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Abstract

Background: A considerable proportion of SARS-CoV-2 transmission occurs from asymptomatic and pre-
symptomatic cases. Therefore, different polymerase chain reaction (PCR)- or rapid antigen test (RAT)-based
approaches are being discussed and applied to identify infectious individuals that would have otherwise gone
undetected. In this article, we provide a framework to estimate the time-dependent risk of being infectious after a
negative SARS-CoV-2 test, and we simulate the number of expected infectious individuals over time in populations
who initially tested negative.

Methods: A Monte Carlo approach is used to simulate asymptomatic infections over a 10-days period in
populations of 1000 individuals following a negative SARS-CoV-2 test. Parameters representing the application of
PCR tests or RATs are utilized, and SARS-CoV-2 cumulative 7-day incidences between 25 and 200 per 100,000
people are considered. Simulation results are compared to case numbers predicted via a mathematical equation.

Results: The simulations showed a continuous increase in infectious individuals over time in populations of
individuals who initially tested SARS-CoV-2 negative. The interplay between false negative rates of PCR tests or
RATs, and the time that has passed since testing determines the number of infectious individuals. The simulated
and the mathematically predicted number of infectious individuals were comparable. However, Monte Carlo
simulations highlight that, due to random variation, theoretically observed infectious individuals can considerably
exceed predicted case numbers even shortly after a test was conducted.

Conclusions: This study demonstrates that the number of infectious individuals in a screened group of
asymptomatic people can be effectively reduced, and this effect can be described mathematically. However, the
false negative rate of a test, the time since the negative test and the underlying SARS-CoV-2 incidence are critical
parameters in determining the observed subsequent number of cases in tested population groups.
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Background
A considerable proportion of individuals with SARS-
CoV-2 infection are free of symptoms or only show very

mild symptoms. However, transmission can occur from
asymptomatic, pre-symptomatic and from symptomatic
infections [1, 2]. Different polymerase chain reaction
(PCR)- or rapid antigen test (RAT)-based approaches
are currently being considered or have already been im-
plemented to identify asymptomatic infections that
would have otherwise gone undetected (for example, to
protect clinically vulnerable individuals in high-infection
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risk settings like nursing homes, to reduce unnecessary
quarantine of non-infectious people, or to lift social con-
tacts restrictions e.g., to permit care home visiting, trav-
elling, restaurant visits or leisure time activities) [3].
For such measures to be effective, laboratory tests

would ideally be done in real-time, as the test result re-
flects the current state of infectiousness of an individual.
Since this is not always possible, especially for PCR diag-
nostics, tests done within a certain time frame are ac-
cepted. In travel restrictions, this time frame is usually
48 h before travel [4]. In contrast, RAT results are avail-
able within 15–30min. However, RATs have a lower
sensitivity than PCR tests [5, 6]. The time between sam-
ple taking and the event of interest is a crucial parameter
in determining the individual risk of being infectious. An
individual who has tested negative may be in the latent
period of infection at sampling and could progress to an
infectious state immediately thereafter. As time since
testing increases, individuals with a previous negative
test result will have the same risk of being infectious as
the underlying population.
In this article, we provide a framework to estimate the

time-dependent risk of being infectious after a negative

PCR test or RAT, and we simulate the number of ex-
pected infectious individuals over time in example
groups of individuals who had a negative test result.

Methods
We simulate the number of infectious individuals over
time present in a group of people who tested negative
for SARS-CoV-2 at t0. The model is designed to repre-
sent a group of people that was tested as a prerequisite
to join an event, in order to estimate the number of in-
fections over time which would have gone undetected.
The model is individual-based, and a simulated person
can change from non-infectious to infectious to non-
infectious within time periods randomly selected from
disease-specific distributions. Figure 1 shows the flow of
individuals through the respective disease states. Two
groups of infectious individuals are simulated in the
models, namely (i) prevalent infections in individuals
who falsely tested negative at the simulation start (t0),
and (ii) incident infections, occurring after the simula-
tion start. Furthermore, the model differentiates between
asymptomatic infections (individuals who stay in the
population and may potentially infect others) and

