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Abstract

Background: A large multi-center survey was conducted to understand patients’ perspectives on biobank study
participation with particular focus on racial and ethnic minorities. In order to enrich the study sample with racial and
ethnic minorities, disproportionate stratified sampling was implemented with strata defined by electronic health
records (EHR) that are known to be inaccurate. We investigate the effect of sampling strata misclassification in
complex survey design.

Methods: Under non-differential and differential misclassification in the sampling strata, we compare the validity and
precision of three simple and common analysis approaches for settings in which the primary exposure is used to define
the sampling strata. We also compare the precision gains/losses observed from using a disproportionate stratified
sampling scheme compared to using a simple random sample under varying degrees of strata misclassification.

Results: Disproportionate stratified sampling can result in more efficient parameter estimates of the rare subgroups
(race/ethnic minorities) in the sampling strata compared to simple random sampling. When sampling strata
misclassification is non-differential with respect to the outcome, a design-agnostic analysis was preferred over
model-based and design-based analyses. All methods yielded unbiased parameter estimates but standard error
estimates were lowest from the design-agnostic analysis. However, when misclassification is differential, only the
design-based method produced valid parameter estimates of the variables included in the sampling strata.

Conclusions: In complex survey design, when the interest is in making inference on rare subgroups, we recommend
implementing disproportionate stratified sampling over simple random sampling even if the sampling strata are
misclassified. If the misclassification is non-differential, we recommend a design-agnostic analysis. However, if the
misclassification is differential, we recommend using design-based analyses.
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Background

Health research increasingly relies on data from large
biobanks that contain biological samples and genomic
data that are linked to clinical information through
electronic health records (EHR). Historically, however,
patients involved in health research including clinical tri-
als and genetic studies have been comprised mostly of
individuals with northern European ancestry [1-4]. Cre-
ating a more diverse cohort of patients in health research
has been a widely recognized goal in the recent years
[5]. In order to better understand the concerns about,
and barriers to participating in biobank-derived research
among the underrepresented groups, the Consent, Edu-
cation, Regulation and Consultation (CERC) working
group of the electronic Medical Records and Genomics
(eMERGE) network conducted a large multi-site survey.
The target population of the survey was patients who
had an inpatient or outpatient visit at one of the eleven
eMERGE network clinical centers between October 1,
2013 and September 30, 2014, had a geocodable residen-
tial address, and had age and gender available in the EHR.
The CERC researchers used disproportionate stratified
sampling (DSS) to enrich the sample with racial and ethnic
minorities, younger adults, and patients of low socio-
economic status. Specifically, they used age, gender, race,
ethnicity, education, and rural living, obtained from EHR,
supplemented by US Census data, to identify the sample.
Further details on survey design and results are provided
in previous publications [6, 7].

The CERC survey included a number of questions that
aimed to understand patients’ willingness to participate
in biobank-derived research, their safety and privacy con-
cerns and overall trust in the healthcare system. Respon-
dents also provided self-reported demographic variables
including race and ethnicity [7]. However, a fraction of the
patients’ self-reported race and ethnicity differed from the
EHR-derived race and ethnicity that were used to create
the sampling strata.

Inaccurate measurements of exposure or outcome vari-
ables are commonly referred to as misclassification for
categorical variables and mismeasurement for continuous
variables. The impact of and possible solutions for mis-
classification and mismeasurement in standard regres-
sion settings have been studied extensively [8—10]. In the
CERC substudy, however, misclassification occurred in
the variables that defined the sampling strata. Further-
more, the misclassification in the sampling strata was
differential (i.e., presence or absence of misclassification
is associated with the outcome variable itself). To our
knowledge the impact of misclassified sampling strata
(differential or non-differential) in complex survey designs
is not well studied.

In this paper, we investigate sampling strata misclassi-
fication when implementing a complex survey design. In
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particular, we are interested in characterizing the impact
of varying degrees of non-differential and differential sam-
pling strata misclassification on the operating character-
istics of commonly used estimation procedures includ-
ing: model-based, design-based and the seemingly naive,
design-agnostic procedures. We also draw comparisons
with random sampling procedures.

Motivating study

The eMERGE Network CERC survey was administered
to 11 US (adult) clinical centers to understand patients’
views regarding consent and data sharing models for
genomics research, especially among racial and ethnic
minorities, as well as younger adults, individuals of low
socio-economic status, rural residence and low education
attainment level. Disproportionate stratified sampling was
used to enrich the final sample with subjects from small-
size strata by applying unequal sampling probabilities to
each sampling stratum. In the original CERC survey, the
cross-classification of six variables: age, gender, race, eth-
nicity, educational attainment and rural living, was used
to define the sampling strata, with a maximum entropy
sampling algorithm to define the sampling probabilities
(7].

For the purpose of examining the impact of sampling
strata misclassification in an exposure-enriched design,
we restrict our sample to patients from Vanderbilt Uni-
versity Medical Center (VUMC). The primary analysis in
this paper seeks to characterize the association between
patient trust in the healthcare system and a number of
patient demographics including race/ethnicity, age, gen-
der, rural residence, education level and income. Note that
in contrast to the other variables, income was not used
to create the sampling strata. Trust in the healthcare sys-
tem was defined as 1 if the respondent answered either
“strongly agree" or “agree” to the statement “I trust my
healthcare system’, and 0 otherwise.

