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Abstract 

Background:  A priori sample size calculation requires an a priori estimate of the size of the effect. An incorrect esti-
mate may result in a sample size that is too low to detect effects or that is unnecessarily high. An alternative to a priori 
sample size calculation is Bayesian updating, a procedure that allows increasing sample size during the course of a 
study until sufficient support for a hypothesis is achieved. This procedure does not require and a priori estimate of the 
effect size. This paper introduces Bayesian updating to researchers in the biomedical field and presents a simulation 
study that gives insight in sample sizes that may be expected for two-group comparisons.

Methods:  Bayesian updating uses the Bayes factor, which quantifies the degree of support for a hypothesis versus 
another one given the data. It can be re-calculated each time new subjects are added, without the need to correct for 
multiple interim analyses. A simulation study was conducted to study what sample size may be expected and how 
large the error rate is, that is, how often the Bayes factor shows most support for the hypothesis that was not used to 
generate the data.

Results:  The results of the simulation study are presented in a Shiny app and summarized in this paper. Lower 
sample size is expected when the effect size is larger and the required degree of support is lower. However, larger 
error rates may be observed when a low degree of support is required and/or when the sample size at the start of the 
study is small. Furthermore, it may occur sufficient support for neither hypothesis is achieved when the sample size is 
bounded by a maximum.

Conclusions:  Bayesian updating is a useful alternative to a priori sample size calculation, especially so in studies 
where additional subjects can be recruited easily and data become available in a limited amount of time. The results 
of the simulation study show how large a sample size can be expected and how large the error rate is.
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Introduction
One of the main questions in the design phase of an 
empirical study is how large the sample size should be. 
The answer to this question is often found by means 
of a statistical power analysis [1, 2]. If an effect exists 
in the population, then a researcher should be able to 
find it with sufficient probability. This probability is 
known as the statistical power and it can be shown to 

be related to sample size, effect size and type I error 
rate. Nowadays, many software packages are available 
to facilitate a power analysis, such as G*power [3, 4], 
nQuery Advisor [5], and PASS [6]. However, it is not 
always easy to perform a power analysis because power 
is a function of effect size, of which the value is often 
not known in the design phase of a study. This causes a 
vicious cycle: the aim of a study is to gain insight in the 
size of the effect, but to plan the sample size of a study 
the size of the effect must be known beforehand. It is 
often advocated to escape this vicious cycle by using 
an a priori estimate that is based on expert knowledge 
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or expectations, or findings in the literature. However, 
there is no guarantee such an a priori estimate is cor-
rect. An estimate that is too large results into too small 
a sample size and hence a risk of not finding a signifi-
cant effect. On the other hand, an estimate that is too 
small results in too large a sample size and hence is a 
waste of resources.

Instead of performing an a priori sample size calcula-
tion, it is also possible to re-estimate sample size during 
the course of a study. Some pilot data can be collected 
and used to estimate model parameters, such as the effect 
size and residual variances, which in their turn can be 
used to calculate the required sample size to achieve a 
user-specified power level. Stein [7] was the first to pro-
pose sample size re-estimation. He argued that the power 
for a two-group comparison depends on the variance. 
He proposed to first sample some pilot data to be used 
to calculate the variance. Based on these pilot data, the 
required sample size is calculated and a second sample of 
this size is drawn.The pilot data are not used in the final 
analysis, hence the type I error rate is preserved. Wittes 
and Brittain [8] proposed an adjustment that uses all 
data, including the pilot data, in the final analysis. Based 
on the parameter estimates from the pilot data it is esti-
mated how large the sample size should be to achieve suf-
ficient power. If this sample size is larger than the size of 
the pilot, then additional data are collected. Otherwise, 
data collection is terminated. In this approach the data 
are treated as if the two phases of data collection are 
independent, while in fact they are not hence the type I 
error rate α may not always be preserved [8, 9].

In group sequential trials the sample size may be 
adjusted more than once [10, 11]. Before data collection, 
it has to be determined how often an interim analysis is 
done and how many additional subjects are to be col-
lected between each pair of adjacent interim analyses. 
The α-level at each interim test is chosen such that the 
overall α-level is preserved. For each interim test the 
value of the test statistic is calculated based on the data 
collected thus far. If this test statistic exceeds a bound-
ary value, which is determined based on the α-level at 
that interim test, then no further data are collected. Oth-
erwise, data collection continues until the next interim 
test. It may occur the test statistic at the final test does 
not exceed the boundary value. In that case it is not 
allowed to collect further data since all type I error has 
already been spent. This may be considered a drawback 
of the group sequential trial design. It is therefore impor-
tant to weight the risks of an inflated type I error in a 
group sequential design against the risk of an under- of 
overpowered study when using an a priori sample size 
calculation while making a choice among these two pro-
cedures of sample size determination.

