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Abstract 

Background:  Mortality is a key component of the natural history of COVID-19 infection. Surveillance data on COVID-
19 deaths and case diagnoses are widely available in the public domain, but they are not used to model time to death 
because they typically do not link diagnosis and death at an individual level. This paper demonstrates that by compar-
ing the unlinked patterns of new diagnoses and deaths over age and time, age-specific mortality and time to death 
may be estimated using a statistical method called deconvolution.

Methods:  Age-specific data were analysed on 816 deaths among 6235 cases over age 50 years in Victoria, Australia, 
from the period January through December 2020. Deconvolution was applied assuming logistic dependence of case 
fatality risk (CFR) on age and a gamma time to death distribution. Non-parametric deconvolution analyses stratified 
into separate age groups were used to assess the model assumptions.

Results:  It was found that age-specific CFR rose from 2.9% at age 65 years (95% CI:2.2 – 3.5) to 40.0% at age 95 years 
(CI: 36.6 – 43.6). The estimated mean time between diagnosis and death was 18.1 days (CI: 16.9 – 19.3) and showed 
no evidence of varying by age (heterogeneity P = 0.97). The estimated 90% percentile of time to death was 33.3 days 
(CI: 30.4 – 36.3; heterogeneity P = 0.85). The final age-specific model provided a good fit to the observed age-stratified 
mortality patterns.

Conclusions:  Deconvolution was demonstrated to be a powerful analysis method that could be applied to exten-
sive data sources worldwide. Such analyses can inform transmission dynamics models and CFR assessment in emerg-
ing outbreaks. Based on these Australian data it is concluded that death from COVID-19 occurs within three weeks of 
diagnosis on average but takes five weeks in 10% of fatal cases. Fatality risk is negligible in the young but rises above 
40% in the elderly, while time to death does not seem to vary by age.
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Background
Understanding the natural history of an infectious dis-
ease is critical for modelling, intervention and con-
trol. A key element of the natural history is mortality, 
which includes both the risk of death among infected 

individuals and the time to death among fatal cases. For 
COVID-19, the risk of death is known to have a steep age 
gradient [1–3] and various studies in selected cohorts 
that link onset and death at an individual level have been 
used to obtain information about the time to death [2–
6]. Nonetheless, there has not yet been a comprehensive 
model of age-specific COVID-19 mortality developed 
using a data source that captures complete information 
within a specific population.
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In this paper we analyse age-specific surveillance data 
from Australia on new COVID-19 case diagnoses and 
deaths over time. Despite their wide availability globally, 
surveillance data are not used for assessing time to death, 
because they do not link time of diagnosis and time of 
death at an individual level. We overcome this complex-
ity by using an analysis method called deconvolution. 
This is an analysis method that has been used for other 
purposes during the COVID-19 pandemic [7–9] and has 
a long history for infectious disease surveillance data 
dating back to the early analyses of the AIDS pandemic 
[10–12]. The advantage of using deconvolution to assess 
mortality is that it does not require prospective follow-up 
data that links information on diagnosis and death at an 
individual level. Instead, the method relies on comparing 
the unlinked patterns of new diagnoses and deaths within 
a population.

A deconvolution analysis begins by modelling the daily 
observed death counts in terms of a combination of the 
daily observed case counts and the unknown fatality 
distribution, which is a probability distribution specify-
ing both the probability of death and the distribution of 
the time to death. Deconvolution then involves separat-
ing the fatality distribution from the observed counts by 
choosing an estimate that best aligns the modelled death 
counts to the observed death counts. Using age-specific 
data, this yields an age-specific estimate of the COVID-
19 fatality distribution, which specifies the probability of 
death and the distribution of the time to death, both as 
functions of age.

Our primary analysis involves fitting a mortality model 
to age-specific COVID-19 surveillance data from the 
state of Victoria, Australia. This analysis leads to new 
insights about age-specific COVID-19 mortality and 
provides useful information that is relevant to mortality 
assessment in other countries. In particular, assessments 
of case fatality risk (CFR) often use an estimate of the dis-
tribution of time between diagnosis and death to adjust 
CFR estimates for censoring of the death time in recent 
cases [5, 8, 13–15]. Furthermore, a model of age-specific 
mortality provides information that can inform the cali-
bration of mathematical models of COVID-19 transmis-
sion dynamics [16, 17]. Our fitted model is a useful aid 
for these and other epidemiological activities central to 
monitoring and control of COVID-19.