We will focus on the race/ethnicity variable to describe
the misclassification that occurred between the EHR sys-
tem and the self-reported survey, and assume that the
self-reported race/ethnicity is the gold-standard. In the
EHR system, 86.3% of the 329,672 patients were recorded
as Non-Hispanic White (hereon referred to as White),
9.5% as Non-Hispanic Black (hereon referred to as Black),
1.2% as Asian, 0.9% as Other, and 2.1% as Hispanic. In
Table 1, we present the misclassification matrix among
all survey respondents and the misclassification matrix
stratified by the outcome, trust in the healthcare system.
Among the respondents recorded as “White” and “Black”
in the EHR system, most (94.4% and 93.7%) also reported
themselves as “White” and “Black” in the survey response.
On the other hand, among the respondents recorded
in the EHR system as “Other” and “Hispanic’, only
27.6% and 53.1% self-reported as “Other” and “Hispanic”
respectively.
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Table 1 Misclassification matrix among Vanderbilt University Medical Center respondents overall and by trust in the healthcare
system. Cell values indicate number of respondents and those in parentheses denote row percentages by strata

Self-reported race/ethnicity

EHR-based race/ethnicity White Black Asian Other Hispanic
Overall
White 134 (94.4) 1(0.7) 0(0.0) 6(4.2) 1(0.7)
Black 0(0.0) 74(93.7) 0(0.0) 4(5.1) 1(13)
Asian 1(1.2) 1(1.2) 62 (76.5) 14(17.3) 3(3.7)
Other 59 (48.0) 5(4.1) 16 (13.0) 34(27.6) 9(73)
Hispanic 43 (24.0) 29(16.2) 3(1.7) 9(5.0) 95 (53.1)
Stratified
Trust=0
White 35(97.2) 0(0.0) 0(0.0) 0(0.0) 1(28)
Black 0(0.0) 20(87.0 0(0.0) 2(87) 1(43)
Asian 0(0.0) 0(0.0) 25(78.1) 6(18.8) 1(3.0)
Other 28 (56.0) 1(20) 3(6.0) 14 (28.0) 4(80)
Hispanic 11(18.0) 9(14.8) 1(1.6) 3(4.9) 37 (60.7)
Trust=1
White 99 (93.4) 1(09) 0(0.0) 6(57) 0(0.0)
Black 0(0.0) 54 (96.4) 0(0.0) 2(3.6) 0(0.0)
Asian 1(20) 1(20) 37 (75.5) 8(16.3) 2(4.0)
Other 31(42.5) 4(55) 13(17.8) 20(27.4) 5(6.8)
Hispanic 32(27.1) 20(16.9) 2(1.7) 6(5.1) 58(49.2)

Misclassification rates varied when stratified by trust
in the healthcare system, suggesting that misclassification
was differential, i.e. the degree of strata misclassification
varied according to the outcome of interest (Table 1). For
example, among those who were recorded as Black in the
EHR system, 87.0% (Trust = 0) and 96.4% (Trust = 1) self-
reported as Black, and among those who were recorded as
Hispanic in the EHR system, 60.7% (Trust = 0) and 49.2%
(Trust = 1) self-reported as Hispanic.

Methods

The primary goal of a survey is to accurately estimate
quantities such as totals or means, or to describe the
relationship among variables through fitting a statistical
model using a subsample from the finite target population.
Suppose interest lies in understanding the relationship
between a binary outcome Y and a categorical exposure
X with H categories. We denote X}, as the indicator vari-
able for the /th category such that X, = 1if X = &
and X;, = 0 otherwise, for 4 = 1, ..., H. Due to resource
constraints, Y and X can only be ascertained from a sub-
sample of individuals. However, assume the distribution
of X in the target population is unbalanced, e.g., if H = 3
with Pr(X; = 1,X2 = 0,X3 = 0) = 0.8 and Pr(X; =
0,X; = 1,X3 =0) = Pr(X; = 0,X = 0,X3 = 1) = 0.1,

then taking a random sample of individuals will result in
few individuals in the low prevalence groups (X, and X3).

In order to have enough individuals from each of the
h = 1,..,H categories of X in the subsample to make
meaningful inference, survey sampling methods suggest
to oversample the individuals in the low prevalence cat-
egories. Now suppose X is misclassified and denote the
misclassified version of X as X* which means that sam-
pling will be based on X* instead of X. Here, X* also has
H categories and we denote X} as the indicator variable
for the ith category for 1 = 1, .., H. However, note that,
due to misclassification, Pr(X;, = 1) does not necessar-
ily equal Pr(X}; = 1). For simplicity, we let the sampling
design based on X* consist of &1 = 1,.., H strata corre-
sponding to the & = 1, .., H categories of X*. Finally, we
assume that we can ascertain the true exposure X with
the outcome Y when participants respond to the survey.
Thus, we will observe all three variables (Y, X, X*) for all
individuals in the subsample. In the CERC example, Y cor-
responds to trust in the healthcare system, X corresponds
to self-reported race/ethnicity, and X* corresponds to
EHR-based race/ethnicity.