There exists another procedure for increasing sam-
ple size during the course of a study: Bayesian updating. 
This procedure does not depend on the Neyman-Pearson 
approach of null-hypothesis significance testing [12], but 
uses another approach based on the Bayes factor [13, 
14]. The Bayes factor quantifies the support in the data 
for an informative hypothesis, and can also be used to 
quantify the relative support of two competing informa-
tive hypothesis. Such informative hypotheses are based 
on subjective beliefs, expectations or findings in the lit-
erature. Recent research has focussed on a priori sam-
ple size calculations for informative hypothesis testing 
[15]. Again, sample size depends on the effect size, hence 
we end up in the same vicious cycle as described previ-
ously. However, it is possible to increase the sample size 
during the course of the study until sufficient support 
for a hypothesis is achieved, without making a decision 
upfront about the number of times sample size will be 
increased. In addition, since the Bayesian approach does 
not use a test statistic and type I error rate, there is no 
need to decide about how the α-level should be adjusted 
each time the sample size is increased. This makes Bayes-
ian updating a much more flexible approach than group 
sequential trials.

In recent years Bayesian updating has received atten-
tion in the social and behavioural science literature 
[16–19]. The aim of the current paper is to introduce 
Bayesian updating to researchers in the biomedical field. 
This paper consists of two parts. The first explains how 
informative hypotheses can be tested by using the Bayes 
factor, and how the Bayes factor is used in Bayesian 
updating. The second part presents a simulation study 
that evaluates Bayesian updating in two-group compari-
sons. The results of this simulation study give insight in 
what sample sizes can be expected in Bayesian updating 
and how large the error rate is. An error occurs when the 
data show most support for the incorrect hypothesis, that 
is, the hypothesis that was not used to generate the data.

The simulation study extends previous simulation stud-
ies on Bayesian updating for two-group comparisons 
[17, 18]. It does not only focus on the t-test for equal 
variances but also for unequal variances. The latter is also 
known as Welch’s test. Furthermore, it uses three sets of 
two competing hypotheses rather than just one such a 
set. In addition to that, it explores the effects of the group 
size at the beginning of the study, and the consequences 
of using a maximum group size. Finally it uses a differ-
ent approach to calculate the Bayes factor. This approach 
is known as the Approximate Adjusted Fractional Bayes 
factor (AAFBF) approach [20, 21]. With this approach 
a fraction parameter must be specified to control the 
amount of information in the dat used to specify a prior. 
The remainder of information is used to test informative 
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hypotheses. This approach will be explained in the next 
section.

Informative hypothesis testing using the Bayes 
factor
Informative hypotheses are formulated on the basis of a 
researcher’s beliefs, expectations, or findings in the lit-
erature, and do not necessarily have to include the null 
hypothesis. Consider as an example a trial in which two 
pain killers A and B are compared to a placebo. The 
response variable measures the level of pain; the higher 
the score, the more pain the respondent experiences. In 
the framework of null hypothesis significance testing one 
would formulate the null hypothesis H0 : µA = µB = µP , 
where µA , µB and µP are the mean scores for pain killers 
A and B and the placebo, respectively. However, research-
ers often do not believe such a null hypothesis of equal 
group means to be true and will use equality and inequal-
ity constraints on the three group means to formulate 
informative hypotheses. For instance, the manufacturer 
of pain killer A may believe its pain killer to be most 
effective and pain killer B to be more effective than the 
placebo, resulting in the following informative hypoth-
esis H1 : µA < µB < µP . The manufacturer of pain killer 
B may come up with the following competing informa-
tive hypothesis H2 : µB < µA < µP . Finally, a consumer 
may believe both pain killers to be more effective than 
the placebo, which results in informative hypothesis 
H3 : (µA,µB) < µP , where the comma between the two 
means µA and µB implies no constraint is placed on these 
two means. In a similar manner, informative hypothesis 
can be formulated for other types of statistical models, 
such as in regression models (e.g. comparing the effects 
of father’s and mother’s educational levels on their child’s 
weight) and in mediation models (comparing direct and 
indirect effects).

Informative hypotheses can be tested by means of 
the Bayes factor. The Bayes factor BFiu of informa-
tive hypothesis Hi versus the unconstrained hypothesis 

Hu = µ is expressed in a simple form: BFiu = fi/ci . The 
unconstrained hypothesis is simply the parameter space: 
all possible combinations of the values of the three group 
means µA , µB and µP . The complexity ci ∈ [0, 1] is the 
proportion of the prior distribution that is in agreement 
with the hypothesis Hi . The lower its value, the more par-
simonious hypothesis Hi is. The fit fi ∈ [0, 1] is the pro-
portion of the posterior distribution that is in agreement 
with the hypothesis Hi.

