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Abstract 

Background:  Already at hospital admission, clinicians require simple tools to identify hospitalized COVID-19 patients 
at high risk of mortality. Such tools can significantly improve resource allocation and patient management within hos-
pitals. From the statistical point of view, extended time-to-event models are required to account for competing risks 
(discharge from hospital) and censoring so that active cases can also contribute to the analysis.

Methods:  We used the hospital-based open Khorshid COVID Cohort (KCC) study with 630 COVID-19 patients from 
Isfahan, Iran. Competing risk methods are used to develop a death risk chart based on the following variables, which 
can simply be measured at hospital admission: sex, age, hypertension, oxygen saturation, and Charlson Comorbidity 
Index. The area under the receiver operator curve was used to assess accuracy concerning discrimination between 
patients discharged alive and dead.

Results:  Cause-specific hazard regression models show that these baseline variables are associated with both death, 
and discharge hazards. The risk chart reflects the combined results of the two cause-specific hazard regression mod-
els. The proposed risk assessment method had a very good accuracy (AUC = 0.872 [CI 95%: 0.835–0.910]).

Conclusions:  This study aims to improve and validate a personalized mortality risk calculator based on hospitalized 
COVID-19 patients. The risk assessment of patient mortality provides physicians with additional guidance for making 
tough decisions.
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Background
The ongoing coronavirus disease 2019 (COVID-2019) 
pandemic changed priorities all over the world. More 
than 119 million confirmed infections and over 2.6 
million deaths worldwide have been reported [1, 2]. 
Approximately 20% of such confirmed cases were 
severe, among which most were admitted in the inten-
sive care unit (ICU) and required early intubation and 
mechanical ventilation. The health systems thus face 
financial and facility challenges in light of managing 
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this condition. As the pandemic continuous, hospi-
tals seek effective methods for managing such severe 
patients. Present guidelines on COVID-19 treatment 
identify ICU admission, ventilation, and mortality risk 
as typical outcomes in high-risk patients and consider 
these patients as potential candidates for medical treat-
ment [3, 4]. Many studies reported the clinical charac-
teristics and outcomes of COVID-19 patients, but few 
research studies focused on the risk assessment of out-
comes [5, 6]. Personal risk profiles can help physicians 
make the correct decision for optimal patient treatment 
and hospital capacity management.

The risk assessment procedure and the resulting risk 
charts have been well documented in community-based 
cardiovascular Cohorts [7–11]. In such studies, the risk 
of having an event by the end of the cohort follow-up 
is estimated using the time-to-event analysis based on 
Cox proportional hazard regression [12]. By contrast, 
the analysis of in-hospital data requires special atten-
tion. Standard Cox regression models lead to inaccurate 
results when competing events exist [13]. For example, 
discharge alive is a competing event when hospital death 
is the event of interest. Such information should not be 
ignored since it results in an incomplete reflection of 
treatment effects [14] and creates competing risk bias. 
Moreover, standard logistic regression could not be used 
when some active cases are still hospitalized at the last 
follow-up date [13, 15]. In fact, excluding such patients 
creates selection bias.

Recently, machine learning methods were used for sur-
vival analysis. Methods, such as Random Survival For-
ests (RSF), were compared with standard Cox regression 
models [16]. Although RSF could select significant non-
linear interactions to improve the discrimination ability, 
they do not provide direct clinical interpretation infor-
mation and should be further studied before the clinical 
application [17, 18]. Also, time-to-event data analysis 
could not be performed appropriately using classifica-
tion systems, in which the event-of-interest is only used, 
and time-to-event data is discarded with the same reason 
mentioned above for the standard logistic regression.

This paper introduces an absolute cause-specific risk 
regression approach to perform risk assessment [19–21] 
for patients hospitalized with COVID-19. The event-of-
interest is death in the hospital, and discharge alive is 
considered as the competing event. To demonstrate the 
methodology, the Khorshid COVID-19 Cohort (KCC) 
dataset [22] with 630 patients is used. To the best of 
our knowledge, this is the first study in which absolute 
risk assessment is performed on in-hospital COVID-
19 patients considering the competing events. We also 
provide a death risk chart as a simple tool for clinical 
applications.

