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Abstract

Background: For finite samples with binary outcomes penalized logistic regression such as ridge logistic regression
has the potential of achieving smaller mean squared errors (MSE) of coefficients and predictions than maximum
likelihood estimation. There is evidence, however, that ridge logistic regression can result in highly variable
calibration slopes in small or sparse data situations.

Methods: In this paper, we elaborate this issue further by performing a comprehensive simulation study,
investigating the performance of ridge logistic regression in terms of coefficients and predictions and comparing it
to Firth’s correction that has been shown to perform well in low-dimensional settings. In addition to tuned ridge
regression where the penalty strength is estimated from the data by minimizing some measure of the out-of-
sample prediction error or information criterion, we also considered ridge regression with pre-specified degree of
shrinkage. We included ‘oracle’ models in the simulation study in which the complexity parameter was chosen
based on the true event probabilities (prediction oracle) or regression coefficients (explanation oracle) to
demonstrate the capability of ridge regression if truth was known.

Results: Performance of ridge regression strongly depends on the choice of complexity parameter. As shown in
our simulation and illustrated by a data example, values optimized in small or sparse datasets are negatively
correlated with optimal values and suffer from substantial variability which translates into large MSE of coefficients
and large variability of calibration slopes. In contrast, in our simulations pre-specifying the degree of shrinkage prior
to fitting led to accurate coefficients and predictions even in non-ideal settings such as encountered in the context
of rare outcomes or sparse predictors.

Conclusions: Applying tuned ridge regression in small or sparse datasets is problematic as it results in unstable
coefficients and predictions. In contrast, determining the degree of shrinkage according to some meaningful prior
assumptions about true effects has the potential to reduce bias and stabilize the estimates.

Keywords: Calibration slope, Firth’s correction, Mean squared error, Penalized logistic regression, Ridge regression,
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Background
In medical research, logistic regression is commonly
used to study the relationship between a binary outcome
and a set of covariates. For a dataset with similar preva-
lence of the two outcome levels and sufficient sample
size, the maximum likelihood estimation of the regres-
sion coefficients facilitates inference, i.e. interpretability
of effect estimates, as well as accuracy of predictions
given the covariates. Thus, maximum likelihood logistic
regression may be used for explanation or prediction,
depending on context. These attractive properties of the
maximum likelihood logistic regression, however, vanish
when the sample size is small or the prevalence of one
of the two outcome levels (for some combination of ex-
posure) is low, yielding coefficient estimates biased away
from zero and very unstable predictions that generalize
poorly on a new dataset from the same population [1, 2].
In theory, a straightforward approach to alleviate

the problem would be to apply penalized maximum
likelihood logistic regression: a penalty term that is
added to the log likelihood function provides shrink-
age of the coefficients towards zero, hereby decreasing
the variance of the maximum likelihood estimates and
stabilizing the predictions by pulling them towards
the observed event rate [3]. A common way of
shrinkage is by ridge logistic regression where the
penalty is defined as minus the square of the Euclid-
ean norm of the coefficients multiplied by a non-
negative complexity parameter λ. The multiplier λ
controls the strength of the penalty, i.e. amount of
shrinkage towards zero. According to the idea of the
bias-variance trade-off, the expected prediction error
can be decomposed into the three components bias,
variance and irreducible error [4]. Hence, the goal in
ridge regression is to find the value of λ that balances
the model between underfitting and overfitting, pro-
ducing generalizable results [5]. As compared to the
maximum likelihood estimation the resulting coeffi-
cients may achieve lower mean squared errors (MSE)
but are usually biased towards zero, therefore conven-
tional inference by hypothesis tests and confidence in-
tervals based on standard errors is difficult [6]. A
further complication for inference arises from the es-
timation of λ, which is often performed on the same
data set by cross-validation, as its sampling variability
contributes to the uncertainty in the regression
coefficients.
Tuned ridge logistic regression has been extensively

investigated in simulation studies and was commonly
found to perform well for low dimensional settings in
terms of small MSE of coefficients and predictions [2, 7,
8]. However, one should not expect that penalization
can overcome the problem of insufficient sample sizes
when developing prediction models [9]. Indeed, there

has been evidence that ridge regression is sensitive to
small or sparse data situations, yielding poor perform-
ance in individual datasets [10–13]. Recent recom-
mendations, therefore, advise caution when using
ridge logistic regression for developing prediction
models in case of low sample size or low events per
variable ratio and call for more research investigating
the impact of specific combinations of shrinkage and
tuning methods [11]. While in theory there always ex-
ists some value of λ for which ridge regression out-
performs maximum likelihood estimation in terms of
the MSE of predictions [14], choosing λ adequately in
datasets that suffer from large random sampling vari-
ation is difficult. For such datasets tuning procedures
based on out-of-sample prediction performance might
fail to approximate the U-shaped curve arising from
the bias-variance trade-off and result in an arbitrary
choice of λ that either equals the smallest or the lar-
gest value of the pre-specified range of values. This
will yield large variability of tuned solutions and con-
sequently, very unstable estimates [13].
We assume that larger variability of calibration slopes

in small or sparse datasets as compared to Firth’s correc-
tion [11] is closely related to tuning and not to ridge re-
gression as a shrinkage method per se. Therefore, in the
present paper we investigate the performance of differ-
ent commonly used approaches to tune ridge logistic re-
gression in a low-dimensional sparse data setting by
means of a simulation study. We also include ridge re-
gression with pre-specified λ, which is interpretable as
semi-Bayesian analysis with a normal prior centered at
zero [1, 15, 16], and Firth’s correction [17] in our com-
parison, as these approaches were proposed for similar
settings [7, 11, 12, 18] and do not suffer from the con-
vergence issues that may occur in maximum likelihood
estimation [19]. We structured the paper accordingly: in
the following section we introduce Firth’s correction and
ridge logistic regression and describe different ways to
choose the complexity parameter λ in ridge regression.
We then illustrate the problems which might arise with
tuning in sparse data situations. Subsequently, we
present the setup and report the results from our simu-
lation study with respect to the accuracy of coefficients
and predictions. Further on, we perform an analysis of a
real data example by fitting ridge regression and Firth’s
correction models. Finally, we summarize our main
findings.