Figure  1 gives a representation of fit and complexity 
for a two-group comparison on a quantitative response 
variable. The three panels give a two-dimensional pres-
entation of the prior (dashed circle) and posterior (solid 
circle) of two independent means µ1 and µ2 . The panel 
at the left uses the unconstrained hypothesis Hu : µ . 
This hypothesis does not put any equality or inequality 
constraints on the two means. In other words, it implies 
that anything can be going on with respect to these two 
means. The complexity of this hypotheses is the propor-
tion of the prior (i.e. the area within the dashed circle) 
that is in agreement with the hypothesis; by default it 
has the value 1 for the unconstrained hypothesis. Simi-
larly, the fit is the proportion of the posterior (i.e. the 
area within the solid circle) that is in agreement with 
the hypothesis; by default it also has the value 1 for the 
unconstrained hypothesis. The panel in the middle uses 
the inequality constrained hypothesis H1 : µ1 < µ2 . 
Only those parts of the prior and posterior that are not 
overlapped by the grey triangle are in agreement with 
the hypothesis. It can be seen the complexity is one half 
and the fit is a little less than one. Hypothesis H1 is more 
parsimonious than hypothesis Hu since it has a lower 
complexity. The panel at the right uses an approximate 
equality H2 : µ1 ≈ µ2 . The parts of the prior and pos-
terior that are in agreement with the hypothesis (i.e. the 
areas of the two circles that are not overlapped by the two 
grey triangles) are even smaller than in the middle panel, 
implying an even lower complexity and fit. This hypoth-
esis is hence the most parsimonious of the three.

Fig. 1  Prior and posterior distributions for two-group comparisons with three different informative hypotheses
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The statistical model is a linear model for a continu-
ous outcomes and two groups. The continuous out-
come yi of subject i = 1, . . . , 2n is given by:

where µ1 and µ2 are the means in groups 1 and 2, respec-
tively. D1i = 1 if subject i is in group 1 and 0 otherwise, 
and D2i = 1 if subject i is in group 2 and 0 otherwise. 
The residual follows a normal distribution. In the case 
of equal within-group variances of the two groups: 
εi ∼ N (0, σ 2) . In the case of unequal within-group vari-
ances of the two groups: εi ∼ N (0,D1iσ

2
1 + D2iσ

2
2 ).

The prior distribution of µ = (µ1,µ2) is based on the 
fractional Bayes factor approach [22, 23] and is con-
structed by using a fraction of information in the data 
y . In other words, the user does not have to specify a 
distribution for the prior. For the case of an unequal 
variances t-test

where y1 are the data to construct the prior. The prior 
is a bivariate normal distribution with n the sample size 
per group and σ̂ 2

1  and σ̂ 2
2  the unbiased estimates of the 

within-group variances. In the case of equal variances, 
σ̂ 2
1  and σ̂ 2

2  are replaced by σ̂ 2 . Furthermore, b is the frac-
tion in the data used to specify the prior distribution. The 
default value of b is 1

2n , and this choice is inspired by the 
minimal training sample [24, 25] so that an noninforma-
tive prior is turned into a proper prior by using a small 
amount of information in the data via a normal approxi-
mation. This value implies half a subject is taken from 
each group, so one subject in total.

It should be noted that, as the two group means are 
zero, the prior distribution is not used to represent 
prior knowledge about the effect size under any inform-
ative hypothesis (i.e. the solid circle in Fig. 1 is centred 
around the origin (µ1,µ2) = (0, 0) ). In other words, 
subjective input from the researcher is not needed 
to specify the prior. However, it is needed to specify 
informative hypotheses by using equality and inequality 
constraints on the group means.

The posterior distribution of µ = (µ1,µ2) is a bivari-
ate normal approximation given by

where µ̂1 and µ̂2 are the maximum likelihood estimates of 
the two group means. These means may be different from 
zero, hence the dashed circle in Fig. 1 is not necessarily 

yi = µ1D1i + µ2D2i + εi,

h
(
µ|y1

)
= N

([
0

0

]
,

[
1
b

σ̂ 2
1

n 0

0 1
b

σ̂ 2
2

n

])
,

g
(
µ|y2

)
= N

([
µ̂1

µ̂2

]
,

[
σ̂ 2
1

n 0

0
σ̂ 2
2

n

])
,

centred around the origin. This equation holds for the 
case of unequal variances; in the case of equal variances,  
σ̂ 2
1  and σ̂ 2

2  are replaced by σ̂ 2 . It should be noted that the 
posterior is constructed from the prior and y2 , which is 
the part of the data that is not used to construct the prior.

