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Abstract 

Background:  The Interrupted Time Series (ITS) is a quasi-experimental design commonly used in public health to 
evaluate the impact of interventions or exposures. Multiple statistical methods are available to analyse data from ITS 
studies, but no empirical investigation has examined how the different methods compare when applied to real-world 
datasets.

Methods:  A random sample of 200 ITS studies identified in a previous methods review were included. Time series 
data from each of these studies was sought. Each dataset was re-analysed using six statistical methods. Point and 
confidence interval estimates for level and slope changes, standard errors, p-values and estimates of autocorrelation 
were compared between methods.

Results:  From the 200 ITS studies, including 230 time series, 190 datasets were obtained. We found that the choice 
of statistical method can importantly affect the level and slope change point estimates, their standard errors, width of 
confidence intervals and p-values. Statistical significance (categorised at the 5% level) often differed across the pair-
wise comparisons of methods, ranging from 4 to 25% disagreement. Estimates of autocorrelation differed depending 
on the method used and the length of the series.

Conclusions:  The choice of statistical method in ITS studies can lead to substantially different conclusions about the 
impact of the interruption. Pre-specification of the statistical method is encouraged, and naive conclusions based on 
statistical significance should be avoided.

Keywords:  Autocorrelation, Interrupted Time Series, Public Health, Segmented Regression, Statistical Methods, 
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Background
Randomised trials are the gold standard design for 
investigating the impact of public health interventions, 
however, they cannot always be used. For example, 
interventions that impact an entire country, or those 

that have occurred historically, may preclude the ability 
to randomize or include control groups [1]. An alterna-
tive non-randomised design that may be considered in 
such circumstances is an interrupted time series (ITS) 
[2–4]. In an ITS design, data are collected at multiple 
time points both before and after an interruption (i.e. an 
intervention or exposure). Modelling of the data in the 
pre-interruption period allows estimation of the under-
lying secular trend, which when modelled correctly and 
extrapolated into the post-interruption time period, 
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yields a counterfactual for what would have occurred in 
the absence of the interruption. Differences between the 
counterfactual and observed data at various points post 
interruption can be estimated (e.g. immediate and long-
term effects), having accounted for the underlying secu-
lar trend.

A characteristic of data collected over time is that the 
data points tend to be correlated [5]. This correlation – 
referred to as autocorrelation or serial correlation – can 
be positive (whereby data points close together in time 
are more similar than data points further apart) or, infre-
quently, negative (whereby data points close together 
are more dissimilar than data points further apart). 
Autocorrelation may be observed between consecutive 
data points or over longer periods of time (e.g. seasonal 
effects). This characteristic of the data needs to be con-
sidered when designing and analysing ITS studies. If 
positive autocorrelation is present, larger sample sizes 
are required to provide power at the desired level [6] and 
if autocorrelation is not accounted for in the statistical 
analysis, standard errors may be underestimated [7].

Segmented linear regression models are often fitted 
to ITS data using a range of estimation methods [8–11]. 
Commonly ordinary least squares (OLS) is used to esti-
mate the model parameters [10]; however, the method 
does not account for autocorrelation. Other statistical 
methods are available that attempt to account for auto-
correlation in different ways (e.g. correction of standard 
errors, directly modelling the errors).

Turner et  al. undertook a statistical simulation study 
examining the performance of statistical methods for 
analysing ITS data, where the methods were those com-
monly used in practice or had shown potential to per-
form well [12]. This simulation study provided insight 
into how these statistical methods performed under 
different scenarios, including different level and slope 
changes, varying magnitudes of underlying autocorrela-
tion and series lengths. In combination with these find-
ings, evidence from an empirical evaluation can provide a 
more comprehensive understanding of how the methods 
operate. In particular, empirical evaluations – in which 
methods are applied to real-world data sets and the 
results are compared – allow assessment of whether the 
choice of method matters in practice, and the degree to 
which they may do so.

To our knowledge, there has been no study that has 
empirically compared different methods for analysing 
ITS data when applied to a large sample of real-world 
data sets. We therefore undertook such an evaluation, 
where we aimed to compare level and slope change esti-
mates, their standard errors, confidence intervals and 
p-values, and estimates of autocorrelation, obtained from 

the set of statistical methods used in the Turner et  al. 
simulation study [12].

Methods
Repository of ITS studies
A sample of 200 ITS studies identified in a previous meth-
ods review were eligible for inclusion in the current study 
[10]. In brief, ITS studies were identified from a search 
of the bibliometric database PubMed between the years 
2013 and 2017. Studies were stratified by year, assigned 
random numbers, sorted (in ascending order) by these 
numbers, and screened until we identified 40 studies that 
met the eligibility criteria. The criteria for inclusion were: 
1) studies in which there were at least two segments sep-
arated by a clearly defined interruption with at least three 
points in each segment; 2) observations were collected 
on a group of individuals at each time point; and 3) the 
study investigated the impact of an interruption that had 
public health implications.

For each of the 200 studies, the first reported ITS of 
each outcome type (binary, continuous, count or pro-
portion) was included, resulting in 230 ITS. Data were 
collected on the study characteristics and design of the 
ITS studies, types of outcomes, models used, statistical 
methods employed, effect measures reported, and the 
properties of included graphs. Further details of the study 
methods are available in the study protocol and results 
papers [10, 13].

Methods to obtain time series data
Time series data from the included studies were obtained 
using three methods. First, we collated datasets that were 
reported in the published paper or its supplement (e.g. 
time series data reported in tables, or as text files). Sec-
ond, we contacted all authors for whom we were able to 
obtain contact details to request datasets. We requested 
only aggregate level data (i.e. not individual participant 
data) and in the circumstance where a study included 
multiple series, we only sought data from the first time 
series reported in the paper to reduce respondent bur-
den. We sent an initial email request on the 13th Decem-
ber 2018 and a follow-up email on the 24th January 2019. 
Third, we digitally extracted datasets from published 
graphs using the software WebPlotDigitizer [14]. This 
graphical data extraction tool has been found to accu-
rately estimate the position of points on a graph [15].

