represent a complete pic-
ture of TAC exposure over time. The variability of TAC,
using all longitudinal measures, may be a useful way to
help characterize TAC drug exposure, as variability often
leads to more time out of therapeutic range and places
patient at risk for adverse outcomes [6]. In this paper, we
demonstrated that incorporating an individual-specific
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Fig. 3 Predicted probability of dnDSA-free survival, conditional on survival to 12 months. Left-hand panel: black lines represent observed TAC values
for a given individual with good adherence (low coefficient of variation) of TAC during the first year post-transplant. Red curve represents predicted
probability from M4 (model with coefficient of variation shared parameter) of remaining dnDSA-free up to 5 years post-transplant. Blue curve
represents predicted probability from M1 (base model, does not account for variability) of remaining dnDSA-free up to 5 years post-transplant. The
95% credible intervals for the predictions are indicated by the shaded regions. The right-hand figure is the same framework, but for a patient with
bad TAC adherence, and who developed dnDSA sometime between 48-55 months post-transplant

variance term into the modeling of TAC and dnDSA
indeed improves model fit and prediction of dnDSA.

The random effects in the joint model induce the depen-
dence between the two sub-models, which allows us to
test whether the variance and CV of longitudinal TAC is
associated with time-to-dnDSA, while accounting for the
unobserved heterogeneity in these functions. Unlike the
random effects, the biomarker’s variability (embodied in

the CV) has an intuitive clinical interpretation. In our joint
model context, its contribution is readily quantified as a
hazard of experiencing a dnDSA event. If we observe two
patients that only differ in the CV of TAC by one unit,
everything else being equal for a specific time, the haz-
ard of dnDSA is 1.4-times higher for the individual with
the larger CV. Similarly, if two patients differ only in the
estimated random error of TAC by 1 unit, the hazard of

Table 3 Simulation study results of M4, model with shared individual-specific CV parameter (data simulated using M4, 200 datasets of

N=200)

Parameter True Value Mean sD
by -0.03 -0.029 0.008
bo 7 7.006 0.102
P -0.03 -0.001 0.088
ol 1.75 1.769 0.204
of 0.004 0.004 0.001
Bo -2 -2.006 0.344
B1 (HLA Mismatch Number) 0.25 0.265 0.085
o 0.5 0.516 0.04
Ao -0.5 -0.551 0.289
A2 (loading parameter for individual-specific CV) 0.2 -0.179 0480
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dnDSA is 1.3-fold higher for the patient with the higher
variability.

The number of variance parameters estimated by
M2-M4 increases as the sample size increases. These
exchangeable random-effects arise naturally in Bayesian
hierarchical modeling, enabling a flexible individual-level
structure of dependence, and computationally they are
very convenient. The estimates at the individual-level
shrink towards a common population-level estimate,
which intuitively allows for better modeling of any indi-
vidual’s longitudinal trajectory by borrowing information
from similar subjects. In other words, exchangeability
allows the use of information from the entire cohort
to strengthen the inference for any individual subject.
In Bayesian jargon, this is called “borrowing strength”
[24]. The DIC and WAIC metrics both account for the
effective degrees of freedom, particularly important in
models with complex hierarchies of random effects; and
despite additional parameters, the models with individual-
specific variances proved to be superior to the model
with homogeneous variance (Table 1). Additionally, the
individual-level parameters allow individual-specific esti-
mation, improving the dynamic predictions (as described
in “Dynamic prediction of survival probabilities” section).

The models with heterogeneous variance (M2-M4)
proved to have superior predictive performance than M1,
as shown by AUC and BS. The AUC was generally higher
for predicting at ¢+ = 12 months, compared to ¢ = 6 months,
perhaps because we have more available longitudinal mea-
surements to use in the prediction at the later time point.
The BS was lower for the scenario of t = 6 and ¢ = 12,
compared to the scenario of t = 12 and ¢ = 24, perhaps
because the window of prediction was shorter (6 versus
12 months). Dynamic predictions using this model may be
employed as a tool of personalized medicine, providing a
guide for the clinical decisions, e.g. by modifying interven-
tions or acting as alerts in responding to the longitudinal
profile of the patient. As seen in Fig. 3, incorporating
the variability in to the model improved the predictions
for these two individuals, which highlights the need to
account for the overall trajectory and variability of TAC
when assessing risk of dnDSA. Models such as these could
be applied to any disease that is treated with medications
that have a narrow therapeutic window that require drug
monitoring, such as glomerularnephritides, autoimmune
conditions, and some cancers.

We have employed some of the most used parameter-
izations of joint models (e.g. sharing the random effects)
as well as one that is less common, which considers the
sharing of other characteristics of the longitudinal trajec-
tory, namely the standard deviation of the residual error.
In future work, we plan to explore alternatives to JAGS,
such as Nimble [25] or Stan [26], as these approaches
may speed up the computational time needed to per-
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form the dynamic predictions. Another natural extension
of this work would be to adopt the idea of the latent
class joint models, which could be used to identify the
patients whose prognostic can be improved by adjust-
ing the dose of TAC and patients for whom the dose
adjustment will fail. After model adjustment, subjects of
different latent classes can be easily interpreted with sur-
vival probabilities plots, thus providing a good prognostic
tool.

Conclusion

Using a joint model with a flexible linkage function, we
demonstrated that an individual’s variability of TAC over
time is important in dynamically predicting dnDSA post
kidney transplant. The proposed model improved predic-
tion of dnDSA over a method that did not model the
variability in TAC, and has potential of improving clinical
outcomes in this area of personalized medicine.
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