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Abstract

Background: Neighbourhood is a complex structure but of high relevance for health. Its operationalisation remains
however a challenge.The aim of this work is to present a new application of the use of semi-variograms as an
approach for the evaluation of spatial effects on health. For this, we propose to estimate two parameters providing a
measure of an average neighbourhood or spatial effect at city level without having to predefine any notion of physical
neighbourhood.

Methods: We present the statistical method to estimate the parameters of this correlation neighbourhood by fitting
an exponential model to the empirical semi-variogram at short distances. With a simulation study, we show for which
sample size and sampling density the method performs well and illustrate how to use the method with data from a
birth cohort using the outcome birthweight.

Results: For small sample sizes (500) the method provides reliable estimates if the density of observations is high. For
larger sample sizes other parameters influencing the quality of estimates are the maximal distance at which the
semi-variograms are estimated.

Conclusions: Given the complexity of spatial scales relative to neighbourhood spatial processes, our approach offers
the possibility to incorporate existing approaches to the operationalisation of neighbourhood in quantitative analyses
while providing a measure of the part of health inequalities which could be possibly due to unmeasured spatial
exposure as well as a measure of their spatial scale.
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Background

Neighbourhood in the context of health inequalities com-
prises a complex mixture of physical, structural, and social
factors which cannot be simply defined by administra-
tive boundaries. Neighbourhood is a complex structure
but of high relevance for the evaluation of health inequal-
ities. It possesses physical and social attributes for which
pathways to health inequalities could be hypothesised [1].
Studying neighbourhood effects on health inequalities is
a booming subject in the literature, with the number of
quantitative studies increasing since Wilson published his
book on inner cities poverty in 1987 [2, 3]. While impor-
tant methodological improvements have been made in
particular the operationalisation of factors on neighbour-
hood level [1], the operationalisation of the neighbour-
hood itself remains a challenge [2, 4]. Criticism of the
current state of affairs has increased [2, 5] but no solution
has so far been proposed. A reason for this may be that
there is no unique definition of neighbourhood.

Concept of neighbourhood in studies on contextual effects
on health

The concepts of neighbourhood seen in the literature
can be classified into two groups: those based on theory
or qualitative data and those used for pragmatic reasons
because of the availability of aggregated quantitative data.

Quantitative studies on neighbourhood effects on
health rely mostly on multilevel modelling. These mod-
els assess the part of variability in health outcomes which
can be attributed to the neighbourhood [6]. For this,
neighbourhoods need to be predefined by non-crossing
geographical entities that are often determined by existing
administrative units (e.g. census tracks) to which observa-
tion can be linked and for which aggregated data is either
available or the attribute can be evaluated. This type of
definition might be relevant when the administrative enti-
ties play a role in terms of municipalities’ development
or enrolment into schools. However, it is unlikely to be
always the most relevant unit to the study of a particular
health outcome. Some critics point out that the field needs
a concept of neighbourhood based on theory [2, 4].

Chaix introduced the concept of ego-centred neigh-
bourhood [7], also known as bespoke neighbourhood [8].
This approach assumes that the most relevant spatial scale
for spatial exposure is the one close to residence. This
leads to the more recent quantitative approach by defin-
ing neighbourhood based on the idea that administrative
neighbourhoods are not relevant for daily activities and
therefore to measure exposure. This concept can be oper-
ationalised tracking the movements of participants, i.e.
their daily activity making it an ego-centred approach.
This means that each participant has his/her own neigh-
bourhood defined by various delimitations of the area
visited [7].

Page 2 of 12

Another approach is to assess particular spatial expo-
sure by establishing the relevant spatial scale. Petrovi¢ et
al. have used a multiscale approach to estimate the expo-
sure to the socio-spatial context at different ego-centred
radii using the example of exposure to neighbours with
migration history [9]. This is possible only if routine statis-
tics are available for very small units. Some qualitative
studies have shown that from the perspective of the indi-
vidual, the neighbourhood is defined first by immediate
environment composed of the block in which one lives,
and second where infrastructures like shops or schools,
are located [10]. These neighbourhoods reflect different
levels of encounters (social neighbourhoods) with fre-
quent weak ties encounters (persons with which one has
contact without being friends [11]) for the immediate
neighbourhood and far less contact for the infrastructure
neighbourhood.