In the next two sections, using directed acyclic graphs
(DAGs), we describe the implications of applying three
common methods for analyzing data sampled from a DSS
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design in the presence of non-differential and differential
misclassification of the sampling variable. In addition to
(Y,X,X*), we also have S to represent the binary sam-
pling indicator [11] which is set to 1 if sampled and O
if not.

Non-differential misclassification of X*

Figure la depicts exposure enriched sampling based on
X* in the presence of non-differential misclassification.
Under non-differential misclassification, the misclassifi-
cation of X is independent of the true outcome (X* 1L Y|X)
which means that X* is affected only by X, and there is
no direct or indirect relationship between X* and Y. The
association of interest is X — Y.

For a binary Y, the naive method of analysis is to ignore
the complex survey design and fit a standard logistic
regression model, using X as the reference category, such
as:

H

logit {Pr(Y = 11X)} = fo + ) BunXin (1)
h=2

In this paper, we will call this the design-agnostic
analysis. Under the non-differential misclassification sce-
nario depicted in Fig. 1a, this seemingly naive method
that doesn’t account for the survey design still produces
consistent estimates (that is, estimates for which bias
decreases to zero as the sample size increases) for Sy and
B12, ..., By because Pr(Y = 1|1X,S = 1) = Pr(Y = 1|X).

To show this, note that

Pr(S =1]Y,X) = Y Pr(S = 1|X*,X,Y) Pr(X*|X, Y)

X*

= > Pr(S = 1]X*) Pr(X*|X)
X*

= Pr(S = 1X).

Therefore,
Pr(S = 1Y, X) Pr(Y = 11X)

Pr(S = 11X)
= Pr(Y = 1|X).

Pr(Y =1|X,S=1) =
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Another option is to account for the survey design by
including X* as a covariate in Eq. 1:

H H
logit {Pr(Y = 11X, X*)} = Bo+ Y _ BunXi + Y_ BounXj.
h=2 h=2

(2)

This is the classical model-based approach where the
sampling variable is included as a covariate in the regres-
sion model to account for the survey design. Because
X*1LY|X, the parameter estimates for By, ..., oy will
be close to zero. The estimates for Bio,..., B1y will be
consistent but we expect standard errors will be larger
compared to those from the design-agnostic model due to
the likely high degree of correlation between X and X*.
Furthermore, under the non-differential misclassification
scenario, f19, ..., B1x in Egs. 1 and 2 are equivalent. This is
because X* is unrelated to Y, and therefore the association
between Y and X is collapsible across X*.

A third option is to account for the survey design by
incorporating sampling probability weights based on X*.
To do this, we compute the selection probability for each
individual in the subsample. Let Nj; denote the number
of individuals in stratum % and suppose #j, individuals
are sampled from each of the # = 1,..., H strata. Then,
the selection probability for an individual i belonging in

1
) be the sampling prob-

, ",
N;* Ny
ability weight for individual i belonging in stratum /4. A
regression model that incorporates the sampling prob-
ability weights is referred to as model-assisted design-
based analysis, which we define as design-based analy-
sis. The parameters of the design-based model are those
that maximize the following weighted joint log-likelihood
[12]:

stratum / is Let w; = (

D wili(Blae) =Y wi{yilog(pi) + (1 — yplog(1 — py)}
3)

exp(Bo+>_y, Binni)
1+exp(Bo+D_, Binni)

where p; = p;i(x;B) = . Under non-

/\
X— X* Y

(a) Non-differential misclassification

misclassification

(b) Differential misclassification

Fig. 1 Directed acyclic graphs (DAGs) representing disproportionate stratified sampling in the presence of non-differential and differential
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differential misclassification, the design-based method
will produce valid parameter estimates. However, we
expect the standard errors will be larger compared to esti-
mates from a model without weights (i.e. design-agnostic
method in Eq. 1) [13].

Differential misclassification of X*

Figure 1b depicts the same exposure enrichment sampling
but in the presence of differential misclassification. Under
this scenario, because X* is dependent on Y in addition
to X, another arrow exists between Y and X*. In the lit-
erature, the type of bias introduced by ¥ — X* is called
information bias or measurement bias [14]. In a typical
observational study where only X* is available as a surro-
gate of X, information bias is problematic as there is no
analytical remedy unless one seeks to conduct a validation
study [15]. In our study, however, we eventually ascertain
X through survey response so we observe all ¥, X and
X*. In such instances, X* becomes a collider which is a
variable influenced by two other variables [16].

Under differential misclassification of X*, both the
design-agnostic and model-based methods explained
above produce biased parameter estimates. The design-
agnostic method is no longer appropriate because Pr(Y =
11X,S = 1) # Pr(Y = 1|X) and the model in Eq. 1
fails to account for the survey design. Controlling for the
sampling variable X* as done in model-based analysis in
Eq. 2 is also inappropriate because stratification by a col-
lider will distort the true association of X — Y and result
in biased parameter estimates of X [16]. Hence, only the
design-based method is able to produce valid estimates
of X. The design-based method appropriately accounts
for the survey design by incorporating sampling probabil-
ity weights and modeling the direct association of X —
Y. The construction of sampling probability weights, w;,
under differential misclassification of X* is equivalent to
when misclassification is non-differential.