Methods
Absolute risk estimation for hospital mortality
First, we introduce the absolute risk estimation approach, 
which is used for the risk assessment.

We denote D the event outcome, where D = 1 if the 
event of interest (e.g., hospital death) occurred, and D = 2 
if the competing event (e.g., discharge alive) happened. 
Then, the probability (i.e., absolute risk) that an event 
of type 1 (i.e., D = 1) occurred by time t is given by the 
Eq. (1) [20, 21]:

where s− denotes the right-sided limit, S(s − |x, z) is 
the conditional event-free survival function, �1,z(s|x) 
is the hazard of the event of interest dependent on the 
baseline covariate vector x, and z is a set of strata vari-
ables. The event-free survival function,S(s|x, z) , is the 
probability to be still hospitalized at time s and thus 
depends on the patients’ length of hospital stay which is 
directly linked to both the death hazard, �1,z(s|x), and the 
discharge hazard, �2,z(s|x). This is in contrast to the clas-
sical time-to event settings with only one event of inter-
est (here: death) and without competing events (here: 
discharge). Thus, the absolute risk of hospital mortality 
is preliminary determined by the death hazard but also 
by the discharge hazard. As many clinical factors and 
biomarkers are associated with the discharge hazard, it is 
therefore necessary to use competing risk methodology 
to identify potential predictors for hospital mortality.

To estimate F1(t|x, z) , we first need to estimate the 
event-free survival function. It is done by estimating both 
cause-specific hazards and then using the product inte-
gral estimator [21]. The stratified Cox regression model 
for cause j, j = 1 or 2 [21, 23], is given by the Eq. (2):

where βj is the vector of log-hazard ratios of the covari-
ate vector x and λ0j,z(t) is the baseline hazard function.

Thus, the absolute risk estimation includes estimating 
the cause-specific hazards for both event types and then 
calculating the integral Eq. (1).

Obtaining the risk chart
We use the absolute risk estimation procedure to obtain 
a detailed risk chart for patients hospitalized for COVID-
19 (see Fig. 1). First, two cause-specific Cox proportional 
hazards models for the outcome events death in the hos-
pital and discharged alive are fitted. It is done by using 
the “csc” function of the “riskRegression” package in R 
[21, 24]. The cause-specific hazard ratios show how the 
risk factors affect each hazard rate. Both cause-specific 

(1)F1(t|x, z) =

∫ t

0

S(s − |x, z)�1,z(s|x)ds

(2)�0j,z(t|x) = �0j,z(t)e
xβj
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Fig. 1  The absolute mortality risk chart for COVID-19 hospitalized patients based on sex, age, oxygen saturation, hypertension, and Charlson 
Comorbidity Index
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hazard ratios have to be considered to conclude the 
effects of the risk factors on the absolute risk. Thus, even 
if a variable does not affect the death hazard, it may indi-
rectly affect hospital mortality by in- or decreasing the 
discharge hazard. By contrast, the subdistribution haz-
ard ratio combines the direct and the indirect effects in 
a single coefficient. To show how variables may indirectly 
influence hospital mortality, we additionally estimate the 
subdistribution hazard for the outcome of death. It is 
done using the “crr” function of the “cmprsk” package in 
R [25–27].

Nonetheless, the absolute risk approach is based on 
the two cause-specific hazards, as was explained above. 
Thus, we apply the “predict” function on the csc-object 
to obtain the estimates of F1(t|x, z) for all patient groups. 
For each patient, we obtain an individual risk based on 
the baseline covariates of the patients. Finally, the risk 
chart as shown in Fig.  1 can be constructed. By color-
coding, high-risk and low-risk patients are directly iden-
tifiable from the chart.