Methods
Surveillance data
The study used surveillance data from the state of Vic-
toria, Australia. The Department of Health and Human 
Services in Victoria provides a line listing of the date and 
the 10-year age group of all confirmed cases for pub-
lic download [18]. This was used to construct the daily 

age-specific case series stratified by age group. The cor-
responding line listing for deaths is not provided directly, 
however, the department makes a daily announcement 
about the age group of any new COVID-19 deaths occur-
ring in the state, from which it is possible to construct a 
line listing of the age group and date of all deaths in the 
state. Such a line listing is available for public download 
[19], and was used to construct the daily age-specific 
death series with age group classified into the same 
10-year categories as the case data.

According to standard definitions of elimination [20], 
COVID-19 was eliminated from Victoria when the state 
experienced 42 consecutive days with zero new cases, 
from 30 October – 10 December, 2020. It was present 
again from 11 December when a new outbreak began 
from an imported case. The Victorian data series ending 
on 10 December may therefore be viewed as a completed 
outbreak. Since elimination of the virus from a popula-
tion is unusual globally, this makes the Victorian data 
series a valuable resource for studying fatality risk. At any 
given time, most populations have active cases for which 
the time of death has yet to be observed and is therefore 
right-censored. In contrast, the Victorian population as 
of 10 December had no active cases, which means that 
the crude case fatality risk, calculated as the ratio of total 
deaths to total cases, is not subject to the usual underes-
timation bias arising from right-censoring of death times 
in active cases [21]. This situation makes estimation of 
the age-specific fatality distribution using the Victorian 
data series more reliable than would be the case for an 
active outbreak. Accordingly, this study used data over 
the period 25 January 2020, when the first case occurred, 
through to 10 December 2020.

Fatality distribution
The primary focus of the analysis is the fatality distri-
bution, which is a probability distribution that captures 
information about both the probability of death and the 
time to death among fatal cases. The fatality distribution 
is technically a sub-distribution, which is a probability 
distribution with total probability mass less than one, 
due to the fact that not all COVID-19 infections lead to 
death. Sub-distributions are common in competing risks 
analysis, such as cause-specific mortality, where individu-
als can only experience one of a number of possible event 
types [22]. In the context of COVID-19, not all infections 
lead to death because there is a competing endpoint of 
recovery. This means that the fatality distribution has 
total probability mass equal to the probability of death, 
which is less than one.

The age-specific fatality distribution is defined in terms 
of two outcomes, the time T  from diagnosis to death (in 
days) and the endpoint E of the infection, which is either 
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“Death” or “Recovery”. The fatality distribution is then 
the cumulative sub-distribution function of T  when E = 
Death, which is also referred to as the cumulative inci-
dence function. In an age-specific context, this function 
depends on both the time t since diagnosis and the age a 
at diagnosis:

Using standard conditional probability rules, this leads 
to the basic relationship that will be used to specify a 
model of the fatality distribution:

The age-specific fatality distribution specified by Eq. (1) 
is a fundamental quantity that allows a range of informa-
tion about COVID-19 mortality to be obtained. The risk 
of mortality within t days of diagnosis for an individual of 
age a is simply F(t, a) . The age-specific case fatality risk 
(CFR), also called the case fatality rate or ratio, is speci-
fied by

The cumulative distribution function of the time to 
death among cases with E = Death is

This is a genuine probability distribution with total 
probability mass equal to one, because it specifies the 
distribution of time to death only among fatal cases. 
Summary measures from this distribution, such as the 
mean, standard deviation and percentiles, provide sta-
tistical summaries of the time to death among fatal 
cases.