In the next section, we show how the three methods
described above perform under non-differential and dif-
ferential misclassification settings through a simulation
study.

Simulation study

Design

We conducted a simulation study to investigate the effect
of sampling variable misclassification on the validity and
precision of parameter estimates from design-agnostic,
model-based, and design-based analyses. In addition to
evaluating the parameter estimates of a sampling variable
used to construct the sampling strata, race/ethnicity, we
also assess the validity and efficiency of a non-sampling
variable, low-income, defined here as income < $30,000.
For each simulation iteration, we generated a population
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data of size N = 100, 000 from the model:
Pr(Trust; = 1|race/ethnicity,, low-income;)
= logit ™[ By + BaI(Black;) + Bal(Asian;)
+ Bol(Other;) + Byl (Hispanic;) (4)
+ Bri(low-income;)],

where I  represents  the  indicator  func-
tion and  (Bo, Bs, Ba, Bo, Br, BL) = (=0.75,
—0.25,-0.50,1.25,—1.50,1.00). We used the fol-
lowing proportion of the true race/ethnicity (X)
in the population: (White, Black, Asian, Other,
Hispanic)= (0.82,0.10,0.01,0.05,0.02) which was based
on the CERC study’s survey-weighted population pro-
portions estimated from the sample. We generated
low-income from the model:

Pr(Low-income; = 1|race/ethnicity,;)
- logit_l[ — 2.00 + 1.25/(Black;)
+ 0.25I(Asian;) (5)
+ 1.751(Other;) + O.SOI(Hispanici)].

We then created two types of misclassified race (X*)
variable:

1 Non-differential misclassification based on the
overall misclassification matrix in Table 1

2 Differential misclassification based on the stratified
misclassification matrices in Table 1

We drew a sample of size n = 2500 from the popula-
tion using simple random sampling (SRS) and DSS. For
DSS, we sampled 500 individuals from each of the five
potentially misclassified race categories.

For the sample obtained from DSS, we conducted three
different types of analyses described in the Methods
section. For the design-based method, we incorporated
sampling weights constructed from the misclassified race
variable in the logistic regression models described in
Eq. 4. For the model-based method, we included the
misclassified race as an additional covariate in the logis-
tic regression models. Finally, for the design-agnostic
method, we ignored the design information and did not
incorporate any sampling weights or adjust for the sam-
pling variable in the logistic regression models. All analy-
ses were performed in R using the base [17] and survey
packages [18].

For each type of misclassification mechanism, sampling
design, and analytical method, we performed a simulation
with a total of 10,000 iterations. For each iteration, we col-
lected the parameter estimates and standard errors and
present the mean parameter estimates, empirical standard
errors (SEs; i.e. standard deviations of each parameter
estimates), and 95% coverage probabilities.
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Results

Simulation study

Table 2 shows the mean parameter estimates, empirical
SEs and 95% coverage probabilities for the full cohort,
sample obtained by SRS and by DSS under non-
differential and differential misclassification. Under the
DSS design, simulation results from three different meth-
ods are displayed: design-agnostic (based on Eq. 1),
model-based (based on Eq. 2), and design-based (based on
Eq. 3) analyses.

Non-differential misclassification

Under non-differential misclassification (top half of
Table 2), logistic regression estimates from SRS were
unbiased for the intercept and the non-sampling variable
(low-income). Black and Other parameter estimates also
had very little bias while Asian and Hispanic (smallest
subgroups) estimates had some bias. The biases occurred
because in some simulations, the sample from SRS had
extremely few Asian or Hispanic respondents. Due to the
very low prevalence of Asian and Hispanic patients in the
population, the SRS scheme can fail to include enough
respondents from rare subgroups to make meaningful
inference. As expected, empirical SEs of all SRS asso-
ciation estimates were larger than association estimates
from DSS designs, except for the intercept which rep-
resents the most prevalent subgroup (White) and Black.
Within SRS, the empirical SEs of the rare subgroup esti-
mates, Asian and Hispanic were especially large (0.82 and
0.87 respectively) compared to the other estimates, also
reflecting the high 95% coverage probabilities (96.7 and
96.8% respectively).
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All three methods under the DSS scheme yielded
estimates with very low bias. We observed more notable
differences in the empirical SEs across the methods. Also
as expected, the design-agnostic analysis without weights
or adjustment, produced the most precise estimates with
lowest SEs across all variables. Whereas the SEs of the
sampling variable (race/ethnicity) from the model-based
analysis were larger compared to those from the design-
agnostic analysis, the SEs of the non-sampling variable
(low-income) were comparable. In general, we observed
larger SEs under the design-based analysis compared to
the design-agnostic, particularly for the rare subgroups
(Asian, Other, Hispanics). This is not surprising as the
inverse sampling probability weights associated with the
rare subgroups are larger than those associated with the
more prevalent subgroups. For example, the SEs for the
Hispanic parameter estimates from the design-agnostic,
model-based and design-based methods were 0.41, 0.42,
and 0.47 respectively. The SE of the non-sampling vari-
able was also slightly larger from the design-based method
(0.14) compared to the design-agnostic (0.11) or the
model-based (0.11) method.