If multiple datasets from the above methods were avail-
able for a particular time series, we selected the dataset 
generated using the following hierarchy: (i) published 
data, (ii) contact with authors, and (iii) digitally extracted. 
We checked the data provided by authors against the 
information reported in the publication. Where there 
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was a discrepancy, we re-contacted the authors to query 
the provided data.

Interrupted time series model
We fitted segmented linear regression models to each 
dataset using the parameterisation of Huitema and McK-
ean [7] (Eq. 1, Fig. 1):

where Yt represents the outcome that is measured 
at time point t of N time points (1 to n1 measurements 
during the pre-interruption stage, and n1 + 1 to n2 meas-
urements in the post-interruption stage), with the inter-
ruption occurring at time TI . Dt is an indicator variable 
that represents the post-interruption interval: coded as 0 
in the pre-interruption period, and as 1 in the post-inter-
ruption period. The model parameters ( β s) represent 
the baseline intercept ( β0 ); pre-interruption slope ( β1 ); 
change in level at the interruption ( β2 ), and the change in 
slope ( β3 ). The model can be extended to accommodate 
more than one interruption with the inclusion of terms 
representing additional segments.

The error term εt allows for deviation from the fitted 
model. In a first order (lag-1) autocorrelation model, the 
error at time point t ( εt ) is influenced by only the previous 
data point as εt = ρεt−1 + wt , where ρ is the magnitude 
of autocorrelation (ranging from -1 to 1) and wt repre-
sents normally distributed “white noise” wt ∼ N

(

0, σ 2
)

 . 

(1)Yt = β0 + β1t + β2Dt + β3[t − TI ]Dt + εt

Longer lags can be modelled or accommodated, but here 
we restrict our focus to lag-1.

Interrupted time series analysis methods
Six statistical methods were used to analyse the ITS data-
sets assuming first order autocorrelation (lag-1) (Table 1). 
The methods were chosen because they have commonly 
been used in practice [8–11] or because of they have been 
shown (through numerical simulation) to have improved 
confidence interval coverage relative to the methods 
commonly used in practice [12]. The methods were:

•	 ordinary least squares regression (OLS), which pro-
vides no adjustment for autocorrelation, and in the 
presence of positive autocorrelation will yield stand-
ard errors that are too small [16];

•	 OLS with Newey-West standard errors (NW), which 
yield OLS estimates of the model regression param-
eters, but with standard errors that are adjusted for 
autocorrelation [17];

•	 Prais-Winsten (PW), a generalised least squares 
method, which provides an extension of OLS where 
the assumption of independence across observations 
is relaxed [18, 19];

•	 restricted maximum likelihood (REML) (with and 
without the small sample Satterthwaite approxima-
tion (Satt)), which addresses bias in maximum likeli-
hood estimators of variance components by separat-

Fig. 1  Graphical depiction of a segmented linear regression model fitted to ITS data. Secular trends (indicated by solid blue lines) for the pre and 
post interruption periods (indicated by the vertical dashed line) are estimated from the data (indicated by blue crosses). A counterfactual trend 
line (extrapolation of the pre-interruption trend line shown as a dashed blue line) is compared with the post interruption trend to estimate the 
immediate and longer term impact of the interruption. Model parameters are indicated as the intercept ( β0 ); pre-interruption slope ( β1 ); change in 
level at the interruption ( β2 ), and the change in slope ( β3)
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ing the log-likelihood into two terms (one of which 
is only dependent on variance parameters) and using 
the appropriate number of degrees of freedom (d.f.) 
[20, 21]; and,

•	 autoregressive integrated moving average (ARIMA), 
which explicitly models the influence of previous 
time points by including regression coefficients from 
lagged values of the dependent variable and errors 
[22].

Analysis of the ITS datasets
We implemented the segmented linear regression model 
(Eq. 1, Sect. 2.3) by setting up datasets for each ITS study 
with the following variables:

•	 outcome variable;
•	 time variable t, beginning at 1 and incrementing by 1 

up to time point N;
•	 an interruption time indicator Dt ; coded 0 pre-inter-

ruption and 1 post-interruption; and,
•	 a slope change variable [t − TI ]Dt, equal to zero at 

the time of the interruption ( TI ) and incrementing by 
1 up to time point N.

We used information provided in the corresponding 
manuscript to determine the interruption time. In stud-
ies with multiple interruptions, we only included the first 
interruption (and adjacent periods). In studies with a 
transition period, we extended the model to include an 
additional segment for the transition period; however, 
when calculating the level and slope changes, we ignored 
this segment (further details available in Additional file 3: 
Appendix 1).

We analysed each dataset using the six estimation 
methods described in Sect. 2.4. For REML with the Sat-
terthwaite approximation, when the computed degrees 
of freedom were less than two, we substituted these with 
the value two to avoid overly conservative confidence 
limits and hypothesis tests. We only included analyses 
for which the estimate of autocorrelation was strictly 

between -1 and + 1. The datasets were analysed in Stata 
15 [23] (see Additional file 1 for analysis code).

Comparison of results from the different ITS analysis 
methods
The results of interest were point estimates of the imme-
diate level change (β2) and slope change (β3), their asso-
ciated standard errors, confidence intervals and p-values, 
and the estimated lag-1 autocorrelation. Across the ITS 
studies, different outcomes were measured, necessitat-
ing the need to standardise the estimates of slope and 
level change for comparison across the datasets. This was 
achieved for each dataset by dividing parameter estimates 
by the root mean square error (RMSE) estimated from a 
segmented linear regression model using OLS. We also 
standardised the direction of effect. This was achieved 
for each pairwise comparison of methods by multiplying 
both estimates by -1 if the first method’s estimate was less 
than zero. We also repeated these analyses standardising 
to the direction of the second method’s estimate.