Methods
Let yi ∈ {0, 1}, i = 1, …N, be a realization of a binary out-
come variable Y, where yi = 1 denotes an event occurring
in the i-th observation. The logistic regression model as-
sociates yi to a set of corresponding covariate values xi =
(1, xi1,…, xiK), K <N, by assuming
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πi ¼ P Y ¼ 1jxið Þ ¼ 1

1þ exp −β0−β1xi1−…−βKxiK
� � ;

where β0 is an intercept and βk, k = 1, …, K, are regres-
sion coefficients. The parameters β = (β0, β1,…βK) of the
model can be estimated by the maximum likelihood
method, maximizing the log-likelihood function

ℓðβÞ ¼ PN

i¼1
ðyi logπi þ ð1−yiÞ logð1−πiÞÞ;

using an iterative algorithm [20].

Firth’s correction
Maximum likelihood estimation is asymptotically un-
biased, however, in situations when data are small or
sparse coefficient estimates become biased away from
zero and very unstable or may even not exist [19]. To re-
duce the bias of maximum likelihood estimates, Firth
[17] proposed to penalize the likelihood function by Jef-
freys’ invariant prior so that the penalized log-likelihood
becomes

ℓ�FC βð Þ ¼ ℓ βð Þ þ 1
2

log I βð Þj j;

where I(β) is the Fisher information matrix evaluated at
β. Since the intercept is included in the penalty term,
the average predicted probability may not equal the ob-
served event rate but is instead biased towards one-half.
To correct for this bias that may become especially ap-
parent in situations with unbalanced outcome, Puhr
et al. [7] proposed a simple modification, Firth’s logistic
regression with intercept-correction (FLIC) that alters
the intercept such that average predicted probabilities
become equal to the observed event rate.

Ridge regression
In ridge regression coefficients are constrained by the
square of the Euclidean norm of the coefficients, i.e. the
penalized log-likelihood reads

ℓ�ridge βð Þ ¼ ℓ βð Þ− λ
2

XK

k¼1

β2k ;

where the positive complexity parameter λ controls the
amount of shrinkage towards zero. The intercept β0 is
excluded from the penalty term, yielding an average pre-
dicted probability equal to the observed event rate. Un-
like Firth’s correction, ridge regression is not invariant
to linear transformation of the design matrix. Therefore,
to facilitate interpretation and ensure that coefficients
are represented on the same scale, suitable
standardization of covariates is required, usually to zero
mean and unit variance.

Tuning procedures
To select the complexity parameter λ, generally, a se-
quence of λ values is pre-specified and the correspond-
ing set of models is evaluated. The optimized λ∗ is the
one that produces the model minimizing the expected
out-of-sample prediction error, often estimated by cross-
validation. The out-of-sample prediction error may be
defined in different ways [3, 21–23], e.g. as

– deviance (D) [3]

D ¼ −2
XN

i¼1

yi logπ̂ −ið Þ þ 1−yið Þ log 1−π̂ −ið Þ
� �� �

;

– generalized cross-validation (GCV) [21, 23]

GCV ¼ N � D
ðN−d f eÞ2

;

where dfe are the effective degrees of freedom, d f e

¼ traceð∂2ℓ
∂2β

ðβ̂Þð∂
2ℓ�ridge
∂2β

ðβ̂ÞÞ
−1

Þ,

– classification error (CE) [3]

CE ¼ 1
N

XN

i¼1

yiI π̂ −ið Þ < c
� �þ 1−yið ÞI π̂ −ið Þ > c

� �þ 1
2
I π̂ −ið Þ ¼ c
� �

� �
;

with I denoting an indicator function and c some cut-
off, usually set to 1/2. Since in datasets with unbalanced
outcomes c = 1/2 would assign most of observations to
the more frequent outcome level Blagus and Lusa [10]
advised to set c equal to the marginal event rate instead.
In the definitions above π̂ð−iÞ is the event probability

estimate for the i-th observation computed from the
model where that observation has been left out from es-
timation of the model parameters. Alternatively, 10-fold
cross-validation may be used to speed-up computations,
however, this produces different optimized λ∗ values for
different combinations of fold assignments to observa-
tions. To stabilize the selection of λ∗, 10-fold cross-
validation may be repeated several times, and a particu-
lar quantile θ of the values obtained may be used [2, 24].
Alternatively, to avoid resampling, λ may be tuned by

using the Akaike’s information criterion (AIC) [6, 25],
where

AIC ¼ −2ℓ β̂
� �

þ 2d f e:

Pre-specifying the degree of shrinkage
Mathematically, ridge regression is identical to Bayesian
analysis with zero-centered univariate normal priors
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imposed on the coefficients [1]. The variance vprior of
these priors is inversely proportional to λ. If the priors
for the coefficients are assumed to have different vari-
ances, this translates into a penalty equal to the weighted
sum of squared coefficients with different weights for
each coefficient. In the Bayesian analysis approach sug-
gested by Sullivan and Greenland [15] the degree of
shrinkage is not determined by tuning but is instead
based on some prior assumptions about covariates’ odds
ratios that can be easily converted into vprior. The prior
variance vprior can be obtained from a plausible (usually
95%) prior interval for a covariate’s odds ratio that has
to be specified according to some background assump-
tions. In a particular setting Sullivan and Greenland [15]
considered as plausible the 95% odds ratio interval ran-
ging from 1/4 to 4 which translates to vprior = 1/2. How-
ever, if one wishes to avoid the effort of specifying prior
distributions, one could apply weakly informative priors,
e.g. assuming the 95% probability that the odds ratio
falls between 1/16 to 16, which are still beneficial to
stabilize estimates.