Another theoretical notion often used in the litera-
ture is the one of perceived neighbourhood. This notion
does not require to define a physical neighbourhood with
boundaries. While it still consists of a physical area, it is
only represented by attributes: perceived safety, perceived
cohesion, etc. However, what neighbourhood means is not
explicitly specified. Rather this concept of neighbourhood
is individual and a perception does not need to be shared
by two persons living nearby. Being easy to operationalise,
relationship between perceived neighbourhood attributes
and health are commonly studied.

Small area of health inequalities

Population subgroups that are socio-economically dis-
advantaged have a higher risk of morbidity and of pre-
mature death, relative to those who are better off [12].
Heterogeneities are not limited to groups of popula-
tions with individual level characteristics, they extend
also to the contextual level, i.e. between neighbourhoods,
cities, or regions [13, 14]. This comprises heterogeneities
with regard to ambient air or noise pollution emitted
by road traffic, the spatial accessibility to services, the
configuration of the built environment, or social pro-
cesses, for instance (the lack of) collective efficacy, conta-
gion of unhealthy behaviour, or (relative) deprivation that
depends on the nature of the neighbourhood [15].

The variety of small-area characteristics within a city
can have the positive effect of allowing diverse pop-
ulations to flourish, but some of these factors may
lead to heterogeneities in health outcomes aside from
those due to individual characteristics which may be
inequitable. A way to measure small-area effects on health
is to examine if the health outcomes of persons liv-
ing near each other are correlated even after control-
ling for possible compositional effects (correlation due
to the correlation of individual characteristics of peo-
ple living near each other). Health inequalities are not a
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feature of the individual rather a feature of a society as a
whole.

The development of interventions and policies to reduce
small-area health inequalities necessitates to know what
is a relevant spatial scale for those inequalities [16] and
move away from a one size fits all neighbourhood concept
[17]. Knowing for example what is a relevant ego-centred
spatial scale to improve physical activity allows improve-
ments in the built environment which is relevant for this
outcome.

The aim of this work is to present a new approach to
evaluate spatial effects on health outcomes in particu-
lar the presence of contextual health inequalities in an
urban setting. With spatial effects we mean all measured
or unmeasured effects related to the place of residence
whether they are due to the composition of the neighbour-
hood (e.g. socio-economic status of other inhabitants)
or due to the place itself (e.g. noise or air pollution).
The latter are usually called neighbourhood effects. The
approach presented here is a new application of existing
methods more commonly used in ecology or agricul-
ture. Analogue to assessing the relationship between soil
and growth of plants by modelling the spatial correla-
tion structure of plant growth, considering the correlation
structure based on the Euclidean distance between per-
sons living in an urban area to measure effect of the urban
setting might be relevant due the high density of the popu-
lation. This approach loses its relevance when considering
rural populations, however, because the large physical dis-
tance between "neighbours” means that the actual location
point of one person has no relevance for the nearest living
neighbour. Unlike in the usual analysis of spatial cor-
relation for health outcomes, the unit of observation is
the individual and therefore the geo-location of places of
residence must be available.

An ego-centred approach to modelling the spatial cor-
relation structure of health outcomes consists of fitting
a parametric model to a semi-variogram. This provides
two parameters to define an average ego-centred (individ-
ual) neighbourhood (radius and strength of the structure).
In the following, we will present the method and the
results of a simulation study aimed at showing the reli-
ability of the method for sparse observational data of
different sample sizes and densities. Then we illustrate
the method with data on birthweight from the “Gesund-
heit von Babys und Kindern in Bielefeld” (BaBi) birth
cohort [18].