Fig. 1 State chart of the simulation model, representing the states of infections an individual can go through. Abbreviations: FNR, false positive
rate; tpn, individual start of the infectious period; ian, individual duration of the infectious period for asymptomatic infections; isn, individual
duration of the infectious period for symptomatic infections

Krumkamp et al. BMC Medical Research Methodology          (2021) 21:165 Page 2 of 9



symptomatic infections (individuals who show symp-
toms after a pre-symptomatic infectious period, after
which they isolate themselves and are no longer able to
infect others). The duration of infectiousness of an indi-
vidual with an asymptomatic course of infection (ian, in-
fectious period of individual n) is sampled from a
gamma distribution, with alpha = 4 and beta = 1.25. The
pre-symptomatic infectious period of an individual with
asymptomatic course of infection (isn, pre-symptomatic
infectious period of individual n) is sampled from a
gamma distribution, with alpha = 4 and beta = 0.525.
These parameter settings are based on values used by
Davis et al. [7, 8] in SARS-CoV-2 mathematical model-
ling studies. The model is set up as follows:
(i) Missed prevalent infections: A population of 1000

individuals is established, within which infections occur
over a 20-day period and from which asymptomatic
prevalent infections are selected. Infectious individuals
are randomly determined (binomial distribution) accord-
ing to the cumulative 7-day incidence. About 35% of all
SARS-CoV-2 cases are expected to be symptomatic and
the remaining 65% show only very mild or no symptoms
[9]; these proportions are used to allocate each infectious
individual to one of these groups (binomial distribution).
The time when infectiousness starts (tpn, start of infectious
period of individual n) is allocated to each infectious indi-
vidual, following a uniform distribution. The duration of
the infectious period is added to this time-point, sampled
from the distribution of the pre-infectious period (for indi-
viduals who become symptomatic) or the complete infec-
tious period (for individuals who remain asymptomatic).
All individuals who are within their infectious period at the
end of this initial simulation step form the group of preva-
lent asymptomatic infectious cases. The false negative rate
(FNR) of a test defines the proportion of infectious individ-
uals with a negative test result, i.e., the proportion of preva-
lent infectious individuals missed at the simulation start.
Thus, from the simulated prevalent infections a proportion,
as defined by FNR, is randomly selected (binomial distribu-
tion) as prevalent infections at t0. The respective remaining
infectious period for each individual defines the time when
that individual becomes non-infectious.
(ii) Incident infections: In the simulation step above, a

group of 1,000 individuals was established, of which
some are prevalent infectious individuals at t0. Individ-
uals non-infectious at t0 can become infectious during
the next step of the simulation. Infectious individuals
that occur over time are determined according to the
cumulative 7-day incidence following a binomial distri-
bution. The time at which infectiousness starts (tpn) and
the duration of infectiousness (isn or ian, for symptom-
atic or asymptomatic course of infection, respectively) is
allocated to each infected individual, as described above.
The simulation is applied for a period of 10 days.

The final simulation model contains prevalent infec-
tious individuals at t0 and incident infections occurring
after t0, each individual becoming non-infectious when
its infectious period ends. Finally, the number of infec-
tious individuals present over time is summarised. As
our calculations focus on the current number of infec-
tious cases, any kind of incubation or latent period is
not considered in the model. For the simulations we as-
sume that non-infectious individuals are entirely suscep-
tible with no immunity, are not suspected of being
positive for SARS-CoV-2, and new cases are expected to
occur randomly (i.e., unclustered).
Models in which all individuals received either a PCR