The Bayes factor BFiu quantifies the support for 
a hypothesis Hi versus the unconstrained hypoth-
esis Hu . It is also possible to calculate the relative sup-
port of a hypothesis Ha versus another hypothesis Hb : 
BFab = BFau/BFbu . If BFab = 1 then both hypotheses 
receive equal support from the data; if BFab > 1 then 
Ha receives most support from the data and if BFab < 1 
then Hb receives most support from the data. There exist 
various guidelines in the literature for the interpretation 
of the value of BFab . Table  1 repeats the classification 
scheme that has been published earlier in this journal 
[26]. It should be mentioned that this scheme should not 
be used in a stringent manner, such as the type I error 
rate α is used to distinguish significant and insignifi-
cant effects in null hypothesis significance testing. Some 
Bayesian statisticians even recommend not using such 
schemes at all, but only reporting the value of the Bayes 
factor such that the reader can make his or her own 
judgment.

Illustrative example: comparing cholesterol levels 
across males and females
The publicly available Framingham dataset [27] con-
tains physiological measurements from 669 males and 
737 females. In this illustration males and females are 
compared with respect to their serum cholesterol levels 
(measured in mg/100 ml). For illustrative purposes, a ran-
dom sample of only 100 males and 100 females from this 
data set is used. Two informative hypotheses are com-
pared: H0 : µmales = µfemales and H1 : µmales < µfemales.

Table 1  Classification scheme for the Bayes factor BFab

BFab Interpretation

>100 Extreme support for Ha

30-100 Very strong support for Ha

10-30 Strong support for Ha

3-10 Moderate support for Ha

1-3 Anecdotal support for Ha

1 Support for neither hypothesis

1/3-1 Anecdotal support for Hb

1/10-1/3 Moderate support for Hb

1/10-1/30 Strong support for Hb

1/30-1/100 Very strong support for Hb

<1/100 Extreme support for Hb
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Table 2 presents results for the two parameters  µmales 
and µfemales that are used to specify the informative 
hypotheses: the estimate, the standard deviation of the 
posterior distribution and the 95% credible interval. 
The latter is the interval bounded by the 2.5 and 97.5% 
quantiles of the posterior distribution. The estimate for 
females is larger than the estimate for males and the 
credible intervals overlap somewhat.

Table  3 shows the fit, complexity, and Bayes fac-
tor for both hypotheses. The fit and complexity for 
hypothesis H0 are very small and the Bayes factor 
BF0u = fi/ci = 0.987/0.5 = 0.824 shows there is more 
support for hypothesis Hu than for H0 in the data. The 
fit for hypothesis H1 is equal to 0.987, so 98.7% of the 
posterior is in agreement with the hypothesis. The 
complexity is 0.5, so 50% of the prior is in agreement 
with the hypothesis. BF1u = 1.975 meaning the sup-
port in the data for H1 is almost twice as large as for 
Hu . The ratio of the two Bayes factors is BF10 = BF1u

/BF0u = 1.975/0.824 = 2.40 , which implies hypothesis 
H1 receives 2.40 times as much support from the data 
than hypothesis H0 . Such an amount of support is con-
sidered anecdotal (see Table 1).

Bayesian updating
The Framingham dataset is used to illustrate Bayesian 
updating. Suppose one aims for a strong amount of sup-
port for either hypothesis H0 or H1 from the data. First, 
20 subjects per gender are used to calculate the Bayes fac-
tor. Subsequently, the sample size per gender is increased 
by adding one subject and the Bayes factor is calculated 
again. This is done until strong support for one of the two 
hypotheses is found: the Bayes factor BF10 exceeds the 
target value BFtarget = 10 (which implies more support 
for H1 ) or subceeds its complement 1/BFtarget = 1/10 
(which implies more support for H0).

Figure  2 shows the Bayes factor as a function of the 
number of subjects per gender. The two horizontal 
dashed lines are the target value and its inverse. For small 
number of subjects per gender the data show more sup-
port for H0 than for H1 . As sample size increases, the 
support for H1 becomes stronger and almost sufficient 
support is achieved for 62 subjects per gender. However, 
the Bayes factor decreases to lower values if the sample 
size further increases to 72. This is because during this 
period of data collection the males had a (much) larger 
serum cholesterol level than the females. Only after 100 
subjects per gender are included a steady increase of the 
Bayes Factor is observed. Once 190 subjects per gender 
are included the boundary BFtarget = 10 is exceeded and 
the process of adding subjects terminates. Most support 
is then found for H1 as the Bayes factor is equal to 11.7.