Illustration
Consider the two datasets described below, each with
100 independent observations of a binary outcome, yi ∈
{0, 1}, and a single covariate xi ∈ {0, 1}, i = 1, …, 100.

Dataset 1

y

0 1

x 0 20 0

1 71 9

Dataset 2

y

0 1

x 0 19 1

1 71 9

In dataset 1, separation occurs as there are no
observations with xi = 0 and yi = 1. Therefore, maximum
likelihood estimation yields perfect leave-one-out cross-
validated predictions π̂ð−iÞ ¼ 0 for xi = 0 and such also
the individual out-of-sample prediction errors equal
Dxi¼0 ¼ 0. These errors, however, increase with shrink-
age (in particular, we considered a fixed sequence of 200
log-linearly equidistant λ values ranging from 10(−6) to
100) as predicted probabilities get pulled towards 9/99
(Fig. 1). In addition, the errors increase with shrinkage
for those 9 observations with event as π̂ð−iÞ ¼ 8=79 ¼ 0:1
in the maximum likelihood model and π̂ð−iÞ ¼ 0:08 for
λ = 100. Conversely, shrinkage reduces the errors of the

Fig. 1 Leave one-out cross-validated deviance D (top) and the sum of the deviance components Di for distinct observations (bottom) in dataset
1 (left) and dataset 2 (right) with respect to the complexity parameter λ
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71 observations with xi = 1 and yi = 0 but the predicted
probabilities are similar for λ = 100 ( π̂ð−iÞ ¼ 0:09 ) and
λ = 10(−6) (π̂ð−iÞ ¼ 0:11), and such are the differences be-
tween the error estimates when λ = 100 and λ = 10(−6)

(Fig. 1). Therefore, the tuning procedure based on D fa-
vors the smallest of the pre-specified range of λ values,
in our example λ∗ = 10(−6). In this case, fitting ridge re-
gression model with a standardized covariate X using R
[26] package penalized [27] yields an estimate of β1 as
large as 13.94, a consequence of data sparsity [1, 19, 28].
In contrast, FLIC (fitted by using package logistf [29])
and ridge regression with an informative prior (IP), as-
suming the 95% prior interval for the odds ratio of a
standardized covariate ranging from 1/4 to 4, yield inter-
pretable coefficient estimates (Table 1).
In dataset 2, we have one single observation with

event and xi = 0 for which maximum likelihood
estimation falsely predicts π̂ð−iÞ ¼ 0. While for all other
observations the out-of-sample prediction errors Di do
not change much if applying shrinkage (for some obser-
vations Di gets slightly larger and for the others slightly
smaller), the error for this single observation reduces
considerably with increasing shrinkage (Fig. 1). This re-
sults in λ∗ that equals the largest of the pre-specified
range of values, in our example λ∗ = 100. Obviously, this
overshrinks the coefficients as compared to FLIC and IP
(Table 1).
Repeating the data-generating process used to generate

the two datasets 500-times in which a binary covariate X
was sampled with E(X) = 0.8 and the binary outcome yi
was drawn from a Bernoulli distribution with true event
probability (1 + exp(−(−3.05 + xi)))

−1, each time standard-
izing X and tuning the value of λ∗ by D results in a
choice of λ∗ that for 42% of simulated datasets simply
equals the smallest and for 38% of datasets the largest
value of the pre-specified range of λ values. This reflects
a large variability of tuned λ∗ values and consequently,

very unstable coefficients with large expected MSE. The
large MSE of coefficients is mostly due to data sparsity
that leads to very small optimized λ∗ values and huge co-
efficients. It is reasonable to assume that the instability
in optimized complexity parameter values stands along-
side prediction performance, translating into calibration
slopes of large variability (models that strongly underfit
or overfit). Indeed, the median (25th and 75th percent-
ile) of calibration slopes that were evaluated on a dataset
of size 10,000, independently generated from the same
distribution, was 0.07 (0.07, 18.4). In contrast, in FLIC
and IP no tuning is required and plausible estimates of
β1 and more stable calibration slopes are produced over

500 datasets. In particular, bias ( Eðβ̂−βÞÞ and MSE (E

ðβ̂−βÞ2 ) of coefficient estimate, and the median (25th
and 75th percentile) of calibration slopes were −0.15,
0.64 and 0.77 (0.53, 1.77) for FLIC and −0.11, 0.45 and
0.82 (0.6, 1.6) for IP, respectively.

Simulation study
Design
We describe the simulation study design following
recommendations by Morris [30].

Aims
Our aim was to systematically investigate the
performance of ridge logistic regression in terms of
effect estimation and prediction in low-dimensional
sparse data settings where the complexity parameter λ
was determined using different approaches and to com-
pare it to Firth’s correction with predictions obtained by
FLIC.

Data-generating mechanisms
To allow a fair comparison of the approaches [31], we
considered a data generation scheme similar to the one
described in Binder et al. [32], featuring covariates with
mixed types and shapes of distributions and a complex
correlation structure, similar to what an analyst is
usually confronted with in biomedical prognostic
studies. Covariates X1, …, X15 were obtained by applying
certain transformations to variables Z1, …, Z15 sampled
from a standard multivariate normal distribution with
correlation matrix Σ (Table 2). In particular, X1, …, X4

were binary, X5 and X6 ordinal with three levels and X7,
…, X15 continuous. To avoid extreme values, the
continuous variables were generated from truncated
distributions, where the truncation was at the third
quartile plus five times the interquartile distance of the
respective underlying distribution. The values of the
binary outcome yi were sampled from Bernoulli
distributions with event probabilities (1 + exp(−β0 − a
∗ (β1xi1 +… + βKxiK)))

−1, where i = 1, …, N, N ∈ {100, 250,

Table 1 Illustration: coefficients and predictions estimated by
Firth’s logistic regression with intercept-correction (FLIC) and
ridge regression where complexity parameter is either tuned by
leave one-out cross-validated deviance D or set according to
some informative prior (IP)