Estimates of level and slope changes, and their standard 
errors
We compared the level and slope change point estimates 
with their standard errors using visual displays and tabu-
lation. Specifically, we used Bland Altman scatter plots 
[24] to assess pairwise agreement in the results (stand-
ardised estimates of level change, slope change, and their 
standard errors) between the different statistical meth-
ods. For each pairwise comparison, the difference in the 
two estimates was plotted against the average of the two 
estimates (e.g. ‘difference in estimates of level change 
from OLS and PW’ versus ‘average of estimates of level 
change from OLS and PW’). In the case of the standard 
errors, we first log-transformed these to remove the rela-
tionship between the variability of the differences and the 
magnitude of the standard errors [24]. The mean differ-
ence and limits of agreement (average difference ± 1.96 
× standard deviation of the differences) were calculated 
and overlaid on the plots. These pairwise comparisons 
were displayed in a matrix of plots to show comparisons 

Table 1  Statistical methods, adjustments for autocorrelation and abbreviations used

Statistical method Autocorrelation adjustment Abbreviation

Ordinary least squares None OLS

Newey-West standard error adjustment with lag-1 autocorrelation NW

Generalised least squares Prais-Winsten PW

Restricted maximum likelihood Lag-1 autocorrelation model REML

Lag-1 autocorrelation model with small sample Satterthwaite 
approximation

REML-Satt

Autoregressive integrated moving average Lag-1 autocorrelation model (i.e. ARIMA(1,0,0)) ARIMA
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of each method with all others. Plots in the top triangle 
of the matrix illustrate agreement between the effect esti-
mates (either level change or slope change), and plots in 
the bottom triangle illustrate the agreement between the 
standard errors.

We also investigated whether series length impacted 
the difference in level and slope change estimates 
between each pair of methods. A matrix of scatterplots 
of the differences versus the (log) length of series (over-
laid with a local regression (LOESS) smoothed curve) for 
each pairwise method comparison was used to visually 
examine this relationship.

Confidence Intervals
We visually compared the width of the confidence inter-
vals from the different statistical methods. For each data-
set and pairwise comparison, a ratio of the confidence 
interval widths from the two methods was calculated and 
then scaled so that the comparison method confidence 
interval spanned -0.5 to 0.5.

p‑values
We compared the p-values of the effect estimates 
between the methods by categorising the p-values based 
on commonly used levels of statistical significance. First, 
we categorised the p-values at the 5% level of statisti-
cal significance (i.e. < 5%, ≥ 5%), and second, we catego-
rised p-values using a finer gradation (i.e. p-value < 1%, 
1% ≤ p-value < 5%, 5% ≤ p-value < 10%, p-value ≥ 10%). 
For each pairwise comparison between methods, we 
calculated the percentage of datasets where there was 
agreement in the categories of statistical significance 
(i.e. the percentage of datasets where the p-value for the 
effect estimate was < 0.05 for both methods or the p-value 
was ≥ 0.05 for both methods). Further, we calculated 
kappa statistics to assess agreement beyond chance. We 
use the following adjectives when describing the results: 
0.41–0.6 moderate agreement, 0.61–0.8 substantial 
agreement, 0.81–1.0 almost perfect agreement [25].

Autocorrelation coefficient estimates
We calculated and tabulated medians and interquar-
tile ranges for estimates of lag-1 autocorrelation for the 
three methods that yield these estimates (ARIMA, PW, 
REML). The summary statistics are reported for all series 
as well as being restricted to series with ≥ 24 points and 
series with ≥ 100 points, in order to assess whether series 
length impacted the magnitude of the estimates. A scat-
terplot of autocorrelation versus (log) length of series 
(overlaid with a LOESS curve) was used to visually exam-
ine this relationship. A further scatter plot was generated 
that depicted the REML estimates of autocorrelation 
along with their confidence intervals.

Results
Time series dataset acquisition
Of the 230 ITS identified in the review [10] we obtained 
10/230 (4%) datasets directly from the publication (e.g. 
time series data reported in tables), 50/230 (22%) through 
email contact with the authors, and 184/230 (80%) 
through digital data extraction. For some series (n = 47), 
multiple datasets from the different sources were availa-
ble (Fig. 2). Using our hierarchy for selecting the source of 
the dataset when multiple series were available resulted 
in 190 unique datasets, with 8/190 (4%) sourced directly 
from the publication, 45/190 (24%) through email contact 
with authors, and 137/190 (72%) from digital data extrac-
tion. We were unable to obtain 40 of the 230 ITS included 
in the review because the data were not reported in the 
paper, could not be obtained from authors, or could not 
be digitally extracted. Five of the datasets obtained from 
the authors could not be used: three due to errors in 
the data; two because the data were too complex to fit a 
simple segmented linear regression model. Forty-six of 
the datasets could not be digitally extracted, 27 studies 
included graphs with insufficient resolution to digitally 
extract data; 8 studies had no graph; 8 studies had sum-
mary data only (e.g. a summary graph showing a small 
number of annual figures was provided when monthly 
data was used in the analysis); and 3 studies had graphs 
but did not plot data points.

Characteristics of the included ITS
The characteristics of the ITS studies with available data-
sets for re-analysis are compared to all 200 ITS studies 
in Table  2. No major differences were found. The types 
of study interventions were similar, as were the types of 
time intervals. The number of time points per series were 
lower in the studies with available datasets than in all 
ITS studies (median 41, IQR [25, 71] versus 48, IQR (30, 
100)). The length of the segments used to calculate the 
estimates for the first interruption were slightly shorter 
in the series with available data than in all series (16, IQR 
(10, 28) versus 18 IQR (10, 34)).