Differential misclassification

Under differential misclassification, simulation results
from SRS were similar to those under non-differential
misclassification. This is not surprising because the SRS
probability is independent of Y or X*. However, the
design-agnostic and the model-based methods produced
substantial biases in the sampling variable (race/ethnicity)
estimates with lower coverage probabilities, especially for

Table 2 Simulation results: Means, empirical standard errors and 95% coverage probabilities of parameter estimates from 10,000
simulations under observed misclassification rates of race/ethnicity by sampling design and method

Full cohort SRS Disproportionate stratified sampling
Design-agnostic Model-based Design-based

Non-differential misclassification

Intercept -0.75 (0.01) 94.7 -0.75 (0.05) 95.0 -0.75 (0.06) 95.1 -0.75 (0.10) 94.5 -0.75 (0.07) 94.9

Black -0.25 (0.02) 95.0 -0.26 (0.15) 949 -0.25(0.11) 94.8 -0.26 (0.25) 954 -0.25(0.12) 94.9

Asian -0.50 (0.07) 95.0 -0.59 (0.82) 96.7 -0.51(0.21) 95.2 -0.51(0.26) 95.2 -0.52(0.27) 93.0

Other 1.25(0.03) 95.1 1.26 (0.21) 95.2 1.25(0.14) 955 1.26(0.18) 95.6 1.26 (0.21) 95.1

Hispanic -1.50 (0.07) 95.0 -1.63(0.87) 96.8 -1.55(041) 95.9 -1.55(0.42) 96.0 -1.56 (0.47) 952

Low income 1.00 (0.02) 94.5 1.00(0.12) 954 1.00(0.11) 95.1 1.01(0.11) 95.1 1.00(0.14) 95.0
Differential misclassification

Intercept -0.75 (0.01) 94.7 -0.75 (0.05) 95.1 -0.57 (0.06) 13.0 -0.74 (0.10) 95.0 -0.75 (0.07) 95.2

Black -0.25 (0.02) 95.0 -0.25(0.15) 95.1 -042(0.11) 67.6 -042 (0.24) 90.1 -0.26 (0.12) 94.8

Asian -0.50 (0.07) 95.0 -0.58 (0.79) 96.5 -0.81(0.20) 67.9 -2.16(0.27) 0.0 -0.52 (0.28) 91.7

Other 1.25(0.03) 95.1 1.26 (0.21) 95.0 0.96 (0.13) 424 0.02(0.19) 0.0 1.25(0.20) 94.5

Hispanic -1.50 (0.07) 95.0 -1.62(0.87) 97.0 63 (0.36) 96.3 -2.14.(0.38) 62.1 -1.55(042) 952

Low income 1.00 (0.02) 94.5 1.00(0.12) 947 1.00(0.11) 95.2 1.01(0.11) 94.9 1.00(0.15) 94.8
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the rare subgroups (Asian, Other, Hispanic). On the other
hand, the design-based method produced unbiased sam-
pling variable estimates with coverage probabilities close
to 95%. For example, the estimates for the Asian param-
eter (true value of -0.50) were -0.81 and -2.16 for the
design-agnostic and model-based methods respectively,
while it was -0.52 for the design-based method. And the
95% coverage probabilities were 67.9% and 0.0% for the
design-agnostic and model-based methods respectively,
while it was 91.7% for the design-based method. The
parameter estimates for low-income remained unbiased
with coverage probabilities close to 95% for all three DSS
methods.

Relative uncertainty of disproportionate stratified
sampling compared to simple random sampling under
non-differential misclassification

We evaluated the empirical SEs of the logistic regres-
sion parameter estimates for the design-agnostic, model-
based and design-based methods under various degrees of
non-differential misclassification. We varied the degree of
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misclassification from 0, where all patients’ race are cor-
rectly classified (no misclassification), to 0.5, where half of
the patients’ race are misclassified. For each degree of mis-
classification, we repeated the simulation using the same
design explained earlier. We then computed the empiri-
cal SE of each parameter estimate from each of the three
methods. Note that we focus on evaluating the uncer-
tainty of the parameter estimates under non-differential
misclassification because each method yielded unbiased
estimates and as part of assessing overall model perfor-
mances, we wanted to additionally examine precision. We
did not further evaluate uncertainty under differential
misclassification because the design-based method pro-
duced considerably less biased estimates relative to the
design-agnostic or model-based method under various
degrees of misclassification.