Method FLIC Ridge

D IP

Dataset 1 β̂1 1.7 13.94 1.54

π̂x¼0 0.02 0 0.03

π̂x¼1 0.11 0.11 0.11

Dataset 2 β̂1 0.55 0.06 0.65

π̂x¼0 0.07 0.1 0.06

π̂x¼1 0.11 0.1 0.11
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500}, K ∈ {2, 5, 10}, effect multiplier a ∈ {0.5, 1} for
moderate and strong effects, respectively, and true
regression coefficients β1, …, βK defined as follows: β1 =
2.08, β2 = 1.39, β3 = β4 = 0.69, β5 = β6 = 0.35 and β7, …,
β10 were chosen such that the log odds ratio between
the first and the fifth sextile of the corresponding
distribution was 0.69 (Table 3). An intercept β0 was
determined for each simulation scenario such that the
desired marginal event rate E(Y) ∈ {0.1, 0.25} was
approximately obtained. We considered two types of

analysis: one using exactly the set of real predictors used
to generate the data, and one also including five noise
covariates X11, …, X15 that were not associated with the
outcome. We refer to this factor as ‘noise’ (absent/
present). Combining the simulation parameters N
(sample size), K (number of true predictors), a (effect
multiplier), E(Y) (marginal event rate) and noise (absent/
present) in a full factorial design resulted in 72 possible
scenarios. On the request of a reviewer we added 16
more scenarios also considering N = 1000 and

Table 2 Covariate structure applied in the simulation study. In particular, pairwise non-zero correlations between standard normal
deviates Zk, the transformations defining Xk, measurement scale of covariates Xk and expected value of covariates E(Xk) are shown. [∙]
denotes removal of the non-integer part of the argument and I is the indicator function

Zk Pairwise non-zero correlations of Zk Transformation defining Xk Scale of Xk E(Xk)

Z1 Z2(0.5), Z3(0.5), Z7(0.5), Z14(0.5) X1 = I(Z1 < 0.84) binary 0.80

Z2 Z1(0.5), Z14(0.3) X2 = I(Z2 < − 0.35) binary 0.36

Z3 Z1(0.5), Z4(−0.5), Z5(−0.3) X3 = I(Z3 < 0) binary 0.50

Z4 Z3(−0.5), Z5(0.5), Z7(0.3), Z8(0.5), Z9(0.3), Z14(0.5) X4 = I(Z4 < 0) binary 0.50

Z5 Z3(−0.3), Z4(0.5), Z8(0.3), Z9(0.3) X5 = I(Z5 ≥ − 1.2) + I(Z5 ≥ 0.75) ordinal 1.11

Z6 Z7(−0.3), Z8(0.3), Z11(−0.5) X6 = I(Z6 ≥ 0.5) + I(Z6≥ 1.5) ordinal 0.38

Z7 Z1(0.5), Z4(0.3), Z6(−0.3) X7 = [10Z7 + 55] continuous 54.5

Z8 Z4(0.5), Z5(0.3), Z6(0.3), Z9(0.5), Z12(−0.3), Z14(0.5) X8 = [max(0, 100 exp(Z8) − 20)] continuous 146

Z9 Z4(0.3), Z5(0.3), Z8(0.5), Z14(0.3) X9 = [max(0, 80 exp(Z9) − 20)] continuous 112

Z10 – X10 = [10Z10 + 55] continuous 54.5

Z11 Z6(−0.5), Z12(0.3), Z15(0.5) X11 = exp(0.4Z11 + 3) continuous 21.8

Z12 Z8(−0.3), Z11(0.3), Z15(0.5) X12 = exp(0.5Z12 + 1.5) continuous 5.1

Z13 – X13 = 0.01 ∗ [100(Z13 + 4)2] continuous 17

Z14 Z1(0.5), Z2(0.3), Z4(0.5), Z8(0.5), Z9(0.3) X14 = [10Z14 + 55] continuous 54.5

Z15 Z11(0.5), Z12(0.5) X15 = [10Z15 + 55] continuous 54.5

Table 3 Regression coefficients (standardized regression coefficients) for scenarios with K ∈ {2, 5, 10} and a ∈ {0.5, 1}, where K is the
number of true predictors in the data-generating mechanism and a is the effect multiplier. Regression coefficients of X7, …, X10
were chosen such that the log odds ratio between the first and the fifth sextile of the corresponding distribution was equal to 0.69.
The last row shows the approximate true c-indices for those scenarios

K = 2 K = 5 K = 10

a = 1 a = 0.5 a = 1 a = 0.5 a = 1 a = 0.5

(Standardized) regression coefficients of true predictors X1 2.08 (0.83) 1.04 (0.42) 2.08 (0.83) 1.04 (0.42) 2.08 (0.83) 1.04 (0.42)

X2 1.39 (0.67) 0.69 (0.33) 1.39 (0.67) 0.69 (0.33) 1.39 (0.67) 0.69 (0.33)

X3 – – 0.69 (0.35) 0.35 (0.17) 0.69 (0.35) 0.35 (0.17)

X4 – – 0.69 (0.35) 0.35 (0.17) 0.69 (0.35) 0.35 (0.17)

X5 – – 0.35 (0.2) 0.17 (0.10) 0.35 (0.2) 0.17 (0.10)

X6 – – – – 0.35 (0.21) 0.17 (0.11)

X7 – – – – 0.036 (0.37) 0.018 (0.18)

X8 – – – – 0.003 (0.67) 0.002 (0.33)

X9 – – – – 0.004 (0.66) 0.002 (0.33)

X10 – – – – 0.036 (0.36) 0.018 (0.18)

Noise X11, …, X15 0 0 0 0 0 0

True c-index 0.73 0.64 0.76 0.66 0.84 0.71
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combining it with a ∈ {0.5,1}, E(Y) ∈ {0.1, 0.25}, K ∈ {5, 10}
and noise (absent/present). We simulated 1000 datasets
for each scenario. Table S1 in Additional file 1 shows
minimum sample size required for developing a
prediction model for different scenarios based on recent
guidance [9, 33].