Various adjustments to the procedure described above 
are available. First, the number of subjects to be added 
in each step may be larger than just one and it may even 
change during the course of the study. For instance, in a 
trial that compares treatments for a rare disease or con-
dition, recruiting subjects may be relatively easy at the 
beginning of the study but may become more difficult 
later on. It is also possible the number of added sub-
jects is different across the two groups. Second, the ini-
tial sample size per group may be smaller or larger than 
20. With a large initial sample size sufficient support for 
one hypothesis may be found immediately, meaning the 
duration of the study may be short. However, in such a 
case the sample size may be larger than actually needed. 
In other words, sufficient support for either hypothesis 
could have been achieved with a smaller group size. This 
may be problematic in trials in which recruiting, treat-
ing and measuring subjects is expensive and/or when 
treatments have harmful side-effects. On the other hand, 
using a small initial sample size may result in the incor-
rect hypothesis getting most support from the data due 
to chance. Third, there may be a limit on the sample size, 
which implies it is possible neither hypothesis gets a suf-
ficient amount of support from the data once the maxi-
mum sample size is reached. In other words, the Bayes 
factor does not exceed BFtarget or subceed its inverse 
1/BFtarget . The likelihood of such an inconclusive result is 
likely to increase with decreasing effect size and increas-
ing BFtarget.

Simulation study for two‑group comparisons
Design of simulation study
A simulation study was conducted to answer three ques-
tions on Bayesian updating in two-group comparisons:

1.	 What sample sizes can be expected?

Table 2  Summary statistics for the Framingham example

Parameter Estimate Posterior s.d. 95% credible interval

Mean for males 223.04 5.69 (211.9, 234.2)

Mean for females 247.00 9.09 (229.2, 264.8)

Table 3  Fit, complexity and Bayes factor for the two hypotheses 
of the Framingham example

Hypothesis Hi Fit fi Complexity ci Bayes factor BFiu

H0 : µmales = µfemales 0.003 0.004 0.824

H1 : µmales < µfemales 0.987 0.5 1.975
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2.	 How large are the error rates: how often does the 
Bayes factor show more support for the hypothesis 
that was not used to generate the data?

3.	 In the case the sample size per group is limited to a 
certain maximum: how often is the result inconclu-
sive?

The simulation study included seven factors. These fac-
tors and their chosen levels are as follows:

1.	 The set of two hypotheses to be compared. Three 
sets are considered. The first set compares the null 
hypothesis of equal group means H0 : µ1 = µ2 to a 
one-sided alternative hypotheses H1 : µ1 < µ2 . The 
second compares the same null hypotheses to a two-
sided alternative hypothesis H1 : µ1 �= µ2 . The third 
compares two one-sided hypotheses to each other: 
H1 : µ1 > µ2 and H2 : µ1 < µ2.

2.	 The effect size, for which four different values are 
considered: Cohen’s d = 0 , 0.2, 0.5 and 0.8. These 
reflect zero, small, medium and large effects. A zero 
effect size is not used for those scenarios that use the 
third hypotheses set.

3.	 The target BF, for which four different values are con-
sidered: BFtarget = 3 , 5, 10 and 20. Sufficient support 
for the first hypotheses in each of the three hypothe-
ses sets is achieved when BF > BFtarget and sufficient 

support for the second hypothesis is achieved when 
BF < 1/BFtarget.

4.	 The fraction b in the data used to specify the prior 
distribution. Three different values are used: b, 2b 
and 3b, meaning that one, two and three subjects are 
used in total to specify the prior.

5.	 The type of test. With the equal variances t-test the 
variances in both groups are equal and in the simu-
lation var1 = var2 = 1 was used. With the unequal 
variances t-test (i.e. Welch’s test) unequal variances 
are considered in both group and data were simu-
lated with var1 = 4/3 and var2 = 2/3 (i.e. the aver-
age variance is 1, just as the variance for the t-test).

6.	 The minimum group size: the number of subjects per 
group at the start of the study. This is the group size 
for which the Bayes Factor is calculated for the first 
time. Three different values are used: Nmin = 5 , 10 
and 20.

7.	 The maximum group size: the maximum number of 
subjects that can be recruited per group. Four differ-
ent values are used: Nmax = 5 0, 100, 200 and 50,000. 
The latter serves as a proxy for an unlimited group 
size.

In total 3168 combinations of factor levels were consid-
ered in this simulation study; these are called scenarios in 
the remainder of this contribution. Note that this is not 

Fig. 2  Example of a trajectory in Bayesian updating: comparison of cholesterol levels between males and females
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a full factorial design since for the third hypothesis set 
Cohen’s d = 0 cannot be considered. For each of those 
5,000 replications were generated, which gives a total of 
15,840,000 replications. To keep the simulation manage-
able, the step size (i.e. the number of subjects added to 
each group before the Bayes Factor is calculated again) 
for increasing group size depended on the group size N  . 
For N < 100 the step size was 1, for 100 < N < 100 0 the 
step size was 5, for 1000 < N < 250 0 the step size was 
10, for 25 00 < N < 500 0 the step size was 20 and for 
5 000 < N < 5000 0 the step size was 50. All data were 
generated in R, version 4.0.2 [28]. For each data set the 
R function t.test with either equal or unequal variances 
was used. Subsequently, calculation of Bayes factors was 
done using the same version of R and the R package bain 
[16, 20].