Model assumptions
The definition of the fatality distribution in Eq.  (1) 
requires modelling assumptions to fit it to data. We will 
assume a parametric model with a gamma probabil-
ity distribution for the time to death among fatal cases, 
and a logistic (sigmoidal) relationship between the case 
fatality risk and age. A gamma time to death distribution 
has been the most common choice in past analyses of 
linked data on COVID-19 mortality [5, 6, 15], although 
other choices have also been explored, including the log-
normal and Weibull distributions [6]. Since all three dis-
tributions are right-skewed, unimodal and positive it is 
unlikely that the data will possess sufficient sensitivity to 
differentiate between them. Simulation results discussed 

F(t, a) = Pr(T ≤ t, E = Death
∣

∣age = a).

(1)
F (t, a) = Pr(T ≤ t|E = Death , age = a)

× Pr(E = Death|age = a)

CFR(a) = lim
t→∞

F(t, a)

FD(t, a) =
F(t, a)

CFR(a)

below and reported in the Supplementary Information 
(Additional File 1) support this. Nonetheless, alternatives 
to the gamma distribution could be incorporated into 
the methods described below, particularly if poor model 
fit was detected. Likewise, the choice of a logistic rela-
tionship between case fatality and age is a natural one, 
although in principle other sigmoidal relationships could 
also be explored. As will be shown, the good model fit for 
the current data set provides a compelling justification 
for the gamma-logistic model.

The logistic age-specific CFR model is specified in 
terms of the parameters L0 ,  L1 and L2 as

In the logistic model (2) the parameter L0 specifies the 
upper limit of the CFR as age increases, while L0 and 
L1 govern the location and speed with which the CFR 
increases with age. The gamma distribution for the time 
to death may be specified in terms of the parameters G1 
and G2 as

Using the two components of the fatality distribution 
model specified in Eqs. (2) and (3), together with Eq. (1), 
we obtain the parametric model in terms of the param-
eters (L0, L1, L2,G1,G2)

In the gamma model specified by (3), the parameter G1 
is the rate parameter for which larger values correspond 
with a smaller mean, while the parameter G2 is the shape 
parameter for which larger values correspond with a 
larger mean. Both G1 and G2 may depend on the age a if 
the time to death depends on age, however, we will also 
explore models in which the distribution of the time to 
death is constant over age, so that FD(t, a) = FD(t) , and 
the model of the fatality distribution is then the product 
of a time-dependent term and an age-dependent term.

Deconvolution
Deconvolution is a statistical analysis method that has 
been used for COVID-19 and other pandemics, for the 
purpose of reconstructing infection incidence based on 
the observed case series and an assumed known incu-
bation period distribution [7, 11]. This process is called 
back-projection or back-calculation. Such analyses use 
the fact that the infection incidence and the case series 
are linked by the incubation period distribution, so that if 

(2)

CFR(a) = Pr(E = Death
∣

∣age = a) =
L0

1+ exp(L1 + L2a)

(3)FD(t, a) =

∫

t

0G
G2
1 uG2−1exp(−G1u)du

∫∞

0 G
G2
1 uG2−1exp(−G1u)du

(4)F(t, a) = FD(t, a)× CFR(a)
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the case series and the incubation distribution are known, 
then the infection incidence can be reconstructed.

In the current deconvolution analysis, we use an adap-
tation of these methods applied to the situation where 
we have a case series and a death series that are linked 
by an unknown fatality distribution. Since the case series 
and the death series are observed, we can use them to 
estimate the unknown fatality distribution. Algorithms 
for this type of analysis were recently presented for CFR 
assessment, using adaptations of related methods devel-
oped previously for AIDS [23–25]. Software is also avail-
able to implement these algorithms, in the R package 
covidSurv [26].

The deconvolution analysis is based on the convolution 
relationship linking the death series and the case series 
through the fatality distribution. To define this relation-
ship we use a discrete time scaled = 1, 2, . . . , n , corre-
sponding to the days on which counts are available, and 
discrete ages  a = a1, a2, . . . , am , corresponding to the 
midpoints of m age groups. The case and death data are 
then the n×m matrices {Cdi; d = 1, . . . , n, i = 1, . . . ,m} 
and  {Ddi; d = 1, . . . , n, i = 1, . . . ,m} , where Cdi and 
Ddi are the number of cases and deaths on day d in age 
group  i . Then, using a discretised version of the fatality 
distribution