Methods

Concept

Our conceptual approach is ego-centred and based on the
spatial correlation of health outcomes. We measure how
much the health outcome of a person correlates the health
outcomes of her/his neighbours on average over a city.
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This approach neither necessitate the definition of bound-
aries nor an a priori definition of neighbourhood. Still, it
allows to measure spatial effects on health outcomes if a
spatial correlation structure remains after individual char-
acteristics have been accounted for. To achieve this, we
obtain a parametric characterisation of the spatial corre-
lation structure. The correlation neighbourhood can be
statistically approached using a parametric model for the
so-called semi-variogram [19], a method commonly used
in ecology and agriculture. The semi-variogram is a way to
model the spatial correlation structure between (health)
outcomes collected from geo-located observations and
provides an estimate for the distance H (the practical
range) such that two persons separated by a distance
greater than H will have, on average, practically uncor-
related health outcomes. Also a measure of the strength
of the correlation known as relative structure variability
(RSV) is obtained by taking the ratio between the part
of the total variance which is spatially structured (see
below for more details). People with similarities tend to
live close to each other: income is a factor that predicts
whether one lives in a affluent part of a town, or the
presence of a large ethnic community could encourage
people of the same ethnic origin to move to a certain area.
This means that individual characteristics possibly show
a strong spatial correlation structure, which in turn could
explain a spatial correlation of health outcome if these
characteristics are predictors of health. Using a regression
analysis allows to model the correlation structure of the
part of the outcomes which is not explained by observed
individual characteristics. The residuals of a correlation
model will themselves show a spatial correlation struc-
ture if the variables in the model do not explain all of the
spatially structured variability in the data. This approach
allows to incorporate existing methods for the evaluation
of neighbourhood effects.

Statistical model

Under certain conditions of the underlying stochas-
tic model which we will not show in detail here
(the outcome is generated from a second order sta-
tionary random field with the consequence that the
correlation between two points depends only on the
Euclidean distance between these two points, see [19],
Chap 4, Section 2), the correlation C(4) between the
health outcome Z(s) at the observation point s and
the health outcome Z(s') at the observation point s’
can be assumed to be only dependent on the dis-
tance (lag) # = ||s — s|| between the two obser-
vations. For this, a constant variance of the health
outcome is assumed over the whole surface where
the correlation structure is being modelled. Parame-
ters describing the spatial structure of the correla-
tion function C(4) can be estimated using a paramet-
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ric model for the semi-variogram y (k) defined for a
lag /1 as

y ) = 3 Varl 2(s) — Z(s + o]

which can be estimated from the data. The empirical
semi-variogram y (%) and the correlation function C(h)
have under the second order stationary assumption the
following relationship:

C(h) = co+0¢ — y(h)

where 002 + ¢9 = Var[Z(s)] is the variance of the health
outcome assumed to be constant everywhere over the sur-
face studied and ¢y = y (0), called the nugget effect, is the
value of the semi-variogram when the distance between
two observations tend to 0. Then ag = C(0), the asymp-
totic correlation between two observation on the same
point, is the so-called partial sill. An unbiased estimate
(Matheron’s estimator) for the empirical semi-variogram
at distance h between two observations is given by [20]

1
.
Y= SR

(si,5))eN(h))

{Z(si) = Z(sp)}

where N (%) is the set of all observations lagging at distance
h. In practice lag intervals are used (bins). A paramet-
ric model can be fitted to the estimated semi-variogram
function from which we can obtain the so called practical
range: the distance H above which the correlation between
two observations is less than 5% of the total variance. This
model (exponential) is the following:

P(h) = & + 63 (1 — exp(—gh)).

The practical range for this model is given by

1 68
H = —log Aioq
) 0.05(Co + 655)
A measure of the proportion of the total variance with a
spatial structure is given by the relative structured vari-

ability (RSV): partial sill/total variance which described
the degree of spatial structure:

The practical range and partial sill from an exponential
model are in effect estimated from a empirical semi-
variogram. Practical range and partial sill depend on the
data available but also on the choice of bins in which semi-
variogram points are estimated. The shape of the semi-
variogram depends on the maximal distance at which the
semi-variogram is estimated. The goodness of fit of an
exponential model to fit the semi-variogram can be made
visually.