The output for each scenario consists of two elements. 
The first is the distribution of the group size N  at which 
BF  exceeds the threshold BFtarget or subceeds its inverse 
1/BFtarget , or the maximum group size is achieved. The 
second is the distribution of the corresponding value of 
BF  . From the latter is can be derived how often the incor-
rect hypothesis gets most support from the data, and 
how often the result is inconclusive.

Results of simulation study
The results of the simulation study can be explored in a 
Shiny app that is available at https://​utrec​ht-​unive​rsity.​
shiny​apps.​io/​Bayes​ianUp​dating/. This Shiny app allows 
the user to study the distribution of N  and BF  for any 
combination of factor levels that were used in the simula-
tion study. Furthermore, it also gives the mean, median 
and maximum group size, and the percentage data sets 
for which the correct hypothesis, the incorrect hypoth-
esis or neither hypothesis is favoured (i.e. an inconclusive 
result).

This section discusses some general findings. Table  4 
shows the error rates and mean group size as a function 
of the hypotheses set, effect size, the fraction in the data 
used to specify the prior and the target BF  . The results in 
this table hold for a t-test, with a minimum group size of 
20 and a maximum group size of 50,000. This group size 
served as a proxy for an unlimited group size. Only in 2 
out of the 660,000 replications this maximum group size 
was reached, which is a negligible amount.

We first discuss how the error rate is influenced by the 
factors in the simulation study. The error rate is lower 
for the third hypotheses set than for the first and second. 
In other words, lowest error rates are observed when 
neither of the two hypotheses includes an equality con-
straint. For effect sizes d > 0 the error rate of hypotheses 
set 1 is most often smaller than that of hypotheses set 
2. In other words, a two sided alternative H1 : µ1 �= µ2 

most often results in lower error rates than a one-sided 
alternative H1 : µ1 < µ2 . For effect sizes d = 0 the error 
rates of hypotheses sets 1 and 2 are comparable.

There is a clear relation between the effect size and 
error rate. For effect sizes d > 0 the error rate decreases 
with increasing effect size. Larger effect sizes are easier to 
capture and hence result in lower error rates. The error 
rates for d = 0 are almost always below those for d = 0.2 
and quite often also below those for d = 0.5 , meaning the 
incorrect hypothesis is less often favoured when the data 
are generated under a zero effect size than when they are 
generated under a small or medium effect size.

For hypotheses sets 1 and 2 the error rate is also influ-
enced by the fraction of the data that is used to specify 
the prior. The error rate decreases with increasing frac-
tion when d > 0 . For larger fraction the variance of the 
prior increases and hence the complexity of H0 increases. 
As a result of that BF0u decreases and BF10 increases and 
there is a higher probability the correct hypothesis H1 
gets most support from the data. For the same reason-
ing the error rate increases with increasing fraction when 
d = 0 . Using more information from the data to specify 
the prior is advantageous for non-zero effect sizes but not 
for a zero effect size. For hypotheses set 3 the error rate is 
hardly influenced by the fraction, because BFiu does not 
depend on the fraction if the two hypotheses under con-
sideration do not include an equality constraint [20].

Finally, Table  4 shows that the error rate decreases 
when BFtarget increases. For d = 0 .5 or 0.8 it decreases to 
(near) zero, while for d = 0 or 0.2 it decreases to some-
what larger values. For large BFtarget strong support for 
a hypothesis is sought, hence it is unlikely that the incor-
rect hypothesis is favoured.

We now discuss how the mean group size is influ-
enced by the factors in the simulation study. In almost 
all cases the mean group size is smaller for hypotheses 
set 3 than for hypotheses sets 1 and 2, so lower group 
sizes are needed when neither of the two hypotheses in 
a set includes an equality constraint. The mean group 
sizes for hypotheses sets 1 and 2 are comparable to one 
another.

The mean group size generally decreases when the 
effect size increases from d = 0.2 to 0.5 and then further 
to 0.8. This is obvious since larger effect sizes are easier 
to capture and hence require a smaller sample. The mean 
group size for d = 0 is most often below that for d = 0.2 
and for some scenarios even below that for d = 0.5.