Methods
We analyzed each simulated dataset by fitting ridge and
Firth’s logistic regression models. To obtain predictions
based on Firth’s correction we applied FLIC as suggested
by Puhr et al. [7]. To fit ridge regression models we first
standardized covariates of each dataset to zero mean
and unit variance, and then optimized the complexity
parameter λ∗ over a fixed sequence of 200 log-linearly
equidistant values ranging from 10(−6) to 100 by using
the following procedures:

– D;
– GCV;
– CE where the cut-off c was set to the observed event

rate 1
N

X

i

yi: As CE is discrete in nature and has no

unique optimum in λ, in our study λ∗ was the largest
λ minimizing CE;

– D by 10-fold cross-validation with 50 repetitions
(RCV) where λ∗ was chosen as the θ-th quantile of
the obtained values with θ∈ {0.5, 0.95} (RCV50,
RCV95) [2, 24];

– AIC;
– restricting the standardized coefficients by

informative (IP, λ = 2) and weakly informative prior
assumptions (WP, λ = 1/2). In the simulations the
degree of shrinkage was the same for all the
covariates.

As a benchmark we defined two oracle models,
determined by an amount of shrinkage ideal with
respect to estimation of β1 (explanation oracle, OEX)
and to predictions (prediction oracle, OP). For OEX λ∗

was chosen such that ðβ̂1−β1Þ
2
(or equivalently j β̂1−β1 j),

where β̂1 is the ridge regression estimate of β1, was

minimized; for OP, λ∗ was the one minimizing
P

i

ðπ̂i−πiÞ2, where π̂i is the estimate of the i-th probability of
πi. To avoid model fitting problems, all ridge regression
models were fitted by data augmentation [15] in the
following way: two artificial data records were added for
each covariate; the values for this covariate were set to 1/s
and to zero for other covariates, where s = 10 was a
rescaling factor improving the approximation. Maximum
likelihood estimation on this augmented dataset was then
performed, specifying weights that equaled 1 for the
original observations and 2s2λ for the pseudo-

observations. We used the libraries brglm2 [34] for detect-
ing separation, penalized [27] for performing cross-
validation and logistf [29] for model fitting in R version
4.0.2 [26].

Estimands
The true regression coefficient β1 and the vector of true
event probabilities π were the estimands in our study.

Performance measures
We evaluated the root mean squared errors (RMSE) of

coefficients ð 1
1000

P1000
s¼1 ðβ̂k;s−βkÞ

2Þ
1=2

, where β̂k;s; k ¼ 1;
s ∈ {1,…, 1000} is the estimate of βk in the s-th simulated

dataset) and of predictions ð 1
1000N

P1000
s¼1

PN
i¼1ðπ̂i;s−πi;sÞ2Þ1=2,

where π̂i;s and πi, s are the estimated and true event
probability for the i-th observation in the s-th simulated
dataset). We also evaluated c-statistics, estimated with
respect to newly generated outcome, and calibration
slopes evaluated on a validation dataset generated
once for each scenario from the same population with
a sample size N = 10,000. The variability of calibration
slopes was assessed by median absolute deviation
(MAD) of the log(slopes). To combine bias and vari-
ability of calibration slopes, we calculated root mean

squared distances (RMSD, ð 1
1000

P1000
s¼1 d

2
s Þ

1=2
), where the

s-th distance was defined as ds = log(1) − log(slopes), as
suggested by Van Calster et al. [11]. To avoid issues
with negative slopes that were rarely obtained by the
methods we winsorized them at 0.01 for the calcula-
tion of RMSD. In addition, we assessed the Spearman
correlation coefficients between calibration slopes and
tuned complexity parameters λ∗ as well as the RMSD
of calibration slopes achieved by the methods and the
variability of tuned complexity parameters λ∗,
expressed by median absolute deviation, over all sim-
ulated scenarios.

Results
Among 88 simulated scenarios the prevalence of
separation was ranging from zero in scenarios with
moderate effects, large sample sizes and E(Y) = 0.25 to at
most 85% in a scenario with large effects, N = 100, K = 5
and E(Y) = 0.1 (Table S2 and S3 in Additional file 1).
First, we describe the distribution of λ∗ values

obtained by optimizing different tuning criteria over
1000 simulation runs and their correlations with
‘optimal’ λ∗ as achieved by OEX and OP, respectively
(Fig. 2). For brevity, Fig. 2 focuses on scenarios with
E(Y) = 0.1 and K = 5 only. Tuning procedures often led
to large variability of selected λ∗, which was especially
apparent in moderate effects scenarios. Generally, the
variability was smaller when the true effects were
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strong, with larger N and K, i.e. the number of
predictors associated with the outcome, and with more
balanced outcomes. With moderate effects the methods
tended to overshrink, often producing very wide
distributions of optimized λ∗ values. The smallest
variability of optimized values over all scenarios in
terms of MAD was obtained by the AIC, followed by
CE and RCV50. Quite some variability of λ∗ was also
obtained by OP, however, the correlations between
‘optimal’ λ∗ (of both OP and OEX) and λ∗ obtained by
optimizing different tuning criteria were mostly
negative. OEX resulted in less variability of λ∗ and less
shrinkage than OP. In IP the pre-specified λ∗ was in
median very close to the one obtained by OEX.

Accuracy of coefficients
Figure 3 shows the RMSE of β1 across simulated
scenarios and models with and without noise by means
of nested loop plots [35, 36]. More detailed results also
including scenarios with N = 1000 are contained in
Table S2 and S3 of Additional file 1. As expected the
best performance across all simulated scenarios was
achieved by OEX. Generally, the performance of other
tuned ridge regression approaches was extremely
variable and unreliable and due to data sparsity the
methods yielded coefficients with extremely large RMSE.
Interestingly, the RMSE of β1 did not always decrease
with increasing sample size and noise did not necessarily
worsen the performance of those methods. In contrast,
the methods where tuning was not required showed
stable performance across all simulated scenarios. While
the performance of Firth’s correction was satisfactory in
almost all scenarios, suffering from RMSE larger than
one in scenarios with the expected event rate E(Y) = 0.1
and sample size N = 100 only, it was clearly
outperformed by IP that produced small RMSE of β1
across all scenarios. Although WP generally resulted in
worse performance than Firth’s correction, it was less
sensitive to very sparse data situations in which the
performance of Firth’s correction was poor.