Figure 2 shows the relative uncertainty (on a log, scale)
of each parameter estimates obtained from DSS at varying
degrees of misclassification to those obtained from SRS.
We present relative uncertainties of the design-agnostic
(dotted line), model-based (dashed line) and design-based
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A
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(solid line) methods. The relative uncertainty of the

SE(Bdesign—agnostic) and

SE(Psrs)
similarly for the relative uncertainties of the model-based

and design-based methods. Values less than one indicate
that the design-agnostic, model-based or design-based
method from DSS is more precise (smaller SE) compared
to SRS. More specifically, if relative uncertainty is 0.5,
then Wald-based confidence interval from the design-
agnostic, model-based or design-based method from DSS
is expected to be approximately half the width than that
from SRS. The relative uncertainty by degree of misclas-
sification for each variable in Eq. 4 is shown in each
panel.

design-agnostic method is defined as

In the absence of misclassification, we observed con-
siderably lower relative uncertainty in variables from less
prevalent strata (Asian, Other, Hispanic) from DSS by all
methods. In Black, Asian, Other and Hispanic estimates,
relative uncertainties of the model-based method spike as
the degree of misclassification increases from zero, then
gradually decrease and eventually become similar to the
relative uncertainties of the other two methods as misclas-
sification further increases. This is because with very low
degree of misclassification, the collinearity between X and
X* is extremely high and a model that includes both X and
X* as covariates, as in Eq. 2, will produce very large SEs.
However, note that between the two unweighted methods
(design-agnostic and model-based), relative uncertainty of
the design-agnostic method is uniformly lower than that
of the model-based method across various degrees of mis-
classification for each parameter estimate. We observed
larger relative uncertainty in the intercept estimates with
the model-based and design-based methods compared to
SRS. With the design-agnostic method, we also observed
greater uncertainty in the intercept estimate compared
to SRS but the magnitude of relative uncertainty was
less severe compared to the model-based or design-based
method. These findings were not surprising because the
intercept reflects the referent group (Whites) and under
the DSS design, we sample fewer Whites. As for the non-
sampling variable estimate, low-income, the uncertainties
of design-agnostic and model-based methods were simi-
lar to that under SRS at each degree of misclassification.
The uncertainty of the design-based method in the low-
income estimate was higher compared to that under SRS
at lower degrees of misclassification.

With the exception of relative uncertainty of the model-
based method in the intercept, as the degree of misclas-
sification increased from 0 to 0.5, the relative uncertainty
of each variable converged to one. This is because the
sample obtained from DSS starts to look more like the
sample obtained from SRS as the degree of misclassi-
fication increases. In general, regardless of the analyt-
ical method, applying a DSS scheme resulted in less
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uncertainty (smaller SE) for associations with rare sub-
groups.

In summary, uncertainty in the point estimates from all
three analytical methods were affected by the degree of
non-differential misclassification. Generally, the uncer-
tainty of less prevalent subgroups were smaller when
employing DSS over SRS, especially with low degree of
non-differential misclassification.

We make the following conclusions based on our
simulation study. First, DSS can result in more pre-
cise sampling variable parameter estimates compared to
SRS for the low prevalence subgroups. Second, valid-
ity of the parameter estimates and the size of SEs of
the non-sampling variables are unaffected by the sam-
pling scheme, modeling approach and the type of mis-
classification. Third, accounting for the sampling design
by including the design-variable as a covariate (model-
based method) did not produce better results compared to
the design-agnostic method under any scenarios studied
here. Finally, under non-differential misclassification, the
design-agnostic method was preferred over the design-
based method. Both methods yielded estimates with
low biases but SEs were smaller for the design-agnostic
method. However, under differential misclassification, the
design-based method was preferred over the design-
agnostic method (whose estimates were highly biased).

We can determine if misclassification is non-differential
or differential by producing the misclassification tables
stratified by the outcome of interest, as done in Table 1.
If misclassification is non-differential (i.e. percentages of
misclassification are similar between the outcomes), then
we recommend employing the design-agnostic analysis. If
misclassification is differential (i.e. percentages of misclas-
sification are not similar between the outcomes), then we
recommend employing the design-based analysis.

Example: CERC study

We analyzed a subset of the data from the eMERGE
CERC survey to investigate the effects of sampling stra-
tum misclassification on various analytical approaches
in a real-world setting. The primary goal of this sur-
vey was to learn about the factors associated with an
individual’s willingness to participate in biobank-derived
research. The present analysis aimed to estimate the asso-
ciation between trust in healthcare system and various
patient characteristics including race/ethnicity and low-
income. For this paper, we explored the data from Van-
derbilt University Medical Center (VUMC). Among the
329,672 adult patients identified from the VUMC EHR,
the researchers sent out the survey to 4,500 patients and
604 patients responded with complete self-report data. In
the original CERC survey, the researchers anticipated this
low response rate from the result of the pilot survey and



Mitani et al. BMC Medical Research Methodology (2021) 21:145

estimated the number of surveys to mail out in order to
obtain enough sample [6]. We recognize the implications
of the low response rate, especially if it is related to the
outcome of interest. However, non-response presents a
distinct set of challenges and will not be address here. We
refer our readers to other materials on this matter [19-21].