Page 4 of 12

Simulations study: method

The aim of following simulation study is to establish how
the method can be used in practice and provides recom-
mendations about practicable sample sizes and sampling
design (density of observations). The simulation were
formed using R version 3.4.3 [21].

Data simulation

We simulate a complete population living in a grid "city”
of 1000 units. A total number of 250 thousand points
were generated by using the runif function with min-
imal value 0 and maximal value 1000. Then, a corre-
lation structure was generated with RMexp (var=40,
scale=6) + RMnugget (var=60) and added to the
generated points with the RFsimulate function of the
package RandomFields [22].

Sampling method
First, the generated points (see “Data simulation” section)
were divided into a rectangular grid with a total number
of K? grids. A two-staged sampling method was chosen.
The first stage involved a probability proportional to the
size (PPS) design with no replacement in which a number
of grids were sampled, and the second stage was a ran-
dom sampling with no replacement in which points were
drawn from the sampled grids into the subsample. The
choice of a PPS design and a subsequent random sam-
pling ensured that each point of the total data set had the
same probability of being drawn into the sub-sample when
ng >> N (i.e. sampling points without replacement
can be treated as sampling points with replacement) with
k € {1,..., ng}, nx being the number of points in the k-th
grid and ny g, being the number of drawn points from the
k-th grid.

The following shows which parameters were considered
for the partial sample selection:

e subsample size: 500,1000,5000,9500
e total number of grids: ny = 1,4, 9,16, 25
e number of grids for sampling: ny g, = 1, ..., ng.

Variogram parameter estimation
For each parameter composition, the sampled points were
first converted into geodata using the as . geodata func-
tion from the package geoR [23]. Variograms were then
computed by using the variog function of the geoR
package with the arguments
estimator.type='classical’
max .dist={20,40,60,80,100 },
meaning that a total of 5 variograms were computed for
each parameter combination. With these variograms, the
parameters were estimated using the variofit function
of the geoR package with the arguments
ini.cov.pars=c(40+60,6)
cov.model='exponential”’.

and

and
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Simulation
With all the above mentioned parameters (see Sampling
method and Variogram parameter estimation) a total
number of 440 parameter combinations was reached. The
sampling and semi-variogram parameter estimation was
repeated 500 times for each parameter combination. For
comparison, a simulation study for no spatial correlation
by setting

RMexp (var=0, scale=6) +
RMnugget (var=60)
in Data simulation and

ini.cov.pars=c(60,6)
in Variogram parameter estimation was also performed.

The reliability of the method was assessed by the per-
centage of datasets for which the estimation algorithm did
provide invalid results (difference between estimated total
variance and sample variance larger than 10% of the sam-
ple variance), bias, mean square error and coverage of the
95 confidence interval. Results were presented in terms of
sample size, density and maximal distance used to obtain
the estimates.

BaBi study

We illustrate the concept of the correlation neighbour-
hood by modelling the spatial correlation structure of
the birthweights from the BaBi (Gesundheit von Babys
und Kindern in Bielefeld) birth cohort [18]. Over a
three-year period (2013-16), 977 pregnant women or
women who just gave birth were recruited in three hos-
pitals or in gynaecologists/midwives practices in Biele-
feld, North Rhine-Westphalia, Germany. Informed writ-
ten consent from all the participants was obtained for
the interviews and access to their medical records. The
study protocol was approved by the ethical committee
of the Medical Faculty of Muenster University and the
Data Protection Board of Bielefeld University. Using the
addresses provided by the participants, we obtained the
geo-coordinates which were subsequently geo-masked in
order to anonymise the data. We modelled the spatial cor-
relation structure of (non-adjusted) birthweights. Then
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using the student residuals of a linear regression model in
which birthweight is regressed on gestational age, gravitas
(first pregnancy vs. subsequent pregnancies), body mass
index (BMI), income and age of the mother, we obtained
adjusted estimates of the parameters of the correlation
neighbourhood. The aim of the analysis was to see if there
is an indication of spatial effects associated with birth-
weight and then to evaluate the relevant spatial scale for
this effect, if it exists.