For hypotheses sets 1 and 2 the mean group size is also 
influenced by the fraction in the data to specify the prior. 
For d = 0 it increases with increasing fraction. For other 
effect sizes this relation depends on the effect size and 
BFtarget : sample size only increases with increasing frac-
tion for combinations of low effect size and low BFtarget . 

https://utrecht-university.shinyapps.io/BayesianUpdating/
https://utrecht-university.shinyapps.io/BayesianUpdating/
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For hypotheses set 3 the mean group size is hardly influ-
enced by the fraction.

Finally, the mean group size increases when BFtarget 
increases. As is obvious, larger group sizes are needed 
when a higher degree of support is required.

Tables  1-3 in the online supplement show how the 
error rate and mean group size change if the minimum 
group size decreases from 20 (Table S1) to 10 (Table S2) 
to 5 (Table S3). In most scenarios the error rate increases 
if the minimum group size becomes smaller. In other 
words, by chance due to starting with a small group size 

the incorrect hypothesis may be given more support by 
the data than the correct hypothesis. The main excep-
tions are those scenarios for hypotheses sets 1 and 2 with 
d = 0.2 . Furthermore, in almost all scenarios the mean 
group size decreases when a smaller minimum group size 
is used.

When the group size is limited to a certain maxi-
mum, there is a chance the result is inconclusive. This 
is illustrated in Fig.  3, which shows the distribution of 
BF  when there is no restriction on the group size, and 
when it is limited to 200, 100 or 50. This figure is based 

Table 4  Percentage error and mean sample size for the equal variances t-test (Nmin = 20,Nmax = 50000)

Hyp Set 1: H0 : µ1 = µ2 and H1 : µ1 < µ2 ; Hyp Set 2: H0 : µ1 = µ2 and H1 : µ1 �= µ2

Hyp Set 3: H1 : µ1 > µ2 and H2 : µ1 < µ2 . Underline: scenarios with one replication inconclusive