In the original study, the sampling strata consisted
of as many as 288 levels that were based on the
cross-classifications of age (<35, >35), gender (female,
male), race (White, Black, Asian, Native American/Alaska
Native, Hawaiian/Pacific Islander, Other), ethnicity (His-
panic, Non-Hispanic), education (less than high school
diploma, high school diploma to some college, at least
a college degree) and rural living (yes, no) [22]. For this
paper, we combined some of the categories of race and
ethnicity to create a new 5-level race/ethnicity variable
with categories White, Black, Asian, Other and Hispanic,
which resulted in 120 sampling strata.

Table 3 summarizes the survey respondent sample
(unweighted) from VUMC. The relatively balanced per-
centages across the race/ethnicity categories among the
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survey respondents indicate that the attempt to enrich
racial/ethnic minorities was successful. The distribution
of gender, age and rural living appear balanced among the
respondents. Twenty-seven percent of the respondents
were categorized as low-income based on self-reported
income brackets.

Table 4 shows the results from design-agnostic, model-
based and design-based logistic regression analyses in
which trust in healthcare system was regressed on self-
reported race/ethnicity, low-income, age group, gender,
education and rural living. For the design-based analysis,
we truncated the survey weights at the 90th percentile,
as was done in the original study [22]. The parameter
estimates from the analysis using truncated weights were
similar to those from the analysis using the full range of
weights with no truncation. However, the standard errors
from the analysis using truncated weights were smaller.
Sensitivity analyses with weights truncated at the 100th,
99th and 95th percentiles are shown in Table S1 of Sup-
plementary Material. We present the odds ratio (OR) and
95% confidence intervals (95% CI) from each method.

Table 3 Demographics of the Vanderbilt University Medical Center CERC respondent sample. Percentages [counts] are provided for

each characteristic

Survey response of 604 respondents, % [count]

Gender
Male

Female

Ageinyears
<35
35+

Race/ethnicity
White
Black
Asian
Other

Hispanic

Education
Less than HS
HS to some college
At least BS

Rural living
Suburban/Urban

Rural

Income in USD ($)
<30,000
30,000 to 59,999
60,000 to 149,999
150,000+

45 [274]
55[330]

91[53]
38 [230]
53 [321]

54 [327]
46 [277]

27166
231138
33 [200
171

]
]
]
100]
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Table 4 Results from design-agnostic, model-based and design-based logistic regression analyses in which trust in healthcare system
was regressed on self-reported race/ethnicity, low income, age, gender, rural living and education

Design-agnostic Model-based Design-based

Variable OR (95% Cl) OR (95% Cl) OR (95% CI)
Race/ethnicity

White 1.00 1.00 1.00

Black 1(0.66,1.86) 142 (0.60, 3.33) 0.71(0.26,1.92)

Asian 0.80 (0.46, 1.38) 1.69 (0.71,4.02) 0.69 (0.33,1.44)

Other 0.76 (0.43,1.35) 1.19(0.61,2.31) 3(0.37,4.07)

Hispanic 0.67 (0.41,1.09) 0.78 (0.42,1.47) 0.24 (0.08,0.76)
Low income

No (Income >$30,000) 1.00 1.00 1.00

Yes (Income <$30,000) 1.25(0.81,1.95) 1.24(0.79, 1.95) 146 (0.56, 3.83)

Age in years
<35
>35

Gender
Male

Female

Rural living
No (Suburban/Urban)
Yes (Rural)

Education
Less than HS

HS to some college

At least college graduate

1.03 (0.69,1.52)
1.00

1.00
0.69 (049, 0.99)

1.00
0.83(0.59,1.18)

0.96 (048, 1.92)
0.95 (0.64, 1.39)
1.00

1.54(0.58, 4.10) 0.87(0.39,1.94)
1.00 1.00
1.00 1.00

1.23(0.34,4.45)

1.00
0.82(0.57,1.17)

0.90 (043, 1.86)
0.93(0.62,1.39)
1.00

1.03 (0.49, 2.16)

1.00
0.63(0.31,1.27)

0.90(0.13,6.37)
1.30 (0.58, 2.89)
1.00

Consistent with our simulation results, the ORs and 95%
ClIs of some sampling variables including race/ethnicity,
age and gender were quite different across the three meth-
ods. Also consistent with our simulation results, the ORs
and 95% Cls of the non-sampling variable, low-income,
were similar between design-agnostic [OR (95% CI) =
1.25 (0.81, 1.95)] and model-based analyses [OR (95% CI)
= 1.24 (0.79, 1.95)]. The design-based analysis yielded
OR (95% CI) = 1.46 (0.56, 3.83) for low-income, which
is slightly higher compared to the other two methods
although the difference is small in light of the estimates
of uncertainty. Because we observed differential misclas-
sification in our data, the design-based analysis is most
viable. Compared to White patients, Black [OR (95% CI)
= 0.71 (0.26, 1.92)], Asian [OR (95% CI) = 0.69 (0.33,
1.44)] and Hispanic [OR (95% CI) = 0.24 (0.08, 0.76)]
patients were less likely to report trust in the healthcare
system. The odds of reporting higher trust in the health-
care system were higher for patients with low income
compared to those with higher income [OR (95% CI) =
1.46 (0.56, 3.83)].