the convolution relationship for the expected (mean) 
number of deaths is

Since the Cui and Ddi values are observed, this is effec-
tively a linear regression model that can be used estimate 
the unknown Pdi coefficients, which specify the fatality 
distribution. This process of disaggregating the unknown 
Pdi coefficients from the observed Cui values is called 
deconvolution. The link between the general convolu-
tion relationship (6) and the parametric model specified 
by Eqs.  (2), (3) and (4), is the definition of Pdi in (5). In 
particular, if the fatality distribution F(d, a) is specified 
using the parametric model in Eqs. (2), (3) and (4), then 
the model (6) is a function of the parameters and fit-
ting the model (6) leads to estimates of the parameters. 
On the other hand, if the probabilities Pdi are left unre-
stricted without any parametric assumptions, then (6) 
defines a high dimensional non-parametric model for the 
fatality distribution. As described below, both of these 
approaches will be used, with the parametric analysis 
being the primary analysis.

(5)

Pdi = F
(
d, ai

)
− F

(
d − 1, ai

)

= Pr(T = d,E = Death|age group = i)

(6)E(Ddi) =

d
∑

u=1

CuiPd−u+1,i

Although the model has a linear regression structure, 
the need for non-negativity constraints on the prob-
abilities Pdi , together with the large number of coeffi-
cients, necessitate specialised numerical algorithms to 
optimally fit the expected values E(Ddi) to the observed 
values Ddi . For the non-parametric model, the core com-
putational method is the same basic algorithm used in 
back-projection of infection counts [7–9], which is an 
iterative procedure developed to fit high-dimensional 
non-negative linear Poisson regression models [23, 27]. 
Such algorithms are available within the R package cov-
idSurv [26] which imports the nnpois function from 
the package addreg to implement the core algorithm 
[28]. For the parametric model the analysis is a stand-
ard maximum likelihood analysis which can be achieved 
using in-built omnibus optimisation routines available 
in R. The approach used is to first maximise a profile 
likelihood in terms of the gamma distribution param-
eters, followed by estimation of the logistic distribution 
parameters; see the covidSurv documentation for 
further computational details [26]. These analyses were 
applied separately to data on each age group to estimate 
separate fatality distributions, as well as to data on all 
age groups assuming the same time to death distribu-
tion over age, so that Pdi = Pd . Evidence of differences 
between age groups was then assessed by visual inspec-
tion and using the Cochrane Q-statistic for heterogene-
ity [29]. 

Using the basic relationship in Eq. (6), the fatality dis-
tribution can be estimated by either imposing the para-
metric model assumptions described above, or by leaving 
the model as a high-dimensional non-parametric model. 
In order to have a parsimonious and portable model that 
is easily summarised, the primary model was paramet-
ric. However, non-parametric analyses applied to sepa-
rate age groups were also conducted to assess the validity 
of the parametric assumptions. Standard errors for the 
parameter estimates were obtained using 1000 bootstrap 
replications of the death counts, sampled with replace-
ment from the observed data [23].

Results
Data summary
Victoria experienced two waves of COVID-19 cases dur-
ing 2020, a smaller initial wave peaking in late March, 
and a larger second wave peaking in August. The pattern 
of new cases over time is depicted in Panel A of Fig.  1, 
with the pattern of new deaths displaying similar but 
lagged behaviour in Panel C of Fig. 1. At the end of the 
case series in Panel A there is a period of six consecutive 
weeks of zero cases ending in early December, signifying 
elimination of COVID-19 from the Victorian population 
at that point in time.



Page 5 of 10Marschner ﻿BMC Med Res Methodol          (2021) 21:126 	

A summary of the age-specific counts of cases and 
deaths is displayed in Table 1, and is plotted in Panels B 
and D of Fig. 1. It is noteworthy that ages of 80 years and 
older had the least cases but yet the most deaths of all age 
groups. In total there were 820 deaths from 20,344 cases, 
however, deaths among cases younger than 50  years 

were very sparse, with only 4 deaths out of 14,123 cases 
observed. Since mortality was negligible for ages younger 
than 50  years, the primary analyses were applied to the 
816 deaths among the 6235 cases aged 50 years or older. 
Age groups 50–59  years and 60–69  years had 14 and 
28 deaths, respectively, and so analyses stratified into 