test or a RAT are calculated. Parameters are taken from
the literature as summarised in Table 1. PCR tests and
RATs differ in their FNRs. FNRs depend on the sensitiv-
ity of a test and the accuracy of the test implementation.
Reported FNRs for SARS-CoV-2 PCR tests vary greatly
[10] and 3% was used as base case value. For RATs, the
World Health Organization recommends minimum per-
formance requirements of 80% sensitivity [6], which was
assumed for calculations of the FNR in the RAT scenar-
ios. Viral loads rise quickly at the beginning of the infec-
tious period. However, in the first 12 h after a PCR test
is able to detect an infection, high circle threshold (ct)
values are observed (i.e., low viral loads) and cases are
assumed to be non-infectious during this time interval
[11, 12]. Hence, we determined that during the first 12 h
(Gaussian distribution; mean = 12, standard deviation
(SD) = 1) after an infected individual would be detectable
by PCR, the individual would be non-infectious. For
both tests, simulations with reported cumulative 7-day
incidences of 25, 50, 100 and 200 per 100,000 people
were calculated. The cumulative 7-day incidences, as re-
ported by surveillance systems, primarily capture symp-
tomatic SARS-CoV-2 cases. However, as outlined above,
only 35% of all SARS-CoV-2 infections are expected to
be symptomatic [9]. To estimate the actual number of
infectious individuals for the simulated populations, the
assumed incidences (as reported by surveillance systems)
are corrected and divided by the proportion of symp-
tomatic cases. Since absolute numbers of infections in
the model population will be small, the Monte Carlo
method was applied to show stochastic effects on the oc-
currence of infectious individuals. Simulations are re-
peated 2,000 times using parameter distributions as
outlined above. In order to summarise Monte Carlo re-
sults, the number of infectious cases over time in the
simulation runs was tabulated using a one-hour
intervals.
The expected proportion of asymptomatic infectious

cases over time (t) within a population which had a
negative SARS-CoV-2 test at t0 can be described math-
ematically. Prevalent infections becoming non-infectious
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and newly occurring incident infections eventually be-
coming non-infectious are calculated. Calculations are
based on the corrected daily incidence of infectious indi-
viduals (Ic, cumulative 7-day incidence divided by 7 over
the proportion of symptomatic cases). A proportion (de-
fined in FNR) of prevalent asymptomatic infectious cases
remains undetected after a diagnostic test. Prevalent
asymptomatic infections (P) are calculated by Ic times
the mean infectious period, which equals alpha * beta,
the parameters from the gamma distribution defining
the length of the infectious period. Since different distri-
butions for symptomatic and asymptomatic infections
are applied, prevalence for each group must be calcu-
lated separately. Prevalent infections become negative
when the infectious period ends, and this reduction over
time is estimated with the cumulative distribution func-
tions (CDF) of the respective infectious periods. The
proportion 1-Pr(X ≤ t * 2) remains infectious at t, while t
is multiplied by 2 because the infectious period began
before t0 and, on average, half of this time is already de-
pleted. Equation 1 and 2 describe the reduction of preva-
lent infectious individuals over time for symptomatic
infections (respective parameters denoted with subscript
s) and asymptomatic infections (respective parameters
denoted with subscript a). In a population in which all
individuals had a negative SARS-CoV-2 test at t0, new
infections emerge successively. The number of infections
increases continuously over time until the first people
reach the end of their infectious periods and become
non-infectious. Thus, as soon as the last infected individ-
uals complete their infectious periods, the number of
newly emerging infectious individuals and the number
of infectious individuals becoming non-infectious is bal-
anced (i.e., steady state). In eq. 3 and 4, Ic * t describes
the increase of new infectious individuals over time for
symptomatic (s) and asymptomatic infections (1-s). Sim-
ultaneously, infected individuals become non-infectious
when their infectious period ends. This is estimated by

the accumulated CDFs for symptomatic and asymptom-
atic infections, respectively, which define the number of
incident cases that become non-infectious between t0
und t.