Results

Simulation study

The aim of the simulation study was to assess how the cor-
relation neighbourhood method would work for the type
of data collected in social epidemiology. The results of the
simulation are provided in Figs. 2, 3, 4, and 5. The sam-
pling procedure was designed so that different degrees
of clustering were achieved (see examples in Fig. 1). The
sampled points belonged to a various numbers of sampled
grids units of various sizes. This way we obtained a range
of densities and a range of number of clusters. Because
density (and not the number of clusters) was the most rel-
evant factor to determine the reliability of the method, the
results are presented in terms of density of observations
per km?.

Factors determining the reliability of the estimates
include the maximal distance between observations used
for the estimation of the empirical semi-variogram as it
determines the shape and the precision of each point, the
global sample size, and the density of observed points
within the selected areas.

Non-estimated cases

Here we include all simulated samples for which at least
one of the estimated exponential model parameters was
improbable, indicating that the algorithm did not con-
verge. This is mostly a problem for the sample size of
500 where the rate of non-convergence does not go much
below 20%. The rate of non-convergence decreases with
density of observations and varies with maximal distance.

Ramdom sampling
over the whole surface

Three randomly chosen sampling
units among 9

Fig. 1 Three examples of possible sampling area from the simulations scenarios

Five randomly chosen sampling
units among 16
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When non-convergence occurs it is advisable to change
the maximal distance or the number of bins used to
estimate the empirical semi-variogram.

With a sample size of 1000 or more also for low sam-
pling density, the rates of non estimation can be well under
20% and decrease with increasing maximal distance. For
larger sample sizes even with small densities the algo-
rithm will always converge, if the maximal distance is large
enough.

Bias

Considering only cases where the algorithm did converge,
the bias for the overall variance remains for all sample
sizes and maximal distances less than 1% with the excep-
tion of the smallest maximal distance and a sample size
of 500. Non-biased estimates of partial sills and nuggets
(Fig. 2) are obtained for the smallest maximal distance
and a sample size of 5000 and more. For smaller sample
size the density plays a major role on bias, indicating that
sampling only a small number of areas is important if the
sample size is small. The estimation of the scale parameter
(which provides the range) depends strongly on the maxi-
mal distance used. For larger sample size the bias remains
small (Fig. 3).

The role the maximal distance plays on the bias of esti-
mates is important. Some bias can be induced using a
too large maximal distance as seen for large sample sizes.
Hence it is recommended to reduce the maximal distance
so long as the sill is still reached.
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Mean squared error and coverage of the 95% confidence
interval

The standard error for all estimated parameters is
obtained as the standard deviation over all simulations
for a given scenario. MSE estimates show that the stan-
dard errors depend not just on the sample size but
also on the density and the maximal distance. The
coverage of the 95% confidence interval is near 95% for
the smallest maximal distance and there are indications
that, when the density is large enough, the coverage can
be acceptable even for smaller sample sizes (Figs. 4 and 5).

Typeierror

Data were also simulated with a nugget effect equal to the
total variance in order to check the probability to see a
spatial correlation structure which did not exist. The rate
of non convergence was between 18 and 25% for all sam-
ple sizes and density. Only for a sample size of 500 and the
lowest density it is possible to conclude that a spatial cor-
relation structure exists. A mean nugget effect of up to 10
was found. However for larger densities or sample sizes
the mean nugget did not exceed 1 (compared to a variance
of 60).