Comparison of results from the different ITS analysis 
methods
Estimates of level and slope changes, and their standard 
errors
The median values of the absolute value of the standard-
ised effect estimates for level change ranged from 1.22 
to 1.49 across the statistical methods (Table 3). For slope 
change, the median value of the absolute value of the 
standardised effect estimates was 0.13 for all statistical 
methods (Table 3). Pairwise comparisons were limited to 
a minimum of 171 datasets because at least one statistical 
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method failed to converge, failed to yield standard errors 
or estimated the magnitude of autocorrelation to be out-
side the range -1 to + 1 in 19 of the datasets (Table 4).

Pairwise comparisons of level change, slope change, 
and their standard errors for each of the five methods 
were made (Figs.  3 and 4). REML with the Satterth-
waite approximation was excluded from these compari-
sons because it only adjusts the width of the confidence 
intervals, and not the standard errors. There were small 
systematic differences in estimates of level change in 
the pairwise comparisons between the methods, REML 
had slightly smaller and OLS slightly larger effect esti-
mates than the other methods (Fig. 3, top triangle, and 
Table  5). The largest limits of agreement between all 
methods (REML vs OLS) were ± 1.11. Expectedly, there 
was no difference in the standardised level change esti-
mates between OLS and NW (since they use the same 
estimator for β2 ) and a very small difference between 
PW and ARIMA (since their point estimation methods 
are almost equivalent). There were no systematic differ-
ences in slope change estimates between the methods 
(Fig.  4, top triangle and Table  6). Limits of agreement 
for slope change were generally similar across the pair-
wise comparisons of methods (but again with the excep-
tions of the comparison between OLS and NW, and PW 
and ARIMA).

There were systematic differences in the estimates of 
standard error of level change across some pairwise com-
parisons of methods (Fig. 3, bottom triangle, and Table 5). 
Notably, the ARIMA standard errors were systemati-
cally larger compared with all other methods; however, 
this difference was smaller when compared with REML 
(geometric mean ratio standard errors for level change of 
1.15). Aside from the pairwise comparison between PW 
and REML, the limits of agreement between the methods 
showed that the methods could yield large differences 
in the standard errors, particularly so for ARIMA com-
pared with the other methods. For example, the limits of 
agreement for ARIMA compared with NW showed that 
the differences in standard errors could be large, ranging 
from 61% smaller to 460% larger. Similar patterns were 
observed for slope change (Fig.  4 bottom triangle, and 
Table 6).

Our visual examination of the impact of series length 
on the differences in level change estimates between 
pairs of methods showed that series length was not 
associated with the differences, with the exception of 
comparisons with the REML method. For these com-
parisons, the variability of the differences decreased 
for longer series (Additional file  3: Appendix  2). The 
variability in differences in slope change estimates for 
all pairwise comparisons between methods (except 

Fig. 2  Flowchart of selected datasets. Green boxes denote the number of included studies and time series, blue boxes denote the numbers 
corresponding to dataset collection, and orange boxes denote the numbers corresponding to dataset exclusion.a Some studies included multiple 
interrupted time series, hence the number of time series is greater than the number of studies. b As multiple methods were potentially available for 
obtaining an interrupted time series dataset (e.g. some datasets were obtained via both email contact and digital extraction), the numerators across 
the data sources do not sum to 230. c For each interrupted time series, only one data source was selected for analysis, yielding a total of 190 unique 
time series datasets. The hierarchy for the data source selection was (i) published data, (ii) contact with authors, and (iii) digital extraction
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between ARIMA and PW), tended to decrease with 
increasing series length.

When we repeated the analysis standardising the direc-
tion of effect to the second method’s estimate, we found 
the results did not importantly change (Additional file 3: 
Appendix 3).

Confidence Intervals
Pairwise comparisons of the confidence interval width 
for the estimated level change between the methods 
reflected the patterns observed when comparing the 
standard errors (Fig. 5). ARIMA generally yielded wider 
confidence intervals with 64%, 70% and 71% of the 
ARIMA confidence intervals being wider than OLS, NW 
and PW respectively. ARIMA confidence intervals widths 
were similar to REML. REML with the Satterthwaite con-
fidence interval adjustment yielded the widest confidence 
intervals of all methods; only 37% of ARIMA confidence 
intervals were wider than REML with Satt. This pattern 
was also seen when comparing the confidence interval 
widths for the estimated slope change between the meth-
ods (Fig. 6).

p‑values
The percentage agreement in statistical significance 
(dichotomised at the 5% significance level) for level 

Table 2  Characteristics of interrupted time series studies and series

Abbreviations: ITS Interrupted time series, IQR Inter-quartile range
a Our definition of an exposure is limited to exposures or events that are not under investigator control (e.g. earthquakes, financial crises, tsunamis, environmental 
chemicals). We use the term ‘investigator’ loosely to include researchers, clinicians and policy makers

Study level characteristics All ITS studies
(n = 200)

ITS studies with available
data (n = 166)

n % n %

Type of interruption

Exposurea 12 6 10 6

Intervention 188 94 156 94

Intervention type

Policy change 104 52 82 49

Practice change 40 20 36 22

Communication 29 15 24 14

Organisation of care 13 7 12 7

Clinical intervention 2 1 2 1

Time interval type

Daily 3 2 2 1

Weekly 9 5 6 4

Two weekly 1 1 1 1

Monthly 120 60 96 58

Quarterly 31 16 28 17

Six monthly 3 2 3 2

Annually 20 10 17 10

Other 12 6 12 7

Can’t determine 1 1 1 1

Series level characteristics ITS
(n = 230)