The area under the curve (AUC) of the receiver opera-
tor curve (ROC), defined in Eq.  (3) [28–30], could be 
used to assess accuracy for discrimination between 
patients discharged alive and dead:

where m is the number of patients who died, n is the 
number of patients discharged alive, Pi and Pj are the esti-
mated mortality risks of the data points i and j. The ker-
nel ϕ is defined in Eq. (4).

It is done using the “colAUC” function of the “caTools” 
package in R [31, 32].

Results were reported as mean ± standard deviation 
(for interval variables) and frequencies (for categorical 
variables). All data processing was performed using R 
version 4.0.3 [33].

Dataset and variable selection
In our study, the Khorshid COVID-19 Cohort (KCC) 
dataset [22, 34] was used. It is a hospital-based open 
cohort from Isfahan, which was a hot outbreak zone in 
central Iran. COVID-19 patients were admitted to the 
Khorshid referral hospital in Isfahan from February 2020 
until September 2020. The patient recruitment phase 
finished at the end of August 2020, and the follow-up 
continues until the end of August 2021. The patients are 
followed up for the first, fourth, 12th weeks, and the first 

(3)AUC =
1

m× n
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n
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1 Pi > Pj
0.5 Pi = Pj
0 Pi < Pj

year after discharge. In total, 630 COVID-19 patients 
were enrolled in our study.

Among the recorded data for each COVID-19 patient, 
the baseline parameters sex, age, hypertension, oxygen 
saturation (SaO2) at hospital admission, and Charlson 
Comorbidity Index (CCI) [35, 36] were used as the non-
lab input measurements to the model. Such parameters 
were selected based on clinical knowledge and previous 
papers published in the literature on the COVID-19 clini-
cal outcome prediction [37, 38]. Age was categorized as 
less than 45 (years) (B0), 45–54 (B1), 55–64 (B2), 65–74 
(B3), and more than 75 (B4) as in Petrilli et al. [39]. Oxy-
gen saturation was categorized as more than or equal to 
90% (A0), 80–89 (A1), and less than 80 (A2) by merg-
ing some SaO2 sub-categories as mentioned by Mejía 
et  al. [38]. CCI was dichotomized as low (CCI < 3) or 
high (CCI ≥ 3). Such an optimal cut-off was estimated 
to minimize the (Error-Rate) ER-criteria of the Receiver 
operating characteristic curve (ROC) [40] for optimal 
mortality discrimination (AUC = 0.767 [CI 95%: 0.697–
0.837]). Such a threshold previously was used in the lit-
erature for risk stratifications of hospitalized COVID-19 
patients [41]. A reference group is considered with the 
following categories: sex (Female), age (B0), oxygen satu-
ration (A0), and low CCI. Time-to-event was considered 
until hospital discharge, and the status at discharge (dead 
or alive) is taken into account. The risk assessment pro-
cedure was performed for the time from admission until 
58 days of hospitalization.

Results
Among 630 patients, 38.7% were female. The average age 
of the admitted patients was 57.1 ± 15.4 years. The aver-
age of the CCI was 2.3 ± 2.1. 34.9% of the participants 
had hypertension. Forty-five patients died in the hospital. 
The descriptive statistics of the admitted patients catego-
rized by the vital state at discharge are listed in Table 1. 
The cause-specific hazard ratios and their 95%-CIs are 
shown in Table 2. The subdistribution hazard ratios and 
their CI 95% for mortality based on the Fine and Gray 

Table 1  The baseline characteristics of 630 patients, discharged 
alive or dead

CCI Charlson Comorbidity Index. Data are Mean ± SD or numbers (%)

Parameter Discharged alive
n = 585

Dead
n = 45

Sex (male) 359 (61.4) 27 (60.0)