Summary

The reliability of the method depends on both the sam-
ple size and the density of observations on the sam-
pled geographical areas. In other words if the sample
size is small (<1000), the method remains reliable if the
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observations are close to each other. Another element of
reliability is the maximal distance used for the estimation
of the parameters. It is therefore important to fit the expo-
nential model to a range of maximal distances and choose
the one for which the best fit is obtained. The reliability of
the estimates can be checked by visualising how well the
estimated curves fit the data and how much the estimated
total variance (nugget plus partial sill) deviates from the
sample variance.

Spatial correlation structure of birthweight data
The participants in the BaBi Study were living less than
100m away from an average of 1.7 fellow participants with
numbers ranging from 0 to 6. Looking at a distance of
200 m, this increased to an average of 3.3 participants
with numbers ranging from 0 to 15. In terms of average
density we can consider how many fellow participants are
found in a radius of 564m (Surface of one km2). On aver-
age 13 participants lived within this radius ranging from
1 to 52. With just under 1000 observations, according to
our simulation study, the method should provide reliable
estimates of the parameters of the correlation neighbour-
hood. Figure 6 provides a spatial representation of the
birthweight data using interpolation (R package akima
[24]). The mean birthweight was 3 400 g with standard
deviation 473 ranging from 970 to 4 830 g.

After estimating the semi-variogram for several max-
imal distances (350 to 650 m) and fitting exponential

models, the best maximal distance to detect an exponen-
tial structure for the spatial correlation of birthweight was
500m for a semi-variogram estimated over 11 lag inter-
vals (See Fig. 7). We obtained an estimated nugget effect of
3552 and a partial sill of 3222 providing a RSV of 44%. The
total estimated variance was 2% higher than the sample
variance of birthweight. The range was 197m (see Table 1)

In a further step we regressed birthweight on gestational
age, BMI of the mother, gravida and income and fitted an
exponential model to the semi-variogram for the Student
residuals of the linear regression model using the same
maximal distances as for the raw birthweight. The results
are presented in the left column of Fig. 5 for maximal
distances ranging from 350 to 550m. The best maxi-
mal distance to detect an exponential structure for the
spatial correlation of the residuals was 350m for a semi-
variogram estimated over 13 lag intervals (See Fig. 7). We
obtained an estimated nugget effect of 0.60 and a par-
tial sill of 0.40 providing a RSV of 40%. The estimated
total variance was 1% lower than the standardised residual
variance of 1 with a range of 124m. In order to evaluate
the validity of the exponential model we need to observe
the fit of the exponential model to the estimated semi-
variogram in Fig. 5. For both the unadjusted and adjusted
models, the estimate for the range is adequate while a
high variability for small distances between observations
indicate that the nugget effects might be underestimated.
However an exponential model fits the data well showing



Sauzet et al. BMC Medical Research Methodology (2021) 21:112

Page 9 of 12

representation. Scale: x-axes 15 km, y-axis 20 km

Fig. 6 Representation of the BaBi data using interpolation with geo-coded location of observation. Birthweight increases with darkness of the

that birthweights are spatially correlated. After adjusting
for some socio-demographic factors, we obtained a corre-
lation structure for the residuals which showed a weaker
structure than the raw data: a reduced maximal distance
and a smaller RSV. This means that a smaller part of the
total variance is spatially structured and that the effect
of one location on birthweight is less far reaching. This
occurs because some (but not all) of the spatial correlation
seen for birthweight is due to the spatial correlation struc-
ture of the covariates we adjusted for. In particular income
tends to be spatially correlated due in particular to house
prices or desirability of an area.

Discussion

In this article we have introduced the use of semi-
variograms to assess the presence of spatial effects on
health without having to specify any particular geograph-
ical units to define neighbourhoods. Using simulated and
real data we have explained and illustrated the potential
of modelling the characteristics of the spatial correlation
structure over a city. Because this approach provides two
parameters to measure neighbourhood/spatial effects on
health inequalities and offer a measure of scale for these
effects, we use the term “correlation neighbourhood”.