Ps�FNR� 1− Prs X ≤ t�2ð Þð Þ ð1Þ
Pa�FNR� 1− Pra X ≤ t�2ð Þð Þ ð2Þ

Ic�s�t−
Xt

i¼1

Ic�t� Prs X ≤ ið Þ ð3Þ

Ic� 1−sð Þ�t−
Xt

i¼1

Ic�t� Pra X ≤ ið Þ ð4Þ

Results of these 4 equations are summed to estimate
the prevalence of asymptomatic and pre-symptomatic
infections at t. Where PCR test scenarios are calculated,
the 12-h offset to infectiousness must be considered;
thus, if 0 < t ≤ 12 h, t = 0, else t = t-12. In this calculation,
homogeneous infection occurrence is assumed.
The numbers of infectious individuals from the Monte

Carlo simulations are compared to mathematically pre-
dicted numbers calculated by the equation derived
above. The mean numbers over time for the respective
Monte Carlo scenarios are calculated. The equation is
then applied to calculate the expected numbers over
time using simulation parameters and both results are
displayed using line graphs. All calculations were done
in R version 4.0.3 [13].

Results
To visualise the occurrence of infectious individuals
within a previously SARS-CoV-2 negative population, a
simple baseline simulation was established (Fig. 2). The
simulation represents a population of 1,000 individuals
who were tested with RATs, assuming a reported cumu-
lative 7-day incidence of 100 cases per 100,000 people.
The horizontal lines in Fig. 2 show infectious periods

Table 1 Parameters applied in the Monte Carlo simulations

Parameter Value Reference

Reported SARS-CoV-2 incidences 25, 50, 100 & 200 /100,000 per 7 days

Proportion symptomatic infections 0.35 [9]

FNR for PCR test 3% [10]

FNR for RAT 20% [6]

Complete infectious period Gamma (alpha = 4, beta = 1.25) [7, 8]

Pre-symptomatic infectious period Gamma (alpha = 4, beta = 0.525) [7, 8]

Mean infectious periods alpha * beta

Time between PCR positivity and infectiousness Mean = 12 h (SD: 1) [11, 12]

Model group size 1000

Model runs 2000

Abbreviations: FNR False negative rate, PCR Polymerase chain reaction, RAT Rapid antigen test, SD Standard deviation;
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that emerged over ten days. In total, 6 infections oc-
curred during the simulation. The first infection oc-
curred 44 h after the simulation start and the highest
number of infectious individuals was observed at the
end of day 10, when 5 individuals were infectious simul-
taneously. One of the infectious individuals is pre-
symptomatic (red line) and this individual would be re-
moved from the simulated population with the start of
disease symptoms. However, the end of the infectious
period is outside the simulated period.
To capture stochastic effects, the Monte Carlo method

was employed and simulations were repeated 2,000
times based on the scenarios outlined above. Figure 3
summarises the results of the Monte Carlo simulations
using area graphs, where the proportion of calculated
simulations is shown on the y-axis. The number of in-
fectious individuals over time after a negative SARS-
CoV-2 test observed in the simulations is indicated by
the coloured areas over the x-axis. Graphs in the first
row show simulation results of the PCR test, and those
in the second row of the RAT strategy. The graphs sum-
marise simulation results based on different reported cu-
mulative 7-day incidences over time. When assessing the
PCR-based strategy, infectious cases occurred as early as

at t0 due to the assumed FNR of 3% for PCR tests. No
infectious individuals were observed at the start in 98%
of simulations when the reported cumulative 7-day inci-
dence was 25/100,000, in 98% of simulations when inci-
dence was 50/100,000, in 95% when incidence was 100/
100,000, and in 91% when incidence was 200/100,000.
After one day (24 h), no infectious individuals had oc-
curred at the indicated incidence levels in 94, 89, 79 and
63% of simulations, and after 2 days (48 h) in 86, 73, 53
and 30% of the simulations. Eventually, by the end of the
simulation period (10 days), no infectious individuals oc-
curred in 66, 45, 21 and 6% of the simulations, which
represents distributions in non-selected populations. As
time progressed, multiple infections were likely to occur
in scenarios with higher cumulative incidences. More
than 4 infectious individuals were observed after 115 h,
84 h, 49 h, and 21 h in simulations based on cumulative
7-day incidences of 25, 50, 100 and 200 cases per
100,000 people, respectively.
The FNR of the RAT was set to 20%, resulting in a

lower proportion of simulations without any infectious
individuals at t0 in the RAT-based strategy. No infec-
tious cases were observed at the start of the simulations
in 92, 85, 71 and 52% of the simulations at incidence