Age 56.1 ± 15.1 70.0 ± 13.4

Oxygen saturation 90.0 ± 6.1 80.1 ± 12.6

CCI 2.1 ± 2.0 4.2 ± 2.2

Hypertension 193 (33.0) 27 (60.0)
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model [26], with the competing event of discharge alive, 
are listed in Table 3. For example, we find that low oxy-
gen saturation significantly increases the death hazard 
rate and decreases the discharge hazard. If it drops below 
80%, the death hazard is more than five times higher than 
for patients in the reference group. At the same time, the 
discharge hazard is 40% lower. The subdistribution haz-
ard ratio quantifies the combined effect: patients with 
80% oxygen saturation or less have a more than ten times 
higher risk of death in the hospital. This effect is not only 
explained by the increased death hazard but also by the 
decreased discharge hazard. Due to the decreased dis-
charge hazards, the patients stay longer in the hospital 
and therefore longer at risk and thus also at higher risk of 
dying in the hospital within 58 days.

The absolute mortality risk was then calculated within 
58  days of hospitalization of COVID-19 patients. Its 
color-coded risk chart is provided in Fig.  1. The pro-
posed risk assessment method had an excellent accuracy 
(AUC = 0.872 [CI 95%: 0.835–0.910]). The ROC of the 
proposed system is shown in Fig. 2.

The risk chart reflects the combined results of the two 
cause-specific hazard ratios. We find that the risk of hos-
pital death within each group is about ten times higher 
for patients with an oxygen saturation lower of 80%.

Discussion
Suitable identification of hospitalized COVID-19 patients 
at high risk of mortality can significantly improve 
resource allocation and patient management within 
hospitals. This study aims to improve and validate a 
personalized mortality risk calculator based on hospital-
ized COVID-19 patients. The risk assessment of patient 
mortality provides physicians with additional guidance 
for making tough decisions. The presented tool showed 
a very good accuracy. In this model, baseline clinical 
parameters collected at hospital admission were used. It 
requires commonly available demographic and comor-
bidity data. Also, the oxygen saturation level could be 
measured using a traditional pulse oximeter. Thus, it does 
not require advanced blood testing and could be consid-
ered as a non-laboratory-based risk chart. The proposed 
risk assessment procedure is not limited to the input fac-
tors used in this paper. In fact, it could be applied to any 
input variables such as repeated COVID-19 infection, 
vaccination category, and body mass index.

Predicted mortality increased for patients with low 
oxygen saturation, corroborating findings that link 
hypoxemia to mortality [42], as well as the observed 

Table 2  The multivariable Cox proportional hazard regression 
model for mortality and hospital discharge

CCI Charlson Comorbidity Index

Parameter Category Death Hazard Ratio Discharge 
Hazard 
Ratio

Sex

Female, ref - -

Male 1.52
[0.77–2.99]

0.93
[0.78–1.11]

Age (years)

 < 45, ref - -

45–54 1.02
[0.14–7.33]

0.82
[0.64–1.05]

55–64 1.81
[0.36–9.07]

0.93
[0.73–1.19]

65–74 3.84
[0.78–18.87]

0.77
[0.57–1.04]

 > 74 2.74
[0.51–14.80]

0.73
[0.50–1.05]

Oxygen Saturation (%)

90–100, ref - -

80–89 3.19
[1.33–7.65]

0.57
[0.47–0.69]

 < 80 5.48
[2.18–13.78]

0.38
[0.27–0.53]

CCI

0–2, ref - -

 ≥ 3 2.10
[0.90–4.86]

0.80
[0.61–1.05]

Hypertension 1.14
[0.55–2.37]

0.92
[0.75–1.12]

Table 3  The multivariable subdistribution hazards model for 
hospital mortality

CCI Charlson Comorbidity Index

Parameter Category Subdistribution 
Hazard Ratio

CI 95% p-value

Sex

Female, ref - - -

Male 1.41 0.72–2.78 0.320

Age (years)

 < 45, ref - - -

45–54 0.91 0.14–6.10 0.920

55–64 1.53 0.32–7.39 0.600

65–74 3.49 0.70–17.56 0.130

 > 74 2.40 0.42–13.72 0.330

Oxygen Saturation (%)