Discussion

In this paper, we characterized the precision gains from
using a disproportionate stratified sampling scheme com-
pared to using a simple random sample when the interest
lies in making inferential statements regarding less preva-
lent subgroups, and the impact that sampling strata mis-
classification can have on the validity and relative uncer-
tainty of various analytical methods for complex survey
design.

Employing a disproportionate stratified sampling
scheme was beneficial in producing more valid and
precise parameter estimates of the less prevalent sub-
groups (i.e. racial/ethnic minorities). Because non-White
racial/ethnic groups consisted of less than 20% of the
overall patient population in our study, employing SRS to
select the survey sample of size 2500 would have resulted
in extremely few Black, Asian, Other, and Hispanic
individuals. Furthermore, even if SRS scheme consisted
of seemingly enough individuals to make meaningful
inference of the less prevalent subgroups, with mis-
classification, the same does not apply for the “true”
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race/ethnicity categories. After we obtain the survey
responses, we may learn that the sample consists of even
fewer individuals in the rare subgroups due to misclas-
sification. By sampling the same number of individuals
from each race/ethnicity category regardless of the
prevalence, we were able to make meaningful inference
on each of the race/ethnicity subgroup employing the
appropriate analytical method, even in the presence of
misclassification.

We later learned, from the survey responses, that sam-
pling strata were misclassified. We assumed that the self-
reported race/ethnicity was the more reliable measure
compared to the EHR-based race/ethnicity and estimated
the effect of self-reported race/ethnicity on trust in the
healthcare system. That is, for the purpose of analysis, we
used “gold standard” as opposed to mismeasured variable
values.

When designing a complex survey with potential mis-
classification in the sampling variable, understanding the
type of misclassification (non-differential or differential)
is crucial in choosing the correct analytical method to
produce valid estimates. Through our simulation study,
we learned that the design-agnostic method produces
valid and more precise estimates compared to the model-
based or design-based method when the sampling strata
misclassification is non-differential on the outcome of
interest. However, when the misclassification is differen-
tial, then only the design-based method produces valid
inferences.

We considered the self-reported race/ethnicity along
with other demographic information provided in the sur-
vey response as the gold-standard. The reason for why
some individuals’ race/ethnicity in the EHR differed from
the self-reported one is unclear but possible explanations
include coding error and misinterpretation of the patient’s
race/ethnicity by the healthcare professional. It is also pos-
sible that the self-reported race/ethnicity is incorrect since
we do not know who completed the survey. However,
our objective of this paper was to show the implications
of misclassified sampling frame when the sampling vari-
able is also a main predictor regardless of the reasons for
misclassification.

Jang et al. [23] also encountered the issue of sampling
strata misclassification based on race/ethnicity under
complex survey design. The National Survey of Recent
College Graduates conducted a survey to collect various
information on recent graduates from bachelor’s or mas-
ter’s degree programs in the United States. They employed
a two-stage sample design in which schools were sam-
pled in the first stage and students were sampled using a
stratified sampling scheme within the sampled schools in
the second stage. The stratification variables in the second
stage were provided by the school and included degree
cohort, degree level, field of major, race/ethnicity, and
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gender of the students. In the survey, the respondents pro-
vided their own race/ethnicity and some discrepancy was
observed between the school-provided and self-reported
race/ethnicity. In the analysis to estimate the number
of graduates in each domain specified by the stratifica-
tion variables in the second stage, the authors found that
the effective sample sizes for Asian domains were less
than anticipated in the design. As a consequence, they
overestimated the graduation rates among Asians.

We acknowledge several limitations in our paper. First,
we did not investigate the potential impact of differen-
tial non-response. The CERC survey had a low response
rate (16%) and whether or not the patient responded
may had been associated with their feeling of trust in
the healthcare system, the main outcome of interest, and
potentially resulting in biased estimates by race/ethnicity.
Second, aside from the design-agnostic method, we only
considered two analytical methods of survey data. Other
approaches include raking [24, p. 139] and incorporating
propensity score methods when the goal is to estimate
effects of a certain exposure or treatment from complex
survey samples [25-27]. The two methods investigated in
this paper (design-based and model-based analyses) are
the most commonly used analytical methods for complex
survey and we believe that focusing on these two meth-
ods was a reasonable starting point to explore the effect of
strata misclassification under the disproportionate strati-
fied sampling scheme.

Conclusion

In this paper, we investigated the consequences of sam-
pling strata misclassification on the analysis of complex
survey study, especially if the interest lies in making
meaning inference about less prevalent subgroups. We
found that the preferred method of analysis depends on
the type of misclassification. If the sampling variable is
non-differentially misclassified on the outcome of inter-
est, then the design-agnositic method is preferable. All
three methods that we examined produce valid estimates.
However, the design-agnostic method produces the most
precise ones. On the other hand, if the sampling variable is
differentially misclassified, then the design-based method
is preferable. Only the design-based method produces
valid estimates in this case. Therefore, we recommend the
readers to examine the type of misclassification before
choosing the method of analysis. If the type of misclassi-
fication is unclear, then we recommend using the design-
based method in order to obtain unbiased estimates even
at the cost of slight inefficiency.
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