Fig. 2 Example of a single baseline model, showing simulated infectious periods in a population of 1000 individuals over 1 week
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levels of 25, 50, 100 and 200 per 100,000, respectively.
No infectious individuals had occurred after 1 day (24 h)
in 86, 72, 54 and 28% of simulations, and after 2 days
(48 h) in 80, 63, 41 and 16% of the simulations,

respectively. No infectious individuals had occurred by
the end of the simulation period in 69, 46, 21 and 5% of
the simulations, comparable to the numbers calculated
by the PCR scenarios. In simulations based on a

Fig. 3 Percentages of simulations with different number of symptomatic and pre-symptomatic infections calculated using Monte Carlo method,
considering different scenarios in a population of 1000 individuals. Abbreviations: PCR, polymerase chain reaction; RAT, rapid antigen test

Fig. 4 Number of asymptomatic and pre-symptomatic individuals over time in a group of 1000 people averaged over the Monte Carlo
simulation scenarios (black lines) and estimated by the equation as derived in the method section (red lines). Abbreviations: PCR, polymerase
chain reaction; RAT, rapid antigen test
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reported cumulative 7-day incidence of 25/100,000, no
simulation showed more than 4 cases; however, at cu-
mulative 7-day incidences of 50, 100 and 200/100,000,
more than 4 cases were observed after 53 h, 1 h, and 3 h,
respectively.
To compare simulation-based and mathematically de-

rived case numbers, the mean number of infectious indi-
viduals over time per scenario was calculated. The
equation derived in the method section was applied to
calculate the expected case numbers over time using the
respective simulation parameters. Figure 4 shows calcu-
lated numbers from the PCR test (first plot) and the
RAT scenarios (second plot). The mean numbers of in-
fectious individuals from the simulations are shown by
the black lines, and the estimated numbers calculated
with the equation by the red lines. The numbers of in-
fectious individuals calculated by both methods show a
high agreement. In both graphs, a curved increase in in-
fections is observed until the end of the simulation
period and the steady state situation, indicated by the
dashed lines, is nearly reached. An infected individual is
detectable by PCR test as early as 12 h before onset of
infectiousness, which is why numbers remain constant
at the beginning of the simulation periods in the first
graph.

Discussion
Our analysis shows that asymptomatic testing with
PCR tests or RATs can be applied to establish popu-
lation groups with a temporarily minimized number
of infectious individuals, for example for events re-
quiring a safe bubble for participants. We provide a
mathematical formula to estimate the expected num-
ber of infectious individuals over time using the dis-
ease incidence, the time of the infectious period and
the time that has passed since a test was adminis-
tered. However, Monte Carlo simulations performed
in our analysis highlight how, due to random vari-
ation, observed infectious individuals can consider-
ably exceed these expected numbers even shortly
after all individuals in the population had tested
negative. In a fraction of simulated scenarios, single
infectious individuals occurred right after the simula-
tion start; in high-incidence simulations, even mul-
tiple cases were present at the same time. These
results are important for infection control because
they demonstrate that, while testing can be used to
effectively select groups of people with a low num-
ber of infectious, infectious individuals may emerge
immediately after the population had tested negative,
especially at high incidences.
PCR tests are superior to RATs in terms of their FNR