Small area health inequalities occur if the factors related
to the place of residence affect health outcomes indepen-
dently of individual circumstances and it is assumed that
if such effects exist, then the health outcome of neigh-
bours will be correlated through spatial effects of place.
However this correlation decreases when the distance
between neighbours increases. Thus the characteristics
of the spatial correlation structure of health outcomes
provide an indicator of the presence of small-area health
inequalities.

Modelling the spatial correlation structure of a health
outcome provides a measure of how much a health out-
come is correlated to the health of one’s neighbours. It
is a way to assess if and how much the health outcome
tend to be clustered (potentially meaning strong health
inequalities due to the context of residence) or weakly
correlated (indicating that there might be little health
inequalities due to the context of residence). The random
variance estimated using multilevel models is a measure of
unobserved factors within predefined geographical units
[6]. But an advantage of the parameters of the corre-
lation neighbourhood is that they provide measures of
intensity of the spatial effects and of a scale on average
over a city.
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Fig. 7 Empirical semi-variograms and fitted exponential models for different maximal distances for birthweight (left) and birthweight adjusted for
gestational age, BMI, gravida, and income
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Table 1 Parameters of the exponential semi-variogram for birthweight data for varying maximal distances (bold face: best fitting

model)

Birthweight Residuals*
Max. distance Range RSV Bias™* Max. distance Range RSV Bias™*
650 m 183 m 0.56 0.02 550m 599 m 0.04 -0.03
600 m 172m 0.49 0.01 500 m 100 m 0.54 -0.02
550m 17Tm 0.56 0.01 450 m 108 m 0.55 -0.01
500 m 197 0.44 0.02 400 m 9 m 0.53 -0.03
450 m 259 m 047 0.06 350m 124 m 0.40 -0.01

* Residual after adjusting for gestational age, BMI, gravida, and income. ** Relative bias: (partial sill+ nugget - variance)/variance

The method in practice

As seen in the simulation study, it is important to fit
exponential models for semi-variograms estimated on the
basis of different maximal distances or numbers of bins.
Then compare the differences between the estimated total
variance (partial sill plus nugget) with the sample vari-
ance to obtain the best goodness of fit. Visual checks
should also be performed to see how well the model
fits the semi-variogram. Like the multilevel approach to
assess unmeasured spatial effects, the correlation neigh-
bourhood approach has so far a descriptive character.
Hypothesis testing or obtaining confidence intervals for
semi-variograms is difficult and not reliable in the con-
text of sparse non-experimental data. In case of difficul-
ties with the estimation one can either change the size
of the bins to increase the number of pairs of observa-
tions within the lag intervals or increase the maximum
distance at which the semi-variogram is estimated (thus
automatically increasing the number of observation per
bin). The parameters obtained depend on the bins chosen
to estimate the semi-variogram. If the estimated semi-
variogram is not smooth, the parameters obtained for the
exponential semi-variogram from various distances may
be substantially different. In this case the model obtained
may be inadequate. It is of little relevance to model only
the correlation structure of raw outcomes as it will merely
show that individual predictors of health outcomes are
spatially correlated. In practice, the spatial correlation of
residuals of regression models should be modelled. Hence,
the correlation neighbourhood approach is an additional
tool to the existing methodologies available to assess spa-
tial or neighbourhood effects - including multilevel mod-
els to account for predictors obtained for administrative
units (e.g. unemployment rates).

The sample size and density of observational health data
is usually limited. Our simulations have shown that an
important factor for sampling scheme would be to opti-
mise the density of observations to improve the reliability
of the method if the sample size is limited. However we
have shown that the method works reliably with sample
size of 500 if the density is sufficient.

Conclusion

Given the complexity of spatial scales relative to neigh-
bourhood exposure [25] our approach offers the possibil-
ity to incorporate existing approaches to the operational-
isation of neighbourhood in quantitative analyses while
providing a measure of the part of health inequalities
that may be due to unmeasured spatial exposure. More-
over, the method provides a measure of small-area health
inequalities.
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