BFtarget = 3 BFtarget = 5 BFtarget = 10 BFtarget = 20

HypSet ES Fraction % error Mean N % error Mean N % error Mean N % error Mean N

1 0 1b 5.1 22 4.1 29 2.5 70 1.5 296

1 0 2b 7.2 24 5.7 36 3.7 123 2.3 523

1 0 3b 9.1 26 7.1 47 4.4 179 3.1 799

1 0.2 1b 78.9 25 72.1 49 47.0 171 13.6 406

1 0.2 2b 70.8 29 61.3 69 27.3 238 3.6 451

1 0.2 3b 65.2 32 51.3 79 19.0 268 1.5 435

1 0.5 1b 35.0 26 19.9 37 4.3 58 0.2 74

1 0.5 2b 24.7 27 10.7 39 0.8 56 0.0 68

1 0.5 3b 17.9 28 6.5 40 0.2 54 0.0 63

1 0.8 1b 6.1 22 1.9 25 0.1 28 0.0 31

1 0.8 2b 3.2 22 1.0 24 0.0 27 0.0 30

1 0.8 3b 1.8 22 0.5 24 0.0 26 0.0 29

2 0 1b 5.0 22 3.9 27 3.8 92 2.1 380

2 0 2b 7.4 23 6.3 42 4.2 180 2.8 758

2 0 3b 9.8 26 7.7 62 5.3 265 3.5 1114

2 0.2 1b 88.3 23 84.7 34 56.6 170 10.1 512

2 0.2 2b 82.4 25 73.3 56 30.0 282 1.1 543

2 0.2 3b 78.9 28 62.2 83 17.2 342 0.0 531

2 0.5 1b 50.5 24 34.7 35 2.5 70 0.0 85

2 0.5 2b 39.8 26 15.4 44 0.1 67 0.0 78

2 0.5 3b 31.9 28 6.3 48 0.0 64 0.0 75

2 0.8 1b 13.9 23 4.7 26 0.0 31 0.0 34

2 0.8 2b 7.7 23 1.1 26 0.0 29 0.0 33

2 0.8 3b 5.6 23 0.1 26 0.0 29 0.0 32

3 0.2 1b 19.2 26 12.8 41 7.0 71 3.8 114

3 0.2 2b 18.5 26 13.1 40 7.3 71 3.3 114

3 0.2 3b 19.8 26 13.3 39 7.4 70 3.4 113

3 0.5 1b 2.1 21 0.8 23 0.3 26 0.2 31

3 0.5 2b 2.0 21 1.1 23 0.3 26 0.1 31

3 0.5 3b 2.4 21 0.7 23 0.4 26 0.3 31

3 0.8 1b 0.1 20 0.0 20 0.0 21 0.0 21

3 0.8 2b 0.2 20 0.0 20 0.0 21 0.0 21

3 0.8 3b 0.1 20 0.1 20 0.0 21 0.0 21



Page 9 of 11Moerbeek ﻿BMC Med Res Methodol          (2021) 21:137 	

on the t-test for the first hypotheses set ( H0 : µ1 = µ2 
versus H1 : µ1 < µ2 ), an effect size d = 0.5 , a fraction 
1b ,  BFtarget = 10 and minimum group size Nmin = 20 . 
The boundaries are represented by the two vertical 
dashed red lines. The percentages on top of each panel 
are the percentages for which BF < 1/BFtarget (left), 
1/BFtarget < BF < BFtarget (middle) and BF > BFtarget 
(right). In the case the group size is not limited, the 
incorrect hypothesis H0 : µ1 = µ2 is favoured in 4.32% 
if the cases and the correct hypothesis H1 : µ1 < µ2 
is favoured in 95.68% of the cases. When a maximum 
group size is used, some of the generated trials show 
an inconclusive result. When the maximum group size 
becomes smaller the percentage of such trails becomes 
larger, whereas the percentage trials for which the cor-
rect hypothesis is favoured becomes smaller. In general, 
such inconclusive results are more likely to occur when 
BFtarget increases and/or when the effect size decreases 
from 0.8 to 0.2.

It is to be expected that we that we observe decreasing 
percentage of indecisive results for growing sample sizes. 

This is mainly due to the consistency of the BF, which 
guarantees that for large enough sample sizes the Bayes 
factor BFii’ converges to zero if Hi’ is true or to infinity if 
Hi is true. The four plots show that whenever we sample 
long enough the consistency will guarantee that we arrive 
at a conclusive result which passes any necessary thresh-
old. However, the sample sizes required to attain such a 
threshold may, of course, be prohibitively large for practi-
cal research.

Tables 4-6 in the online supplement present error rates 
and means group sizes for the unequal variances t-test 
(i.e. Welch’s test). These are very similar to those of the 
equal variances t-test and in general the findings as dis-
cussed above for the equal variances t-test also hold for 
the Welch’s test.

Conclusions and discussion
This paper introduced Bayesian updating to researchers 
in the biomedical field and showed results of a simulation 
study that investigated sample size and error rate. The 
results of the simulation study are intuitively sound and 

Fig. 3  The effect of decreasing the maximum group size on the distribution of the Bayes factor
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some of them are similar to those from a power analysis 
in the framework of null hypothesis significance testing. 
Larger sample size is needed when power increases just 
as a larger sample size is needed when BFtarget increases. 
Larger sample size is needed if the effect size decreases, 
whenever a power analysis is performed or Bayesian 
updating is used.

The results replicate those of previous simulation stud-
ies on Bayesian updating for two-group comparisons 
and confirm theoretical consistency results of the Bayes 
Factor under optional stopping: error rates and mean 
sample size decrease with increasing effect size, sam-
ple size increases with increasing BFtarget and error rate 
decreases with increasing BFtarget [17, 29]. The simula-
tion study of this paper was more extensive since it used 
more than one set of hypotheses, allowed for unequal 
group variances and studied the effect of minimum and 
maximum group sizes. Another important difference is 
the choice of the prior. This study used part of the data 
to calculate the prior, while previous studies [17, 18] used 
the Jeffreys-Zellner-Siow prior ([30], implemented in the 
R package BayesFactor).

A simulation study with a wide range of factors and 
factor levels was used to study error rate and sample 
size. The R syntax on https://​github.​com/​Mirja​mMoer​
beek/​Bayes​ianUp​dating can be used for other sce-
narios, for instance other effect sizes, other variances 
in both groups for Welch’s test, or a larger BFtarget . 
As any simulation study, this one also had its limita-
tions: it restricted to two-group comparisons, quan-
titative outcomes, a between-subject design and it 
did not take into account multilevel data structures, 
as may be encountered in cluster randomized trials. 
A focus on more complicated designs and other types 
of outcome variables is therefore necessary in future 
research. In addition to that, it might also be of interest 
to study the behaviour of the Bayes factor under model 
misspecification.

Bayesian updating is a viable alternative to a priori 
sample size calculations in studies where additional sub-
jects can be recruited easily and data become available 
within a limited amount of time. It may not be applicable 
in longitudinal studies where the time between recruiting 
and measuring subjects is large. Also, there is a risk suffi-
cient support for either hypothesis cannot be found since 
the sample size is limited, which may be the case in popu-
lations where a rare disease or disorder is studied. How-
ever, in such cases it is also very likely the sample size as 
obtained from an a priori sample size calculation exceeds 
the size of the population.

I hope readers of this paper will consider Bayesian 
updating an alternative to a priori sample size calcula-
tion, in experimental research as well as in observational 

research. The results in this paper inform them what 
sample size may be expected and how large the error rate 
is. These may be used in designing future studies for two-
group comparisons.
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