ITS with available data
(n = 190)

median IQR median IQR

Number of time points per series 48 (30, 100) 41 (25, 71)

Number of time points in the segments used to calculate 
estimates for the first interruption

18 (10, 34) 16 (10, 28)

Table 3  Effect estimate summaries

Abbreviations: IQR Interquartile range, ARIMA Autoregressive integrated 
moving average, OLS Ordinary least squares, PW Prais-Winsten, REML Restricted 
maximum likelihood
a  The NW and OLS methods use the same estimator for level and slope change, 
as do REML and REML-Satt

N Absolute value of effect estimate

Level change
Median (IQR)

Slope change
Median (IQR)

ARIMA 189 1.40 (0.63,2.90) 0.13 (0.05,0.26)

OLS (NW)a 190 1.49 (0.60,3.03) 0.13 (0.06,0.27)

PW 189 1.33 (0.57,2.81) 0.13 (0.05,0.26)

REML (REML-Satt)a 181 1.22 (0.47,2.56) 0.13 (0.05,0.25)



Page 8 of 19Turner et al. BMC Med Res Methodol          (2021) 21:134 

Table 4  Number of available comparisons for the statistical methods investigated (n = 190)

Abbreviations: ARIMA Autoregressive integrated moving average, OLS Ordinary least squares, NW OLS with Newey-West standard error adjustments, PW Prais-Winsten, 
REML Restricted maximum likelihood, REML-Satt Restricted maximum likelihood with Satterthwaite small sample adjustment

Number of comparisons ARIMA OLS NW PW REML REML-Satt

ARIMA 189 189 188 185 175 175

OLS 190 189 186 175 175

NW 189 186 174 174

PW 186 171 171

REML 175 175

REML-Satt 175

ARIMA
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Fig. 3  Bland Altman plot of standardised level change. Plots in the top triangle (blue points) show the difference in point estimates (row method 
– column method) on the vertical axis and average of the parameter estimates on the horizontal axis. Plots in the bottom triangle (orange points) 
show differences in standard errors on the vertical axis (= log(ratio of standard errors)) (column method – row method) and the average of the 
log of the standard errors on the horizontal axis. Red horizontal lines depict the average, red dashed lines depict the 95% limits of agreement 
(calculated as the average ± 1.96*standard deviation of the differences). Grey lines indicate zero. Abbreviations: ARIMA, autoregressive integrated 
moving average; OLS, ordinary least squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum 
likelihood. Note that REML with the Satterthwaite approximation is not presented because it only makes an adjustment to the confidence intervals, 
and not the standard errors
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Fig. 4  Bland Altman plot of standardised slope change. Plots in the top triangle (blue points) show the difference in point estimates (row method 
– column method) on the vertical axis and average of the parameter estimates on the horizontal axis. Plots in the bottom triangle (orange points) 
show differences in standard errors on the vertical axis (= log(ratio of standard errors)) (column method – row method) and the average of the 
log of the standard errors on the horizontal axis. Red horizontal lines depict the average, red dashed lines depict the 95% limits of agreement 
(calculated as the average ± 1.96*standard deviation of the differences). Grey lines indicate zero. Abbreviations: ARIMA, autoregressive integrated 
moving average; OLS, ordinary least squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum 
likelihood. Note that REML with the Satterthwaite approximation is not presented because it only makes an adjustment to the confidence intervals, 
and not the standard errors

Table 5  Mean of differences in level change estimates between methods (row method-column method) (top triangle) and geometric 
mean ratio of standard errors for level change between methods (column method/row method) (shaded bottom triangle) with 95% 
limits of agreement. The NW and OLS methods use the same estimator for level and slope change, as do REML and REML-Satt (not 
shown), which also use the same estimator for standard errors
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change in the pairwise comparisons between methods 
ranged from 79.3% (NW versus REML-Satt) to 97.1% 
(PW versus REML) (Table  7). Corresponding kappa 
statistics ranged from 0.59 (moderate agreement) for 
NW versus REML-Satt to 0.94 (almost perfect agree-
ment) for PW versus REML. Discordance in statisti-
cal significance in comparisons with REML-Satt and 

ARIMA arose because these methods yielded larger 
p-values (Fig.  7). For example, in the comparison of 
NW with REML-Satt, 20% of NW analyses yielded a 
p-value ≤ 0.05 when the REML-Satt p-value was > 0.05, 
while only 1% of NW analysis yielded a p-value > 0.05 
when the REML-Satt p-value was ≤ 0.05.

Table 6  Mean of differences in slope change estimates between methods (row method—column method) (top triangle) and 
geometric mean ratio of standard errors for slope change between methods (column method/row method) (shaded bottom triangle) 
with 95% limits of agreement. The NW and OLS methods use the same estimator for level and slope change, as do REML and REML-
Satt (not shown), which also use the same estimator for standard errors

Table 7  Pairwise agreement in statistical significance of estimates of level change between statistical methods. P-values associated 
with estimates of level change were categorised at the 5% level of statistical significance (i.e. <5%, ≥5%). Cells in the upper triangle 
contain the percentage of series for which the p-value for level change was < 0.05 for both methods or the p-value was ≥0.05 for 
both methods. Denominators are reported in Table  4. Cells in the lower triangle (shaded) contain kappa statistics. Abbreviations: 
ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, OLS with Newey-West standard error adjustments; 
PW, Prais-Winsten; REML, restricted maximum likelihood; REML-Satt, restricted maximum likelihood with Satterthwaite small sample 
adjustment
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In general, the agreement was less for slope change 
compared with level change (Table  8). The percentage 
agreement in statistical significance (at the 5% signifi-
cance level) for slope change in the pairwise compari-
sons between methods ranged from 75.3% (NW versus 
REML-Satt) to 93.6% (PW versus REML). Correspond-
ing kappa statistics ranged from 0.50 (moderate agree-
ment) for NW versus REML-Satt to 0.87 (almost 
perfect agreement) for PW versus REML. The direction 
of disagreement was similar to that of level change with 

ARIMA and REML-Satt methods yielding larger p-val-
ues more often than the other methods (Fig. 8).