Fig. 1  COVID-19 surveillance data for Victoria, Australia, 25 January—10 December 2020. Panels A and C depict weekly case and death counts, 
respectively. Panels B and D depict age-specific cumulative daily case and death counts, respectively

Table 1  Age-specific COVID-19 cases and deaths in Victoria, Australia, during 25 January through 10 December, 2020. Observed case 
fatality risk (CFR) is the ratio of deaths to cases. Fitted CFR and 95% confidence intervals (CI) are from the fitted logistic CFR model

Age group (years) Cases Deaths Observed CFR
(%)

Fitted CFR
(%)

95% CI
(%)

0 – 9 1226 0 0  < 0.01  < 0.01

10 – 19 2035 0 0  < 0.01  < 0.01

20 – 29 4772 1 0.02  < 0.01  < 0.01

30 – 39 3525 2 0.06 0.01 0.003 – 0.03

40 – 49 2551 1 0.04 0.06 0.03 – 0.13

50 – 59 2205 14 0.63 0.46 0.26 – 0.69

60—69 1297 28 2.16 2.86 2.19 – 3.50

70 – 79 902 130 14.41 13.71 11.95 – 15.80

80 – 89 1094 349 31.90 32.00 29.71 – 34.17

 > 90 737 295 40.03 40.04 36.63 – 43.57

Total 20,344 820 4.03 4.03 3.76 – 4.30



Page 6 of 10Marschner ﻿BMC Med Res Methodol          (2021) 21:126 

separate age groups were applied to the combined 42 
deaths from 3504 cases in these two age groups com-
bined (50–69 years).

Case fatality risk
The observed CFR by age group is displayed in Table 1. 
As explained in the Methods section, since COVID-19 
infection was eliminated from the Victorian population 
by the end of the data series, the observed ratio of deaths 
to cases displayed in Table  1 is a valid estimate of CFR 
without the usual underestimation bias that occurs dur-
ing an ongoing outbreak [21].

The observed age-specific CFR values displayed a logis-
tic pattern of age-dependence, as displayed in Fig. 2. The 
fitted CFR model specified by Eq. (2) is displayed in Fig. 2 
where it is seen to be a good fit to the observed data. The 
fitted CFR values for each age group, together with the 
95% confidence intervals are displayed in Table 1. Based 
on the model, CFR is estimated to have a steep age gra-
dient, rising from 2.9% in the 60–69 years age group, to 
40% in the age group age 90 years and older. Further dis-
cussion of the fitted CFR model and its contribution to 
the fatality distribution model is provided below.

Time to death
A powerful feature of the analysis is the ability to esti-
mate the distribution of the time from diagnosis to death, 
using data that have no link between diagnosis and death 
for individuals. Figure 3 displays the results of this analy-
sis, based on the gamma model for the time to death.

Panels A and B of Fig.  3 provide the estimated mean 
and 90% percentile of the distribution, for each of the 

four age groups. The estimated mean time to death was 
similar across age, varying between 17 and 19  days for 
the four age groups with no evidence of heterogeneity 
(P = 0.97). Likewise, the estimated 90% percentile of the 
time to death distribution was similar across age, vary-
ing from 33 to 36  days for the four age groups with no 
evidence of heterogeneity (P = 0.85). Given the similar 
behaviour by age, the time to death distribution was fit-
ted for all ages 50 years or older, assuming different CFR 
levels but the same time to death distribution. The esti-
mated mean time to death was 18.1  days (95% CI: 16.9 
– 19.3). The estimated 90% percentile of the distribution 
was 33.3  days (95% CI: 30.4 – 36.3). The fitted gamma 
model from this analysis is displayed in Panels C and D 
of Fig. 3.

Age‑specific fatality distribution
Combining the two components of the fatality distri-
bution in Eq.  (4), leads to a three-dimensional func-
tion specifying the probability of death as a function 
of age and time since diagnosis. This distribution is 
plotted in Fig.  4 and the estimates of the parameters 
(L0, L1, L2,G1,G2) are displayed in Table  2. As well as 
providing key features of the natural history of COVID-
19 infection, the full model specified in Table  2 may be 
used for age-specific adjustment of CFR in an ongoing 
outbreak, or non-age-specific adjustment using just the 
time to death distribution and an estimate of CFR aver-
aged over the COVID-19 age distribution of the relevant 
population.