[5] and their ability to identify infections even before in-
dividuals are infectious [11, 12]. In contrast, RATs can

be applied in non-laboratory settings and results are
available within 30 min. For PCR tests, the delay between
test administration and reporting of results is often 24 to
48 h. Hence, the risk of a false negative test result and
the delay between sample collection and result reporting
must be considered when interpreting any test result. If
the high FNR of RATs is to be compensated for by a
shorter delay in result reporting, it is important that the
test is carried out immediately before a critical event
takes place. The higher FNR still bears the risk of miss-
ing infections, but the immediate application better esti-
mates the individual’s real-time infection status,
reducing the number of infectious individuals which
may emerge before the event of interest takes place.
Simplifying assumptions that were made to illus-

trate principles of SARS-CoV-2 testing should be
considered when interpreting the results. Random in-
fection occurrence in tested populations was as-
sumed; however, SARS-CoV-2 is reported to spread
in clusters and via super-spreading events [14]. Thus,
in the case that testing is performed on a group of
people where a superspreading event occurred (e.g.,
residents and personnel of a nursing facility with an
ongoing SARS-CoV-2 outbreak), the prevalence of
infectious individuals would be considerably higher
compared to the used numbers inferred from the cu-
mulative 7-day incidences. The proportion of infec-
tious individuals without or with only mild
symptoms was set to 65%. However, a correct esti-
mate of this proportion is subject to several meth-
odological limitations that make interpretation of the
reported frequencies of symptoms among SARS-
CoV-2 cases difficult [15]. Additionally, the likeli-
hood of showing symptoms of an infection with
SARS-CoV-2 is associated with factors like age [16]
or with different underlying health conditions [17],
which again can differ among tested groups. We as-
sume that the remaining 35% of cases are recognized
by a health care system and that they contribute to
the observed incidence at population level. These fig-
ures are context-dependent and subject to current
testing strategies. However, for many health care sys-
tems, a lower proportion should be assumed. In the
literature, there are conflicting reports about infec-
tious periods in asymptomatic, mild, moderate or se-
vere symptomatic infections as well as among
different age-groups [18]. Furthermore, we did not
consider the application of any containment strat-
egies, like quarantine of traced contacts or of house-
hold members of identified individuals. However,
measures may further reduce the number of infec-
tious persons attending an event.
SARS-CoV-2 control strategies based on testing of

asymptomatic individuals are suggested and designed for
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different purposes. A model of SARS-CoV-2 outbreaks
in long-term care facilities evaluated the ability of differ-
ent testing strategies to identify ongoing transmission
early. The authors highlight that expanding surveillance
beyond symptom-based screening could allow for
earlier outbreak detection; however, testing strategies
must consider available testing capacities [19]. An-
other study modelled the effect of surveillance test-
ing to control SARS-CoV-2 transmission, concluding
that asymptomatic individuals should be considered
in testing strategies. Effective surveillance depends
largely on the frequency of testing and the speed of
reporting, and is only marginally improved by high
test sensitivity [9]. Routine testing strategies for
SARS-CoV-2 infection to facilitate safe airline travel
and to mitigate the spread of the virus was analyzed
in a simulation study. The authors concluded that
this can be an effective strategy to reduce passenger
risk of infection during travel, although measures to
reduce population-level transmission should be in
place when travelling from a high to low incidence
setting [20]. In contrast, we focus on the question of
being asymptomatic and infectious after a negative
diagnostic test. In other words, how long does a
negative test result provide some safety for people
attending an event. Our analysis shows the depend-
ence between the time at which a negative test was
performed and the time individuals are infectious,
with the distribution of the infectious period being a
key parameter in this context.

Conclusions
Our analysis highlights the temporal dynamics of
SARS-CoV-2 infections after a negative test within a
theoretical population. We show that PCR tests or
RATs can be used to select a group of people with a
reduced number of SARS-CoV-2 infections. However,
the parameters representing time since testing nega-
tive and the underlying SARS-CoV-2 incidence in a
population are critical in determining the expected
number of infectious individuals in groups of people
who initially tested negative. Thus, especially in high-
incidence scenarios, additional infection control mea-
sures are still needed to reduce transmission risk
from undetected infectious individuals.
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