Our examination of agreement using a finer gradation 
of statistical significance categories showed that when 
there was discordance between methods, this gener-
ally occurred in an adjacent category (e.g. one method 
with a p-value ≤ 0.01 and the comparison method with 
0.01 ≤ p-value < 0.05). However, there were some exam-
ples where there was discordance in non-adjacent 
categories. For level change these comparisons were 
ARIMA versus NW, NW versus REML-Satt, and OLS 
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Fig. 5  Pairwise confidence interval comparisons for level change. Each plot displays up to 190 confidence intervals (CIs) (depicted as vertical lines), 
with each scaled so that the confidence interval from the reference method spans -0.5 to 0.5 (shaded area). The reference method is the column 
method (e.g. the plot in the second row, first column shows OLS CIs (blue) compared to ARIMA (purple)). Vertical lines falling entirely within the 
shaded area have smaller confidence intervals than the comparison (left of the vertical dashed line), while lines extending beyond the shaded area 
have larger confidence intervals than the comparison (right of the vertical dashed line). White dots indicate the point estimate. Black vertical lines 
indicate scenarios in which the point estimate from one method does not lie within the confidence interval of the other. Abbreviations: ARIMA, 
autoregressive integrated moving average, purple; OLS, ordinary least squares, blue; NW OLS with Newey-West standard error adjustments, light 
blue; PW, Prais-Winsten, light green; REML, restricted maximum likelihood, orange; REML-Satt, restricted maximum likelihood with Satterthwaite 
small sample adjustment, red
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versus REML and REML-Satt (Fig.  7), while for slope 
change these comparisons were the same, but also 
with the addition of PW versus REML-Satt (Fig. 8). The 
p-values yielded from ARIMA and REML-Satt were 
generally larger than the other methods, and by con-
trast, the p-values for NW, and to a lesser extent OLS, 
tended to be smaller (Additional file 3: Appendix 4).

Autocorrelation coefficient estimates
Three of the statistical methods (ARIMA, PW, REML) 
yielded estimates of autocorrelation (Table 9, Fig. 9). The 
REML method estimated consistently larger magnitudes 
of autocorrelation than the other methods (median and 

inter-quartile range (IQR) of 0.2 (-0.01, 0.54) compared 
with 0.04 (-0.15, 0.30) for ARIMA and 0.05 (-0.14, 0.33) 
for PW). When restricting the examination of autocor-
relation to datasets where all three methods could be 
compared (n = 171 datasets), the summary statistics were 
essentially unchanged.

The difference between REML and the other methods 
was more pronounced for shorter series (Table 9, Fig. 9). 
All methods tended to yield negative values for short 
data series (fewer than approximately 12 data points). In 
longer data series (≥ 100 data points) all methods yielded 
similar estimates.
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Fig. 6  Pairwise confidence interval comparisons for slope change. Each plot displays up to 190 confidence intervals (CIs) (depicted as vertical lines), 
with each scaled so that the confidence interval from the reference method spans -0.5 to 0.5 (shaded area). The reference method is the column 
method (e.g. the plot in the second row, first column shows OLS CIs (blue) compared to ARIMA (purple)). Vertical lines falling entirely within the 
shaded area have smaller confidence intervals than the comparison (left of the vertical dashed line), while lines extending beyond the shaded area 
have larger confidence intervals than the comparison (right of the vertical dashed line). White dots indicate the point estimate. Black vertical lines 
indicate scenarios in which the point estimate from one method does not lie within the confidence interval of the other. Abbreviations: ARIMA, 
autoregressive integrated moving average, purple; OLS, ordinary least squares, blue; NW OLS with Newey-West standard error adjustments, light 
blue; PW, Prais-Winsten, light green; REML, restricted maximum likelihood, orange; REML-Satt, restricted maximum likelihood with Satterthwaite 
small sample adjustment, red
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Confidence intervals for the REML estimates of auto-
correlation show that for most studies with fewer than 48 
data points the confidence limits extend below and above 
zero (Fig.  10). For longer series, as expected, the confi-
dence intervals are narrow, with many excluding no and 
negative autocorrelation estimates.

Discussion
Summary and discussion of key findings
We re-analysed 190 ITS using six statistical methods and 
compared estimates of immediate level change, slope 
change, their associated standard errors, confidence 

intervals and p-values, and the estimated lag-1 autocor-
relation. We found important inconsistency in these esti-
mates across the methods, such that the interpretation of 
the findings in some series may differ depending on the 
chosen method.