Model checking
The final model fitted to all four age groups was based 
on parametric assumptions, so non-parametric analyses 
within each separate age group were also conducted to 
check whether the parametric model provided a good fit. 
The non-parametric estimates are displayed in Fig. 5 for 
each of the four age groups. It is worth emphasising that 
these estimates, which are analogous to Kaplan–Meier 
estimates obtained from individual follow-up data, have 
been obtained without any linked diagnosis and death 
information at an individual level. Also displayed is the 
fitted parametric model applied to all data, as displayed 
in Fig.  4 and summarised in Table  2. The parametric 
model tracks the stratified non-parametric estimates 
excellently, demonstrating the validity of the parametric 
assumptions. In particular, it can be seen from the 50% 
percentile lines in Fig. 5 that the parametric model pro-
duces almost identical median survival times to the non-
parametric models in each of the four age groups.

As a further model checking analysis, a simulation 
study was undertaken to explore whether the model fit-
ting procedure was sensitive to departures from the 

Fig. 2  Observed and fitted age-specific COVID-19 case fatality risk 
(CFR) and 95% confidence interval (CI) for Victoria, Australia, 2020
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assumed parametric assumptions. These simulations 
explored whether the assumed gamma model fit was 
adversely affected if the underlying distribution was actu-
ally a log-normal distribution. The results are presented 
in the Supplementary Information (Additional File 1) and 
provide evidence that the gamma model is robust to such 
departures from the assumptions.

Discussion
Fatality risk is a key measure of disease burden and the 
fatality distribution quantifying time to death provides 
natural history information that is crucial for effective 
pandemic monitoring and control. There is extensive 
information about this distribution in widely available 
surveillance data and this paper has examined methods 
for extracting this information using statistical deconvo-
lution. The basic idea is that the observed patterns of case 
diagnosis and death over age and time can be compared 
to reveal information about the quantity that links them, 
the fatality distribution.

By using surveillance data on case diagnosis and death, 
the study is an analysis of case fatality. This means that 

Fig. 3  Estimated distribution of time between diagnosis and death among fatal COVID-19 cases. Panels A and B display the estimated means and 
90% percentiles of the time to death, based on deconvolution analyses of the four age groups separately, and from the primary analysis of all cases 
over 50 years. Panels C and D display the probability density and the cumulative distribution functions of the time to death based on the primary 
analysis

Fig. 4  The model of the age-specific COVID-19 fatality distribution 
F(t , a) as specified in Table 2. The plot depicts the cumulative 
probability of death within t  days of diagnosis for an individual aged 
a years at diagnosis
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it is a study of mortality among individuals meeting the 
operational definition of a COVID-19 confirmed case. 
Infection fatality is an alternative concept to case fatal-
ity, referring to mortality among all infected individuals 
including those that do not meet the operational defini-
tion of a case [21]. Since surveillance data only capture 
information on confirmed cases, additional information, 
likely from prospective cohort studies, would be required 
to yield information about infection fatality and to assess 
whether it differs from case fatality. Nonetheless, case 
fatality is a key epidemiological measure of fundamental 
interest. Unlike the data set analysed in this paper, which 
is from a completed outbreak, most surveillance data sets 

globally contain active cases that may die in the future, 
so adjustment for right-censoring is usually a necessity 
when estimating CFR. The fatality distribution estimated 
in the current analysis is an appropriate estimate with 
which to adjust for such right-censoring when estimating 
CFR from surveillance data in ongoing outbreaks.