90–100, ref - - -

80–89 5.37 2.27–12.74  < 0.001

 < 80 10.94 3.90–30.66  < 0.001

CCI

0–2, ref - - -

 ≥ 3 2.18 0.94–5.05 0.068

Hypertension 1.41 0.72–2.76 0.320
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prevalence of shortness of breath in severe patients 
[43]. This measurement additionally serves as a sig-
nal of respiratory distress, and respiratory failure has 
been found clinically as one of the significant causes of 
COVID-19 mortality [44]. It can also appear in silent 
hypoxia cases where shortness of breath is not observed 
[45]. Age was another critical determinant of mortality 
in the model: older patients have higher mortality risk, 
as observed in the retrospective patient analysis [46] 
and subsequently reflected in public health guidance 
[47]. Similar to our study, it was shown in the literature 
that a higher CCI score is significantly associated with 
mortality and disease severity in COVID-19 patients 
[41, 48].

Moreover, the increase in mortality risk for patients 
with elevated blood pressure levels is consistent with the 
reports in other studies [49, 50]. Such findings could have 
been expected a priori as logical, but the proposed assess-
ment permits quantifying them as a function of time 
after patient admission. In our analysis, a dichotomized 
version of CCI was used (CCI < 3 vs. CCI ≥ 3). However, 
more categories of CCI were used in the literature, such 
as: CCI = 0, CCI score of 1–2, and CCI score of ≥ 3 [41]. 
Due to the collinearity between age and CCI, our model 
consisted of a dichotomized version of CCI.

In our dataset, no active patients were in the hospital, 
and follow-up was complete for hospital mortality. Thus, 
in principle, the logistic regressions could be alternatively 
used instead of the absolute risk regression model in our 
data situation. However, it does not account for time-to-
event and censoring. It could only display effects on a 
cumulative incidence function on a plateau [15]. More-
over, since we aim to use the proposed risk assessment 
procedure in dynamic situations and integrate it into 
the hospital information system (HIS), only predictions 
based on cause-specific regression could be used as there 
are always active cases in the hospital proceeding time 
frames.

The example of oxygen saturation categories demon-
strated the possible incomplete picture of risk assessment 
if the competing risk of discharge alive is ignored. In the 
Cox regression, where discharge alive is not considered 
(cause-specific hazard ratio of death Tables 2 and 3), the 
effect of oxygen saturation would have been estimated to 
be 5.48. However, considering the competing risk, dis-
charge alive showed an indirect effect on hospital mor-
tality via an increased length of stay. Thus, in contrast to 
a classical survival situation without competing risks, the 
cause-specific hazard ratio has no one-to-one relation-
ship with the absolute risk. Estimating the subdistribu-
tion hazard ratio combined direct and indirect effects 
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Fig. 2  The Receiver operating characteristic (ROC) curve of the proposed risk assessment method for discrimination between the dead and 
discharged alive patients. The parameters Sensitivity (Specificity) are the proportion of patients who died (discharged alive) that were correctly 
identified by the model
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and showed that the mortality risk is increased tenfold 
rather than only fivefold. Such differences affect the esti-
mated mortality risks.

The available data limit our prediction model. Consid-
ering more comprehensive variables such as IL-6 levels, 
D-Dimer, and radiographic diagnosis, may yield more 
accurate results in the laboratory-based risk charts. 
While the proposed model focused on the COVID-19 
dataset at the national level, some studies considered 
multi-center region-specific data to measure how major 
risk factors identify the mortality rate [51]. Furthermore, 
the variability in treatment protocols across countries 
and individual organizations might lead to different 
results [22, 52]. External validation of the proposed risk 
assessment method is the focus of our future work.

Conclusions
In conclusion, we provided a personalized mortality 
risk chart based on hospitalized COVID-19 patients to 
provide physicians with additional guidance for making 
tough decisions.
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