Accuracy of predictions
Results regarding the RMSE of predicted probabilities
for E(Y) = 0.1 are shown in Fig. 4. While the
performance of the methods was similar in scenarios
with larger sample sizes and no noise, the differences
between them became apparent in scenarios with N =
100 and especially when including noise. Noise
considerably worsened the performance of the methods.
The least affected by noise were the methods based on
cross-validation (apart from CE) that generally yielded
the best performance. However, with no noise and
strong effects (higher c-indices) IP always outperformed
the other methods (apart from OP). The performance of

FLIC and WP was consistently somewhat worse than
the one of IP. The performance of AIC was similar to
that of the cross-validation-based methods if there was
no noise, however, when N = 100 it appeared sensitive to
noise.
Calibration slopes are presented by means of boxplots

for scenarios with E(Y) = 0.1 and K = 5 (Fig. 5). For
clarity of presentation, datasets where calibration slopes
were larger than 5 are not shown. IP, WP and FLIC
yielded similar performance with small variability over
simulation runs and were generally close to the slope of
1 in strong effects scenarios but suffered from overfitting
in moderate effects scenarios. The addition of noise
increased overfitting of these methods. Tuning
procedures (specifically, D, RCV50 and AIC) yielded
calibration slopes that were in median relatively close to
1, however they suffered from large variability. While
this variability decreased with N, there was still a
considerable number of outliers produced by these
methods even with N = 500, if the outcomes were very
unbalanced and effects moderate only. Among tuning
procedures AIC achieved on average the smallest
variability of calibration slopes. With respect to the
RMSD of the logarithm of calibration slopes (Table S10,
S11 in Additional file 1) OP overall achieved the best
performance, followed by IP if no noise was included or
AIC in case of noise. Interestingly, noise did not
necessarily increase the RMSD of tuning procedures and
they appeared to be less sensitive to it as compared to
the methods where shrinkage was pre-specified. Calibra-
tion slopes were strongly positively correlated with opti-
mized λ∗ values (Fig. S1 in Additional file 1) and such
were the correlations between the RMSD of calibration
slopes and the variability of λ∗.
In terms of c-indices there was no considerable

differences between methods (Table S12, S13 in
Additional file 1).

Data example
As an example we consider the study described by Poplas
Susič et al. [37]. The aim of the study was to estimate the
prevalence of dependence in daily activities (binary) and
its risk factors in a group of individuals whose health
status is not well known to family practice teams (patients
who had not visited their chosen family physician in the
last 5 years). Nine risk factors were considered: age
(continuous), sex (binary), body mass index category
(BMI; ordinal with 4 levels), APGAR (measuring family
function via five constructs: Adaptation, Partnership,
Growth, Affection, and Resolve; binary), chronic disease
(CD; ordinal with four levels), fall (measuring increased
risk of fall; binary), loneliness (measured on a discrete
scale from 1 to 10; continuous), health (measured on a
discrete scale from 1 to 10; continuous), pain (measured
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Fig. 2 Scatter plots showing values of λ∗ obtained by optimizing different tuning criteria versus ‘optimal’ λ∗ as achieved by explanation oracle
and prediction oracle over 1000 generated datasets in scenarios with the expected value of Y, E(Y) = 0.1, the number of predictors K = 5, noise
absent or present, the sample size of N ∈ {100, 250, 500, 1000} considering A) moderate (a = 0.5) and B) strong (a = 1) predictors. Values of λ∗ were
optimized by using different tuning criteria: D, deviance; GCV, generalized cross-validation; CE, classification error; RCV50, repeated 10-fold cross-
validated deviance with θ = 0.5; RCV95, repeated 10-fold cross-validated deviance with θ = 0.95; AIC, Akaike’s information criterion
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on a discrete scale from 1 to 10; continuous). Complete
case analysis on a sample of individuals of size N = 1814,
from which 423 (23%) had an event, was performed to
quantify the effects of risk factors.
For our demonstration we randomly selected N = 275

individuals from the complete sample. According to
recent guidance, the minimum required sample size for
developing a prediction model was N = 273 based on an
expected value of the (Cox-Snell) R-squared of 0.5, 9
predictors, expected value of events E(Y) = 0.23, and a
desired level of shrinkage of 0.9 [9, 33]. In the subsample
60 (22%) events were observed. We used this subsample
for fitting ridge regression and FLIC models while the
remaining data served as a validation dataset for calcu-
lating the calibration slopes (Table 4). Ridge regression

and FLIC models were fitted as described in Section
4.1.3. Most shrinkage was induced by tuned ridge regres-
sion methods with the exception of AIC and CE while
methods with fixed penalization strength yielded calibra-
tion slopes (slightly) smaller than 1.