On average, there were small systematic differences in 
estimates of level change across the statistical methods, 
with OLS yielding slightly larger estimates, and REML 
slightly smaller estimates compared with the other meth-
ods. For slope change, all methods yielded, on average, 
similar estimates. For some pairwise comparisons, the 
limits of agreement indicated large differences could 
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Fig. 7  Pairwise agreement in statistical significance of estimates of p-value comparisons for level change. In the top triangle, boxes are divided into 
16 cells with p-values categorised using a fine gradation of statistical significance, namely, p-value ≤ 0.01, 0.01 < p-value ≤ 0.05, 0.05 < p-value ≤ 0.1, 
p-value > 0.1. In the bottom triangle, boxes are divided into four cells with p-values categorised at the 5% level of statistical significance 
(i.e. ≤ 5%, > 5%). Each cell within a box contains the percentage of datasets falling within the row and column defined statistical significance levels. 
The colour bands surrounding the left/right and top/bottom side of the plot indicate the two methods being compared. Concordant results 
are shown in blue. Discordant results are shown as either white (0–5% discordance), orange (5–10% discordance), red (10–20% discordance) 
or purple (over 20% discordance). For example, within the box comparing ARIMA and OLS in the bottom triangle, in 12% of the datasets the 
ARIMA method yields a p-value > 0.05 while the OLS method yields a p-value ≤ 0.05 (bottom right cell). Numbers may not add to 100 due to 
rounding. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW OLS with Newey-West standard error 
adjustments; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite adjustment
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arise. This was particularly notable in the comparisons 
between REML and the other methods. There were sys-
tematic differences in the standard errors between most 
methods, and the limits of agreement also indicated large 
differences could arise. ARIMA yielded systematically 
larger standard errors compared with all other methods, 
although the difference with REML was not as large. Of 
note, the PW yielded, on average, similar standard errors 
as OLS. This was perhaps surprising given PW provides 
adjustment for autocorrelation (which OLS does not), 
and in a numerical simulation study investigating the per-
formance of these methods, PW was shown to perform 

better than OLS for data series approximately longer than 
24 points [12]. The results in our empirical investigation 
therefore likely reflect the influence of shorter data series.

The differences in point estimates and standard errors 
led to differences in the confidence interval widths, p-val-
ues, and statistical significance. Reflecting the pattern 
observed with standard errors, the ARIMA confidence 
intervals were wider compared with the other meth-
ods. However, REML with the Satterthwaite adjustment, 
which adjusts the t-distribution degrees of freedom used 
in the calculation of the confidence interval to account 
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Fig. 8  Pairwise agreement in statistical significance of estimates of p-value comparisons for slope change. In the top triangle, boxes are divided into 
16 cells with p-values categorised using a fine gradation of statistical significance, namely, p-value ≤ 0.01, 0.01 < p-value ≤ 0.05, 0.05 < p-value ≤ 0.1, 
p-value > 0.1. In the bottom triangle, boxes are divided into four cells with p-values categorised at the 5% level of statistical significance 
(i.e. ≤ 5%, > 5%). Each cell within a box contains the percentage of datasets falling within the row and column defined statistical significance levels. 
The colour bands surrounding the left/right and top/bottom side of the plot indicate the two methods being compared. Concordant results 
are shown in blue. Discordant results are shown as either white (0–5% discordance), orange (5–10% discordance), red (10–20% discordance) 
or purple (over 20% discordance). For example, within the box comparing ARIMA and OLS in the bottom triangle, in 14% of the datasets the 
ARIMA method yields a p-value > 0.05 while the OLS method yields a p-value ≤ 0.05 (bottom right cell). Numbers may not add to 100 due to 
rounding. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW OLS with Newey-West standard error 
adjustments; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite adjustment
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for uncertainty in estimation of the standard error, 
yielded the widest confidence intervals.

Our results show that naively basing conclusions on 
statistical significance could lead to a qualitatively dif-
ferent interpretation. There was important discordance 
in statistical significance (at the 5% level) across many 
of the pairwise method comparisons. As expected, the 

discordance was greatest between the methods that 
yielded larger standard errors or adjusted for uncertainty 
in estimation of the standard error (i.e. ARIMA, and 
REML with SW, respectively) and the other methods.

For long series (≥ 100 data points), all methods yielded 
similar estimates of autocorrelation. The methods yielded 
different estimates with short to medium length series 

Table 8  Pairwise agreement in statistical significance of estimates of slope change between statistical methods. P-values associated 
with estimates of level change were categorised at the 5% level of statistical significance (i.e. ≤ 5%, > 5%). Cells in the upper triangle 
contain the percentage of series for which the p-value for level change was ≤ 0.05 for both methods or the p-value was > 0.05 for 
both methods. Denominators are reported in Table  4. Cells in the lower triangle (shaded) contain kappa statistics. Abbreviations: 
ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, OLS with Newey-West standard error adjustments; 
PW, Prais-Winsten; REML, restricted maximum likelihood; REML-Satt, restricted maximum likelihood with Satterthwaite small sample 
adjustment

Table 9  Autocorrelation coefficient estimates (REML estimates of -1 and 1 are excluded, PW estimates < -1 are excluded)

Statistical method Autocorrelation coefficient (ρ) estimate

All available datasets Series with ≥ 24 points Series with ≥ 100 points

N median (IQR) N median (IQR) N median (IQR)

ARIMA 189 0.04 (-0.15,0.30) 154 0.07 (-0.10,0.36) 31 0.19 (0.04,0.54)

PW 186 0.05 (-0.14,0.33) 155 0.07 (-0.10,0.38) 31 0.19 (0.04,0.54)

REML 175 0.20 (-0.01,0.54) 147 0.20 (-0.01,0.53) 31 0.23 (0.08,0.57)

Restricted to datasets where all methods can be compared
ARIMA 171 0.05 (-0.14,0.30) 147 0.06 (-0.11,0.35) 31 0.19 (0.04,0.54)

PW 171 0.05 (-0.14,0.31) 147 0.07 (-0.11,0.35) 31 0.19 (0.04,0.54)

REML 171 0.20 (-0.01,0.54) 147 0.20 (-0.01,0.53) 31 0.23 (0.08,0.57)
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(i.e. < 100 data points), with the ARIMA and OLS auto-
correlation estimates being substantially smaller than 
REML. For any ITS, we can conceive that the data col-
lected and analysed in the study is a subset of a much 
longer series. If we make the assumption that there is a 
stable true underlying autocorrelation, then autocorre-
lation estimated from different series lengths, should be 
similar. We generally found this to be the case for REML; 
however, for ARIMA and PW, estimates of autocorrela-
tion were notably smaller in short series compared with 
long series. This suggests that ARIMA and PW may be 
problematic for short series. The stability of REML esti-
mates over the different series lengths is suggestive of it 
being the preferable estimator, which has been shown in 
numerical simulation studies to be the case [12, 26].