An implicit assumption of the analysis is that COVID-
19 deaths reported in the surveillance data only occur 
among those who have been reported as a confirmed 
case. In other words, individuals whose death is captured 
by the surveillance system also have their positive status 
captured in the case series. This is likely to be a reason-
able assumption for the Australian data but may need to 

Table 2  Parameter estimates, standard errors and 95% confidence intervals (CI) for the fitted age-specific fatality distribution model, 
specified by Eqs. (2), (3) and (4). The final model has age dependent case fatality risk and age independent time to death distribution

Case fatality risk Time to death

L0 L1 L2 G1 G2

Estimate 0.4190 14.93 -0.1894 0.1403 2.540

Standard error 0.02500 1.057 0.01557 0.02168 0.3922

95% CI (0.375,0.473) (13.2,17.4) (-0.225,-0.164) (0.113,0.199) (2.12,3.66)

Fig. 5  Comparison of the parametric age- and time-specific fatality model from Fig. 4 (red lines) with unrestricted non-parametric estimates 
obtained from each age group separately (black lines). Dotted lines denote 10%, 50% and 90% of the non-parametric CFR
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be evaluated in other jurisdictions with reference to local 
information about how the surveillance system is organ-
ised. Note that this assumption does not preclude the 
possibility that some cases and deaths are unreported, 
which is likely to be a feature of most surveillance sys-
tems, but if a death is captured then a positive test would 
also need to have been captured. In general, the potential 
for infections to be unreported is a fundamental limita-
tion of surveillance data that must be acknowledged. 
Nonetheless, surveillance data are a widely available and 
informative resource that allow immediate epidemiologi-
cal information to be extracted while subsequent longer 
term prospective cohort studies are established and fol-
lowed. In this sense they are a key resource that should 
be exploited during emerging outbreaks, while at the 
same time bearing in mind their potential limitations.

The age-specific data from Victoria were available from 
an outbreak that culminated in elimination of the virus, 
providing a valuable opportunity to develop a model 
of age-specific mortality. Evaluation of mortality in an 
age-specific framework is highly desirable because the 
age distribution of an outbreak is likely to be specific to 
the population and it may change over time. This would 
mean that an age-aggregated analysis of CFR could be 
skewed by the particular age distribution of the popu-
lation. In the Victorian data there was strong evidence 
that the age distribution evolved over time, with the first 
wave having 2.7% of cases older than 80 years compared 
to 9.5% in the second wave. This lead to an increase over 
time in the age-aggregated CFR, and underlines the need 
for age-specific analysis.

Conclusions
Deconvolution provides the ability to estimate the distribu-
tion of the delay between COVID-19 diagnosis and death, 
using data that have no linkage between diagnosis and 
death at an individual level. It is therefore a powerful analy-
sis tool that could be widely applied to extract rich mortal-
ity information from existing global surveillance data.

The primary output of the analysis presented here is 
an age-specific mortality model specified by Eqs.  (2), 
(3) and (4), summarised in Table 2 and plotted in Fig. 4. 
The model estimates a mean time from diagnosis to 
death of 18 days, with a standard deviation of 11 days 
and 90% percentile of 33  days. Previous studies based 
on clinical cohorts have reported mean time to death 
ranging from 10 to 20  days [2–5]. Modelling used by 
the Australian government employs the epiforecasts 
[30] platform for calibration, which assumes a time to 
death distribution with mean 13  days, based on data 
from Wuhan, China [8, 9]. The analysis of Austral-
ian data presented here suggests that a longer delay to 

death may be more appropriate for modelling in the 
Australian context.

The fitted fatality distribution model can be used in 
various ways. Assumptions about time delays and fatal-
ity risk are essential for developing mathematical mod-
els of transmission dynamics and so the fitted model 
can inform this process [16, 31, 32]. Furthermore, 
delay-adjusted estimates of CFR during an emerging 
outbreak often use an external estimate of the time to 
death distribution to account for the fact that recent 
cases are not yet resolved [13–15]. Although it has 
been argued that external estimates of time to death are 
unnecessary for this purpose [23], they are nonethe-
less commonly employed and the model presented here 
could be used. Another use is for short-term projection 
of future mortality using the convolution relationship 
in Eq.  (4) together with the observed cases series, as 
has been used for short-term projection of future cases 
using an estimate of the incubation period distribution 
[7]. All of these uses highlight the value of a parsimoni-
ous specification of mortality dynamics for COVID-19. 
Future research should consider the application of this 
modelling strategy to global surveillance data.
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