Discussion
Numerous studies have shown that shrinkage is effective
in preventing overfitting and may solve issues that arise
in classical clinical settings with relatively large number
of correlated covariates [2, 7, 8, 38]. Therefore, applying
shrinkage has been recommended not only when
developing prediction models but also when interest lies
in coefficients with reduced MSE and inference is not
required [7]. A recent study, however, noted that while

Fig. 3 Nested loop plot of root mean squared error (RMSE) of β̂1 by the expected value of Y, E(Y) ∈ {0.1, 0.25}, the number of predictors K ∈ {2, 5,
10}, noise absent or present (full and dashed lines), the sample size N ∈ {100, 250, 500} and the size of true coefficients β1 ∈ {1.04, 2.08} for
simulated scenarios. Due to poor performance some results lie outside the plot range. OEX, explanation oracle; D, deviance; GCV, generalized
cross-validation; CE, classification error; RCV50, repeated 10-fold cross-validated deviance with θ = 0.5; RCV95, repeated 10-fold cross-validated
deviance with θ = 0.95; AIC, Akaike’s information criterion; IP, shrinkage based on informative priors; WP, shrinkage based on weakly informative
priors; FC, Firth’s correction. See Table S2 and S3 for results on scenarios with N = 1000. Results regarding RMSE of β2 are contained in Table S4
and S5
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calibration slopes obtained by shrinkage methods are on
average close to 1 the variability of calibration slopes in
small or sparse situations is large and therefore,
improved performance in a single dataset cannot be
guaranteed [11]. If considering that the number of
observations (with event) constitutes the amount of
information contained in the data, this may not seem
surprising. However, many researchers would still utilize
shrinkage methods in small or sparse datasets, expecting
all problems to be solved. Therefore, in this paper, we
have elaborated this issue further by focusing on ridge
logistic regression. We evaluated its performance in a
low-dimensional setting and compared it to Firth’s cor-
rection by means of simulation study. The amount of
shrinkage in ridge regression was determined using dif-
ferent tuning procedures and prior assumptions,

respectively. We were interested in the accuracy of both
coefficient estimates and predictions.
With respect to large variability of calibration slopes,

the results of our study confirm the findings of Van
Calster et al. [11]. Furthermore, as already indicated by
Riley et al. [13], we observed that the RMSD of the
logarithm of calibration slopes was strongly correlated
with the variability of optimized complexity parameters
λ∗. By an illustrative example we demonstrated that
tuning procedures might fail to approximate the U-
shaped curve arising from the bias-variance trade-off
and result in completely arbitrary choice of λ∗ that sim-
ply equals the smallest or the largest λ of the pre-
specified sequence of values. However, in the simulation
study we then observed that substantial variability of λ∗

must even be expected from the oracle that ‘knows’ the

Fig. 4 Nested loop plot of root mean squared error (RMSE) of predictions multiplied by the square root of sample size N by the number of
predictors K ∈ {2, 5, 10}, noise absent or present, the sample size N ∈ {100, 250, 500} and the effect multiplier a ∈ {0.5, 1} for simulated scenarios with
expected value of Y, E(Y) = 0.1. Further results are contained in Table S6 and S7. OP, prediction oracle; D, deviance; GCV, generalized cross-
validation; CE, classification error; RCV50, repeated 10-fold cross-validated deviance with θ = 0.5; RCV95, repeated 10-fold cross-validated deviance
with θ = 0.95; AIC, Akaike’s information criterion; IP, shrinkage based on informative priors; WP, shrinkage based on weakly informative priors; FLIC,
Firth’s logistic regression with intercept-correction
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true event probabilities (prediction oracle) or regression
coefficients (explanation oracle) and uses this knowledge
to determine the optimal values of λ∗. This indicates that
the variability of λ∗ by itself would not be that much of a
problem but tuning procedures yielded optimized values
that were negatively correlated with their ‘optimal coun-
terparts’, determined by explanation or prediction oracle.
On the one hand this can be explained by separation
that often makes tuning procedures result in an opti-
mized value of λ∗ close to zero [12]. In such datasets, if
the amount of shrinkage is too small, this will yield coef-
ficients with large MSE and predictions that may be nu-
merically indistinguishable from zero or one by software
packages [18]. While some may argue that this is not
problematic when interest lies in predictions, we

observed that the prediction oracle generally favored lar-
ger values of λ∗ than the explanation oracle, suggesting
that in typical clinical studies seemingly perfect predic-
tions should not be accepted as they potentially imply
overfit and reflect increased variability of calibration
slopes. On the other hand, as demonstrated in our illus-
tration, if only a few observations prevent the data set
from separation, a large value of λ∗ is needed to avoid
very large out-of-sample prediction errors for the cru-
cial, separation-preventing observations, while in fact the
performance of maximum likelihood estimation in such
datasets is already satisfactory [18]. In words of van
Houwelingen [39], if β is ‘large’ by random fluctuation
tuning procedures tend to keep the model large instead
of correcting for the ‘large’ β by setting λ∗ > 0; and vice

Fig. 5 Boxplots showing distribution of calibration slopes over 1000 generated datasets in scenarios with the expected value of Y, E(Y) = 0.1, the
number of predictors K = 5, noise absent or present, the sample size of N ∈ {100, 250, 500, 1000} considering A) moderate (a = 0.5) and B) strong
(a = 1) predictors. Datasets where calibration slopes were larger than 5 are not shown. The whiskers extend no more than 1.5-times the
interquartile range from the box. EPV, indicated in the top right, denotes the events per variable ratio. Further results from other scenarios are
contained in Table S8 and S9. OP, prediction oracle; D, deviance; GCV, generalized cross-validation; CE, classification error; RCV50, repeated 10-fold
cross-validated deviance with θ = 0.5; RCV95, repeated 10-fold cross-validated deviance with θ = 0.95; AIC, Akaike’s information criterion; IP,
shrinkage based on informative priors; WP, shrinkage based on weakly informative priors; FLIC, Firth’s logistic regression with intercept-correction
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versa. In our simulation study we observed that for
tuned ridge logistic regression calibration slopes were
more stable in scenarios with larger sample sizes, more
balanced outcomes, stronger effects and often even with
a larger number of true predictors, while noise possibly
increased the variability of calibration slopes. This sug-
gests that simply breaking down the problem to a meas-
ure such as the events-per-variable ratio is unsatisfactory
as not only the number of covariates but also their rela-
tions to the outcome are decisive here [8, 9].
Our results show that optimization of the complexity