The magnitude of autocorrelation estimates from these 
ITS public health datasets, with a median of 0.23 (IQR 
0.08 to 0.57, restricted to series with ≥ 100 data points, 
n = 31 REML method), indicate that autocorrelation 
should not be ignored in the design or analysis of ITS 
studies. Despite this, in nearly 50% (113/230) of the series 
included in the review, autocorrelation was not consid-
ered, or the method to adjust for autocorrelation could 
not be determined [10]. Furthermore, only 1.5% (3/200) 
of studies provided evidence of a sample size calculation, 
and only two of these considered autocorrelation. Simi-
lar findings have also been observed in other systematic 
reviews. Jandoc et al. [8] found that only 146/220 (66.4%) 
ITS studies reported testing for autocorrelation, Hudson 
et al. [11] found that 63/115 (55%) considered autocorre-
lation, Ewusie et al. [9] found that only 812/1365 (59.5%) 
checked for autocorrelation and Hategeka et al. [27] simi-
larly found that 66/120 (55%) checked or adjusted for 
autocorrelation.

Strengths and limitations
There are several strengths to our study. First, the reposi-
tory of ITS studies was randomly sampled from PubMed, 
thus the findings are likely to be generalisable to ITS stud-
ies indexed in this database. Second, we used a variety of 
methods to obtain the time series data (primarily digital 
data extraction [14]) to optimise the number of datasets 
retrieved, which resulted in a large percentage of datasets 
being retrieved (190/230; 83%). Finally, we investigated a 
range of statistical methods, including those commonly 
used in practice [8–11], and compared their results using 
metrics of interest to researchers (point estimates, stand-
ard errors, confidence intervals, p-values, statistical sig-
nificance) to provide a comprehensive picture of how the 
methods compared.

One limitation of this study is that our findings may 
not be generalisable to ITS studies outside of public 
health. For example, this would be the case if influencing 

characteristics (e.g. series length) of ITS studies in pub-
lic health differ to other disciplines. Another limitation 
is that although the methods we included are those that 
are commonly used in practice [10], other methods are 
available (for example, forecast [28] or Bayesian [29] 
methods). We purposely excluded the Cochrane-Orcutt 
method (which is used in practice [10]), because the 
PW method is essentially the Cochrane-Orcutt method, 
except that the PW method retains the first observation, 
and so is advantageous for short time series [19]. A fur-
ther limitation of our study is that we fitted a segmented 
linear regression model, assuming a continuous data type 
with lag-1 autocorrelation, to all datasets. This model 
may have differed to that used in the original publica-
tion, and furthermore, may not have been the best fitting 
model. However, our re-analysis was not intended to spe-
cifically address the research question(s) of the original 
publications, but as a means of comparing different sta-
tistical methods.

Implications for practice
Our research has shown that in this set of ITS studies, the 
choice of statistical method can importantly affect the 
findings. This could lead to ‘bias in the selection of the 
reported result’ [30], where the reported result is chosen 
based on its magnitude, direction of effect, or statisti-
cal significance. Publication of protocols with detailed 
statistical analysis plans provide a mechanism for study 
authors to engender trust in the reported results (i.e. 
when there is consistency between the planned and used 
analysis methods). Protocols also allow readers to assess 
whether there were any changes to the analysis, and if so, 
what the legitimacy of those changes were.

Protocols should include specification of the primary 
analysis method, and may include a set of sensitivity 
analyses that allow examination of the robustness of the 
findings (e.g. level and slope change estimates and their 
confidence intervals) to the chosen analysis method. 
The primary analysis method needs to be carefully cho-
sen considering characteristics of the ITS. For example, 
Turner et al. [12] found through a numerical simulation 
study that the length of the series is an important fac-
tor for deciding on the statistical method. Sensitivity 
analyses may be particularly important for short series, 
where estimates from the methods are likely to be most 
different.

While protocols and statistical analysis plans are now 
common for randomised trials [31], in our review of ITS 
studies, none of the 200 studies reported having a pub-
lished protocol. Protocols can be published in a peer-
reviewed journal, published on a pre-print server (e.g. 
medRxiv), or registered in an online registry (e.g. open 
science framework).



Page 18 of 19Turner et al. BMC Med Res Methodol          (2021) 21:134 

Finally, we recommend that time series data, including 
dates of the interruptions and any transition periods be 
made available alongside the publication. At a minimum, 
any plots of ITS data should follow graphing recommen-
dations [32] to facilitate data extraction using digitising 
software [14].

Implications for future research
Future research examining factors that may modify the 
magnitude of autocorrelation (e.g. type of outcome) 
would be useful. Knowledge of these factors would 
facilitate informed predictions about the likely magni-
tude of autocorrelation for an individual ITS study with 
particular characteristics, which could be used to more 
accurately determine the required sample size. Simi-
lar research has been undertaken investigating factors 
that modify intra-cluster correlations (ICCs) in cluster 
randomised trials, which has led to generalizable ‘rules-
of-thumb’ on the selection of ICCs for sample size calcu-
lations in cluster trials [33].

Conclusion
ITS studies are commonly used in public health research 
to assess the impact of an intervention or exposure. A 
range of statistical methods are available to analyse ITS, 
and our study has shown that the choice of method can 
importantly affect the level and slope change estimates, 
their standard errors, width of confidence intervals and 
p-values. These differences may lead to qualitatively dif-
ferent conclusions being drawn about the impact of the 
interruption. Pre-specification of the statistical method 
is encouraged, and naive conclusions based on statistical 
significance should be avoided.
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