parameter in ridge regression is difficult in datasets where
sampling variability is large and sampling artefacts, e.g.
separation, are likely to occur. Van Calster et al. [11] instead
suggested to apply FLIC [7] that provides only little
shrinkage but results in lower variability of calibration
slopes. Another convenient property of Firth’s correction,
not shared by ridge regression, is its invariance to linear
transformations of the design matrix. However, ridge
regression may be generally preferred over Firth’s correction
in the case of highly correlated covariates, where I(β) is
close to singularity, causing Firth’s correction to deteriorate.
Alternatively, the choice of the complexity parameter in
ridge regression may be based on prior expectations about
the magnitude of the underlying effects [15]. Pre-specifying
the degree of shrinkage seems reasonable as it stabilizes λ∗,
and appeared beneficial in our study in which we included
such a semi-Bayesian approach with zero-centered inform-
ative or weakly informative normal priors (IP and WP, re-
spectively). Despite different motivation behind methods
with fixed penalization strength, IP clearly outperformed
tuned ridge regression (and Firth’s correction) with regard
to RMSE of coefficients. With tuned ridge regression valid
inference is hard to achieve due to bias introduced in the

coefficients and additional variability that comes along with
tuning λ (which possibly leads to less bias and more vari-
ance) [14, 40]. By contrast, for IP and WP (like with Firth’s
correction) valid 95% posterior limits could be obtained eas-
ily by data augmentation, using any statistical software that
enables maximum-likelihood fitting and weighting of obser-
vations [15]. Moreover, in scenarios with no noise included
in the model IP yielded small RMSE of predictions and
small RMSD of calibration slopes. Although one should
usually devote additional work to specify prior distributions,
we straightforwardly followed the outline of Sullivan and
Greenland [15] in defining our priors, assuming that the
true effects are not too extreme. IP therefore performed ex-
tremely well in all scenarios with strong effects, associated
with higher true c-indices. While it seems that this ap-
proach is to some extent robust to misspecification of the
prior, the results showed that with moderate effects only
(and lower true c-indices) or with noise present in the
data it could be reasonable to choose smaller prior vari-
ances (preferably for each coefficient separately) to better
handle overfitting. However, if one is in doubt about how
to determine the limits of the prior interval, weaker penal-
ties are preferred. More guidance on how to specify prior
distributions can be found in the paper by Greenland
et al. [1].
Our study showed that particularly methods with a fixed

degree of shrinkage were sensitive to noise, especially in
terms of calibration slopes. For high-dimensional settings
where much noise is contained in the data defining appro-
priate priors may be much more challenging and thus, these
methods less appropriate. We expect that in such settings
larger complexity parameter values will yield smaller out-of-
sample prediction errors, thus tuning may be successful in
preventing overfitting, but the problem of large calibration

Table 4 Estimated regression coefficients for nine predictors of dependence in daily activities obtained from a subsample of size
N = 275 by applying various versions of tuned ridge regression, ridge regression based on informative priors (IP), ridge regression
based on weakly informative priors (WP) or Firth’s logistic regression with intercept-correction (FLIC). Tuning criteria: D deviance,
GCV, generalized cross-validation, CE, classification error, RCV50, repeated 10-fold cross-validated deviance with θ = 0.5, RCV95,
repeated 10-fold cross-validated deviance with θ = 0.95, AIC, Akaike’s information criterion. Calibration slopes were calculated on a
validation dataset of size N = 1539

Method Estimated coefficients Calibration slope

β̂0 β̂age β̂sex β̂BMI β̂APGAR β̂CD β̂fall β̂lonliness β̂health β̂pain

D −4.79 0.05 −0.43 −0.25 1.25 0.57 2 0.04 −0.20 0.11 1.09

GCV −4.53 0.05 −0.35 −0.22 1.14 0.54 1.90 0.05 −0.18 0.10 1.16

CE −5.71 0.07 −0.72 −0.36 1.59 0.64 2.25 0.03 −0.25 0.13 0.89

RCV50 −4.85 0.06 −0.45 −0.26 1.27 0.57 2.02 0.04 −0.20 0.11 1.07

RCV95 −4.53 0.05 −0.35 −0.22 1.14 0.54 1.90 0.05 −0.18 0.10 1.16

AIC −5.59 0.07 −0.69 −0.35 1.55 0.63 2.22 0.03 −0.24 0.13 0.91

IP −5.33 0.07 −0.61 −0.32 1.46 0.61 2.16 0.03 −0.23 0.12 0.96

WP −5.89 0.08 −0.78 −0.38 1.65 0.65 2.29 0.02 −0.26 0.14 0.87

FLIC −5.84 0.07 −0.77 −0.37 1.61 0.60 2.16 0.02 −0.25 0.13 0.91
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slopes due to very large optimized λ∗ might remain or even
increase. Future research should investigate the behavior of
tuning approaches in high-dimensional settings, also consid-
ering other penalized regression methods, e.g. lasso that in
addition to shrinkage also performs variable selection. In a
classical clinical prediction modelling context, however,
lasso may be too restrictive and result in too sparse models.
Furthermore, based on limited additional simulations (re-
sults not shown) we suspect that issues we discussed with
respect to tuning will also appear with the lasso or any other
tuned penalized regression method [11, 13].
Summarizing, while tuning has the potential to reduce

the MSE of the estimates as demonstrated by the oracles,
applying tuned ridge logistic regression in small or sparse
datasets is problematic as tuned λ∗ values are highly
variable and in addition negatively correlated with optimal
values, yielding unstable coefficients and predictions.
Naturally, only limited performance of the methods can
be expected if little information is provided by the data, as
is the case with small or sparse datasets. In order to
alleviate the problem and allow for a more efficient use of
available sample size, we recommend to determine the
degree of shrinkage a priori with respect to some
meaningful assumptions about true effects as
demonstrated by Sullivan and Greenland [15]. Our
simulations indicate that this approach has the potential
to stabilize the estimates and may reduce bias of the
coefficients away from zero such that relatively accurate
coefficients and predictions can be obtained even in non-
ideal settings which are typical e.g. in the context of rare
outcomes or sparse predictors. Also with larger sample
sizes an analysis might benefit from this approach, espe-
cially when (in addition to point estimates or predictions)
valid Bayesian inference is required [1, 15, 16].
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